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Abstract 
 

The implementation of artificial neural network techniques has become quite prevalent in the field of nonlinear data modelling and fore-

casting in this era. The only application of ANN models for model fitting may not be sufficient for close and satisfactory performances; 

hence the researchers are adopting hybrid models of ANN with different statistical and machine learning approaches such as support 

vector machines, particle sworm optimization, principal component analysis, etc. We have also developed a hybrid model in this paper 

with ANN and data envelopment analysis (DEA) techniques for stock prices forecasting in share market. The efficient decision making 

units have been selected with help of DEA approach and provided it as input to the Lavenberg-Marquardt technique based ANN model in 

sliding window manner. Further a closed performance of our hybrid model has been achieved by carrying out our experimentation with 

different number of nodes in the hidden layer of ANN model. Since the prices of stocks follow numerous factors such as demand and 

supply, political environments, economy and finance, buy and sell, etc., the historical prices for stocks may be convenient for the further 

forecasting. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a nonparametric and non-

stochastic, linear programming approach, which has been consid-

ered as one of the highly competent tool in the recent decades for 

classification and estimation of efficiency and yield of Decision 

Making Units (DMUs) as frontiers. Its vital application has been 

observed in both private and public sectors such as airlines, hospi-

tals, banks, universities, etc., for mostly production and manufac-

turing. Many applications of DEA can be explored in [1, 2, 3, 4, 5, 

6]. DEA was not preferably considered earlier due to its occupan-

cy of memory and CPU time in the computing for large datasets 

comprising many attributes and DMUs, but since those constraints 

are no more barriers these days, it is being implemented frequently 

in different disciplines. 

ANN has been applied very much successfully in numerous fore-

casting premises in recent decades [7, 8, 9, 10, 11, 12]. Many re-

searchers have preferred ANN over statistical multivariate regres-

sion models since ANN does not consider any structure as in re-

gression models [13]. Even though, this characteristics of ANN, 

weakens its forecasting ability in the cases of monotonic curves. 

An example may be considered from the point that increased indi-

vidual’s income may lead to demand of assets [9, 14].  

The monotonic properties of curves support a lot for forecasting. 

Researchers [9] have emphasized about biased individual prefer-

ences for predicting market behaviour through the stocks having 

monotonic attributes. Wang [13] has also expressed that nonlinear 

would hardly undergo for any over-fitting scenarios when they 

preserve monotonicity. For a multi-attribute data with input vector 

nixxx miii ,...,1),,...,( 1   and iy if there exists a map-

ping function ( )f  that maps ix to iy , then the monotonic prop-

erty could be established for any two 1x  and 2x , and their re-

spective values 1y  and 2y  with following conditions: 

1.   ,0)( 2121 yyxx jj
at least one 

mj ,...,1 such that 
21 jj xx  and 

21 jj xx  with no mj ,...,1 , 

and  

2. .,...,10)( 2121 mjyyxx jj   

For forecasting in the cases of nonlinear functions, monotonicity 

can be retained by reformulating the algorithm or by applying the 

training data that itself preserves monotonicity. The data envel-

opment analysis (DEA) technique is quite capable to follow all 

these requirements. The DEA is a nonparametric model that has a 

characteristics of piecewise linearity (almost nonlinearity), which 

works on measurement of data, based on productivity. In this sec-

tion, we have followed the data screening technique to generate 

subsample training data with “weak” monotonicity. This approach 

will works as preprocessing of data before providing it as input to 

our ANN models. 

In this paper we have explained the concept of DEA with data 

preprocessing approach in Section-2 and 3. Further we have dis-

cussed about ANN structure in Section-4. Mathematical concept 

about iterative methods for nonlinear least square problems has be 

described in Section-5. In the Section-6, experimentation and re-

sult analysis has been discussed. Finally, the paper has been con-

cluded with future scope in the Section-7. 
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2. Concept of DEA 

The basic application of DEA technique is to calculate the perfor-

mance of decision making units (DMUs) (or observations), those 

actually play a vital role in developing the model. Let us consider 

that there are n - DMUs with m - input and s – output variables, 

then the score for relative inefficient },...,1{ nt th  - DMU can be 

calculated by the linear programming as follows:  

minimize c

t  

subject to  



n

i

jtjii x
1

0   mj ,...,1 , 

 





n

i

ktkii yy
1

0    sk ,...,1 ,                                             (1) 

 

0i    ni ,...,1 , 

where c

t is the inefficiency score for tth-DMU, given by [15] 

(CCR). DMU applies 
jix  inputs and produces 

kiy  outputs, and 

k  are dual variables. The CCR model asserts that a DMU, t is 

inefficient when it can reflect similar output levels while consum-

ing less number of inputs.  

The CCR model follows a constant returns to scale (CRS) cases, 

that is, it requires exactly double costs for doubling outputs, how-

ever, [16] (BCC) model performs on variable returns to scale 

(VRS) cases: 

minimize B

t  

subject to  



n

i

jtjii x
1

0   mj ,...,1 , 

 





n

i

ktkii yy
1

0    sk ,...,1 ,                                             (2) 

 

0i   and  



n

i

i

1

1 ,   ni ,...,1  

where B

t is the inefficiency score for tth-DMU, given by [16] 

(BCC). Under VRS cases, there is nonlinear decreasing or increas-

ing conditions with inputs and outputs. For instance, decreasing 

scale cases may require a higher proportion of increase in inputs 

for getting increase in outputs.  

For input and output vectors mjxx j ,...,1),(   

and skyy k ,...,1),(  , a standard data envelop function f (x) 

with a set of DMUs, can be established with following equation 

[13]: 

 

qp)x(fy   (3) 

 

where p and q are inner and outer deviations. The DEA technique 

performs on assumption of monotonicity, and hence q = 0. 

3. Data Preprocessing by DEA for Input to 

ANN 

The functionality of ANNs essentially depends on the structure 

and quality of input data which determine the performance on 

ANN models [17]. Here we have followed DEA-based technique 

to sort out the input data. For univariate cases, we have firstly 

observed the application of DEA for partitioning the input data. 

Further a generalized mathematical structure has been produced 

for a multivariate input data [18]. 

 

3.1. Case of Univariate Input Data 

The assumption of monotonic property has played a vital role for 

decision making scenarios. In a simple way, mathematically, a 

monotonic property for univariate input is defined as follows: 

 

1 2 1 2( ) ( )x x f x f x    (4) 

 

DEA techniques have worked on finding capable frontiers which 

are compatible with assumption of monotonicity. Actually every 

capable DMU (also called as reference DMU) stays on capable 

frontiers which satisfy monotonicity. Figure 1 can be observed as 

an example for a set of frontiers for a combination of univariate 

input and single output scenario. Frontier-1 appears as the most 

capable while Frontier-2 and #3 performs in gradually decreasing 

capability of frontiers. Existing 9-DMUs lie on different frontiers 

as per the efficiencies gradually decreasing from Frontier-1 to #3 

but each 3 DMUs have the same efficiency on a single frontier. 

 

 
Figure 1: A set of linear frontiers in piecewise manner 

 

ANN applies the method of least square to minimize errors in 

nonlinear predicting models. If ANN is trained with the DMUs 

lying only on a single frontier, it will be preserving monotonic 

property, but if all the 9 DMUs are involved, it will certainly lead 

to inconsistency for the model with monotonicity assumptions. 

It can also be understood in a way that the probability of a 

monotonicity assumption based predicting function learned by an 

ANN decreases gradually, when there is involvement of training 

data having lesser DEA-based efficiencies. Let us represent DMUs 

by DMUs1, DMUs2, and DMUs3 lying on Frontiers-1 to #3 

respectively, following monotonic property (MP), the respective 

conditional probabilities P(MP|DMUsi) reflect the following 

relation: 

 

)DMU|MP(P 1s

 

)DMU,DMU|MP(P 2s1s

)DMU,DMU,DMU|MP(P 3s2s1s  

(5) 

3.2. Case of Multivariate Input Data 

Let us proceed with a case of multiple input and single output data 

for k-observations training data set {(x1,y1),...,(xk,yk)}, where xi 

represents m-dimensional input multivariate vector of ith-

observation with yi as output value. The forecasting function 

f(xi) > 0 with a variable ζi = |yi/f(xi)|, is selected in such a way that 

the following condition is optimized: 

 

maximize   


k

0i

i
           (6) 

 

subject to    0 1, 1,...,i i k    

It is obvious that this formulation has an optimal value for k as 

upper bound that provides a perfect fit for the function f(xi) on 

training data. Nevertheless, for cases when perfect fit are not pos-

sible, the selection of f(xi) should be in such way that all the values 
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of  ζi are close to 1, for all i, that is, the probability density func-

tion for ζi is monotonically increasing. [19] had proposed a class 

of monotonically increasing densities on [0,1] with mode 1 as 

follows: 

 

0,ec)(h   
            (7) 

 

Lemma 3.1.  
Let us suppose that ζi are independent and identically distributed 

(iid) with monotonically increasing densities, as in the 

equation-(7), similar values of ζi in the sample are also maximized 

in the equation-(6). 

 

Lemma 3.2.  
In the processed data, the outliers (external and 

internal deviations) are also minimized by equation-(6). 

[18] can be referred for proofs of Lemma 3.1 & 3.2. 

4. Artificial Neural Network Structure 

The concept of artificial neural networks is very much relevant 

and analogous to natural nervous systems in human brain. It can 

be considered as a substantially parallel adaptive networks of neu-

rons. Neurons are here cognitive to simple nonlinear computing 

components. The prime intention of neural networks is to perform 

both analysis and establishment of such substantive parallel 

computing systems. 

 

 
Figure 2: Artificial Neural Network Model 

 

Neurons are categorized into three types: input, hidden, and output. 

Input neurons receive inputs from external sources as an stimulant 

to the network. Output of neurons produces output signals of the 

network. The intermediate functions are calculated by hidden 

neurons, and these neurons are not visible from the external sites. 

A neural network model can be created as a weighted directed 

graph containing neurons as nodes and weighted edges as links. 

The basic structure of the artificial neural networks is sketched in 

Figure 2.  

An artificial neural network model has the capability of adopting 

the change of environment that is called as learning. In this pro-

cess it generates an internal model with sampled data, which rep-

resent structured weight vectors. Learning algorithms develop an 

architecture-based approach to assign patterns into weights to 

produce internal models. Learning process continues with update 

of connection weights. 

5. Iterative Methods for Nonlinear Least 

Square Problems  

Some of the useful definitions may be followed as preliminary 

context of this chapter as follows.  

To minimize a real valued function f with N variables in the 

unconstrained optimization scenarios, we search a local minimizer, 

that is, a value x∗ such that 

 

( *) ( )f x f x           (8) 

 

for all x close to x∗. In the case of global minimizer, it will consid-

er simply for all x. In the constrained optimization scenarios, for a 

local minimizer of a function f over a set U ⊂ RN and x∗ ∈ U, such 

that f(x∗) ≤ f(x) for all x ∈ U near x∗. Again in case of global min-

imizer, it is simply for all x ∈ U. 

5.1. Notations and Some Preliminary Definitions 

In this paper, we have followed the following convention. Vectors 

are considered as column vectors. The vector x∗ is a solution to 

function f, while x is a desired value. The initial iteration or some-

times preliminary guess is x0, and {xk},k ≥ 0 are the series of itera-

tions. The ith element of a vector x by (x)i, and the ith element of xk 

by  (xk)i. The error is (ε = x −x∗) and εn = xn −x∗ is the error in nth 

iteration. The gradient of f, is called Jacobian of f, denoted by ∇f(x) 

∈ RN for x ∈ RN, if it exists, 

 























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n21 x

f
...

x

f

x

f
)x(f           (9) 

 

The 2nd derivative is called Hessian of f, and if it exists, represent-

ed as 
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Throughout this paper, the Euclidean norm is given as 

 

2

1

|| || ( )
n

i

i

x x


           (11) 

 

Definition 5.1.  
A positive-definite matrix A obeys the follows 

xTAx > 0 for every non-zero vector x. If A is positive definite and 

symmetric as well, it is semi-positive definite. If A consists both 

negative and positive eigenvalue., It is called as indefinite. 

 

Definition 5.2.  
Least Square Problem: The general function for 

finding local minimize 

 

2

1

1
( ) ( ( ))

2

m

i

i

f x f x


           (12) 

 

where fi : R
N → R, i = 1,...,m are generated functions and m ≥ n. 

Let us consider a simplest quadratic objective function as 
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bxHxx
2

1
)x(f TT           (13) 

 

and without loss of generality, we may assume that H is symmet-

ric, since 

 

x
2

HH
xHxx

T
TT








 
         (14) 

 

H is ∇2 f(x), for all x, and by the symmetry 

 

bHx)x(f           (15) 

 

Definition 5.3 
If H is positive semidefinite, the objective quadratic function is 

convex.  

If H is positive semi-definite, the objective quadratic function is 

convex.  

If x∗ is local minimum of a quadratic function f, the necessary 

terms for optimality involve that H is positive semidefinite, and 

Hx∗ = b and the global minimizer is solution of this linear system 

in particular. If H is not sparse, for an average length N, this linear 

system can be solved by Cholesky factorization [20] of H as        

H = LLT , L is positive diagonal with lower triangular nonsingular 

matrix. The Cholesky factorization will not exist for indefinite H. 

5.2. Gauss-Newton Method  

Nonlinear least squares conditions may have objective functions 

as follows: 

 





m

1i

2

i ||)x(r||
2

1
)x(f         (16) 

 

or  

 

1
( ) ( ) ( )

2

Tf x R x R x          (17) 

 

Where vector R = (r1,...,rm) is residual.  

In the Gauss-Newton method, ∇2f is simply discarded, and one 

calculates a step 

 
1( '( ) '( )) ( )T

c c cs R x R x f x                         (18) 

 

Or 

 
1( '( ) '( )) '( ) '( )T T

c c c cs R x R x R x R x                       (19) 

 

The Gauss-Newton next iteration is x+ = s + xc, for the close itera-

tion xc. 

5.3. Steepest Descent Method 

The direction in the steepest descent method is determined by 

−∇f(x), and the current iteration xc is updated by 

 

( )x cx f x x              (20) 

 

For λ = 1, x+ may not be more close to a solution than xc, since the 

direction is scaled with f , unlike the direction in Newton’s method. 

For the effective results, the steplength λ should be chosen. It may 

be determined as λ = γm, where γ ∈ (0,1), and m ≥ 0 is the smallest 

integer in such a way that can sufficiently reduce the value of f . 

So steepest decent method may follow 

 
2( ( ) ) ( ) || ( ) ||x c c cf f x x f x f x            (21) 

 

This is called as Armijo rule [21], for line search, applied to find 

minimizer in a direction where f locally decreases. This testing 

is repeatedly continued up to some threshold and step-size is also 

reduced if test fails as backpropagation. 

5.4. Levenberg-Marquardt Method 

Most of the standard ANN techniques want to get the bottom of 

nonlinear least square problems that deal with fitting a 

parameterized function to install the minimization of sum of 

squared errors (SSE) between output of the function and actual 

data values by continuously updating the parameter values. The 

LM method is basically a combination of two minimization meth-

ods, namely, the steepest descent and Gauss-Newton (GN) method. 

The steepest descent gradually decreases the SSE by modifying 

the parameters in the steepest-descent direction whereas Gauss-

Newton does the same by treating the least square function as 

locally quadratic and the estimate the least value of the curve. 

Steepest descent method deals with the global minimization while 

Gauss-newton method seeks the local minimum. The LM method 

follows the steepest-descent method when the parameters are far 

from the optimal point and switches to 

GN when the parameters are in the range of local quadratic curve 

[22]. 

The solutions of trust region problems are characterized by the 

theory of constrained optimization [23].  

 

Theorem 5.4 

Suppose that g ∈ RN and A is an N x N symmetric 

matrix. Let 

 

( ) / 2T Tm s s As g s                         (22) 

 

A vector s is a solution to min||s||≤∆ m(s) if and only if there exist 

v ≥ 0, such that (A+ vI)s = −g and either ||s|| = ∆ or v = 0. 

 

Algorithm 5.1 TrustRegionTestLM(xt, xc, x+, f, v) 

1. cxz   

2. while cxz   

i) Actual reduction 

( ) ( ); ;c t t t cactred f x f x s x x     

ii) Predicted reduction ( ) / 2T

c tpredred f x s   

iii) if 0
predred

actred
 then 0; max( , ),c upz x v w v v    

and recalculate the test point with new v 

iv) if low0
predred

actred
   then 

0; max( , ),t upz x v w v v   

v) if low
predred

actred
 then txz   

vi) if high
predred

actred
 then vwv down  

vii) if ,vv0  then 0v   
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3. zx   

 

Now the Levenberg-Marquradt algorithm can be sketched as fol-

lows: 

 

Algorithm 5.2 lmalgorithm(x, R, kmax) 

1. 0vv   

2. for k = 1: kmax 

suppose xc = x 

Calculate R, f, R’, and ∇f ; Check for termination 
1( '( ) '( ) ) '( ) '( )T T

t c c c c c cx R x R x v I R x R x x     

Call TrustRegionTestLM(xt, xc ,x, f, v) 

 

6.  Experimentation with DEA and BPNN-

LM Model 

6.1. Data Acquisition 

Since the data from financial market are frequently accessible in 

the both paid and free forms, we have considered the free data 

from NSE India website for the stocks MARUTI and TATA Mo-

tors for 200-days on the daily basis. 

We have considered 85% of the data, that is, 170-days for training 

the model and predicted for next 15-days closing prices. Further, 

in the sliding window manner, we have discarded the most old 15-

days data and added the 15-days data and retrained the model to 

predict for new 15-days closing prices (Figure. 3).  

Since, we have observed that the Levenberg-Marquardt from 

back-propagation technique based neural network models was 

performing well, hence we have applied the same model here, 

giving it a name as BPNN-LM, for prediction of stock market 

prices, which would be accepting the preprocessed data by DEA, 

as input. As our final objective is to develop a hybrid model with 

subtly executing ANN models, as some of its constituents, the 

study of performance of different ANN models becomes important, 

and hence here we have focused on BPNN-LM model. 

 

 
Figure 3: Windowing of the Data for Prediction of Closing Prices for Next 

15-Days 

6.2. Result Analysis 

We have presented the energy level of decision making units in 

Figure 4, where 50% of data has been considered as low and rest 

as high energy data, those are also called as efficient and non-

efficient data respectively. These data have been separated by 

CCR and BCC methods. 

 
(a) MARUTI DEA CCR 

 

 
(b) MARUTI DEA IBCC 

 

 
(c) TATA DEA CCR 

 

 
(d) TATA DEA IBCC 

Figure 4: Partitioning the Data into High & Low Energy States for Maruti 

and TATA Motors from the Two Considered Methods for DEA 

 

We have produced the prediction graphs in Figure 5 and Figure 6. 

 

 
(a) lmMARUTI All Respective Data 

 

 
(b) lmTATA All Respective Data 
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(c)  lmMARUTI Nonefficient Data 

 

 
(d) lmTATA Nonefficient Data 

 

 
(e) lmMARUTI Efficient Data 

 

 
(f) lmTATA Efficient Data 

Figure 5: Prediction for Maruti and TATA Motors with All Respective, 

Non-efficient, and Efficient Data by CCR DEA 

 

 
(a) lmMARUTI All Respective Data 

 
(b) lmTATA All Respective Data 

 

 
(c) lmMARUTI Nonefficient Data 

 

 
(d) lmTATA Nonefficient Data 

 

 
(e) lmMARUTI Efficient Data 

 

 
(f) lmTATA Efficient Data 

Figure 6: Prediction for Maruti and TATA Motors with All Respective, 
Non-efficient, and Efficient Data by BCC DEA 

 

With the help of all considered training data, efficient and 

non-efficient data sets, giving them as input to BPNN-LM model 

with varying number of nodes from one to five in the hidden layer 
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of the ANN model. These data set has been segregated with CCR 

and BCC models of DEA approach. The performances of these 

approaches has been observed by root mean square error (RMSE) 

estimation presented in Table 1 and Table 2 respectively. 

 
Table 1: Root Mean Square Error (RMSE) Values for Nodes and DEA 

CCR BPNN-LM Comparison 

 5-NODE 4-NODE 3-NODE 2-NODE 1-

NODE 

RMSE ALL 

DATA 

CCR 
MARUTI 

26.26 27.57 119.84 29.46 27.46 

RMSE 

NON-

EFFICIENT 
CCR 

MARUTI 

47.45 53.98 46.37 86.45 51.98 

RMSE 
EFFICIENT 

CCR 

MARUTI 

38.03 29.71 27.28 31.91 28.10 

RMSE ALL 
DATA 

CCR TATA 

6.91 7.00 6.25 6.92 6.05 

RMSE 
NON-

EFFICIENT 

CCR TATA 

9.11 8.56 9.66 9.57 9.56 

RMSE 

EFFICIENT 

CCR TATA 

6.96 11.73 7.05 6.02 6.61 

 

We can observe in the Table 1 that for Maruti with 

DEA CCR BPNN-LM model, with one node at hidden layer and 

considering all training data, the RMSE is 27.46 whereas efficient 

data and three nodes in the hidden layer, the RMSE is 27.28. Simi-

lar scenario is there for TATA motors, as with one node at hidden 

layer and considering all training data, the RMSE is 6.05 whereas 

efficient data and two nodes in the hidden layer, the RMSE is 6.02. 

In the Table 2 that for Maruti with DEA BC BPNN-LM model, 

with one node at hidden layer and considering all training data, the 

RMSE is 27.11 whereas efficient data and four nodes in the hid-

den layer, the RMSE is 27.03. Similar scenario is there for TATA 

motors, as with one node at hidden layer and considering all train-

ing data, the RMSE is 5.97 whereas efficient data and two nodes 

the hidden layer, the RMSE is 5.96. 

Results reflected in these two tables, express the success of ou-

rexperiment in the perspectives that similar, rather somewhat bet-

terperformance is being achieved with all considered data and 

filtered by 50% efficient data. This will reduce the processing time 

of the computer very much and with high volume of data, it can 

help us to faster our decision makings. 

 
Table 2: Root Mean Square Error (RMSE) Values for Nodes and DEA 

BCC BPNN-LM Comparison 

 5-NODE 4-NODE 3-NODE 2-NODE 1-

NODE 

RMSE ALL 

DATA 
BCC 

MARUTI 

52.61 31.74 30.74 26.93 27.11 

RMSE 
NON-

EFFICIENT 

BCC 
MARUTI 

39.05 44.00 40.76 42.63 46.34 

RMSE 

EFFICIENT 

BCC 
MARUTI 

28.30 27.03 28.71 43.07 38.48 

RMSE ALL 

DATA 
BCC TATA 

6.39 6.70 6.68 6.94 5.97 

RMSE 

NON-

EFFICIENT 

BCC TATA 

8.15 8.04 8.77 9.05 9.17 

RMSE 

EFFICIENT 

BCC TATA 

7.09 7.73 6.87 8.35 5.96 

7. Conclusion 

We have focused in this paper for data preprocessing before giv-

ing it as input to ANN models, in the perspective of decision mak-

ing units. We have followed the DEA technique for selecting effi-

cient DMUs and generated DEA-BPNN-LM model for forecasting. 

We had performed our experimentation with providing input data 

as sliding window manner and varying number of nodes in the 

hidden layer of ANN models from one to five and after observing 

the performances on different set of nodes, we selected the best 

combination. By reducing the number of DMUs from original data 

set, we achieved better performance with reduced processing time 

in computation.  

These days data preprocessing are being focused so frequently as 

input data to artificial neural network model and we also followed 

the same in both of our models. There are numerous opportunities 

to regulate ANN techniques with optimization and data prepro-

cessing methods from statistical and machine learning approaches 

such as principal component analysis, support vector machines, 

regression analysis, particle sworm optimization, etc. as the future 

works. 
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