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Abstract 
 

In view of this we scrutinize the numerical solution using the Kellor box method for the natural differential equations which describes the 

MHD flow of ferrofluid over a stretching cylinder with thermal radiation and convective heating. Water as convectional base fluid con-

taining nano particles of magnetite (Fe3O4) is taken up. Comparison between magnetite (Fe3O4) and non-magnatic (Al2O3) nanoparticles 

is also made. The relevant physical parameters appearing in velocity and temperature distributions are analyzed and examined with the 

help of Fig.s. To examine the correctness of the method an anology has been made with some earlier published results. It is noticed that 

by increase the strength of magnetic field, the percent difference in the heat transfer rate of magnetic nano particles with Al2O3 decrease. 

Further, convective heating and thermal radiation are highly influenced the temperature distribution of the ferrofluid. 
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1. Introduction 

The detailed examination of Nanofluids has been subjected of 

covering and exploring the aftereffect or consequences of rising 

thermal conductivity heat transfer procedure .Nanofluid is propose 

to refer a fluid in that nanometer-magnitude molecules are sus-

pended in classical heat transfer absolutely necessary fluids [1,2]. 

The fluids which are considered as bad transfer of heat are Water, 

encom-passing oil, and ethylene glycol. In various engineering 

applications like microelectronics, heat interchangers, refrigerat-

ing of electronic apparatus  Nanofluids  are used. A guanine stud-

ies of this wonderful topic together with the theoretical as well as 

experimental data can be much benefited in the literature [3-11].  

More precisely In non-conducting liquids such as heptanes, water, 

kerosene, and hydrocarbons, the magnetic Nanofluids (Ferro flu-

ids) those are colloidal suspension of magnetic nano particles like 

cobalt, ferrite, magnetite are dispersed. Ferrofluids are quite useful 

to explain different engineering applications like drug targeting 

technology, mega-phones, rotary shaft seals and bumpers. In the 

literatures [4-15] we can found the dissimilar applications of fer-

rofluids if we observe it in detailed. The impact of nanoparticle 

migration on thermal performance of ferrofluid flow inside a ver-

tical micro ring examine by Malvandi et al [16], a few days ago. 

Heysiattalab et al [17] deeply examine the anisotropic approach of 

ferrofluids at film wise amplification on a vertical plate with a 

changeable directional magnetic field. Nanoparticle migration 

effects, and thee condensate falling film of ferrofluids in the pres-

ence of anisotropic behavior of thermal conductivity is analysed 

theoretically by Malvandi et al [18]. Rashad [19] was observed 

that the consequence of partial slip over a MHD flow of mixed 

convection  of ferrofluid on a radiating wedge of non-isothermal. 

In another study, In the presence of slip effect how the boundary 

layer of a ferro fluid flows on semi infinite inclined plate also 

studied by Rashad [20]. 

The processes having high temperature like nuclear reactors, com-

bustion turbines and storage of thermal energy etc… the analysis 

of heat transfer by convection accompanied by thermal radiation 

has more significance. In the work [21] the authors were explored 

the thermal radiation effects based on Rooseland diffusion approx-

imation over a combined convection across vertical plate with free 

stream of uniform surface temperature  and uniform velocity. The 

thermal radiation of gray fluid that emits as well as absorbs radia-

tion in a non-scattering medium was examined in [22].  Authors in 

[23] were examined the radiative flow in the existence of magnetic 

field. The authors in [24] were explained the impact of thermal 

radiation on the boundary layer flow by an exponentially stretch-

ing sheet. The authors of [25] examined the impact of thermal 

radiation on MHD flow of a second grade fluid. In [26] the au-

thors were assessed that the consequences of radiation over natural 

streamline flow from a horizontal circular cylinder. Finally it was 

concluded that increase in radiation results increase in velocity as 

well as thermal boundary layer thickness. Ahmad et al. [27] exam-

ined the influence of thermal radiation over mixed convection 

boundary layer flow of a visco elastic fluid over a circular cylinder 

with constant surface temperature. 

By the work of Aziz [28], on the boundary layer flow with con-

vective surface boundary condition have acquired more attentive-

ness, in recent years. In this work he also explored by connective 

surface boundary condition the thermal boundary layer flow over 

a flat plate. Afterwards Makinde and Aziz [29] together by taking 

the same connective boundary conditions they explained the 

boundary layer flow of a nanofluid past over a stretching sheet. 

Shehzad et al. [30] by using convective surface boundary condi-

tions explained exact solution of three-dimensional flow of Jeffery 

fluid. Hayat et al.[31], by using convective surface boundary con-

ditions he scrutinized the three dimensional boundary layer flow 

of Maxwell fluid on stretching surface. Zaih et al. [32] studied the 

effect of thermal radiation and convective boundary conditions on 

William son fluid over an exponentially stretching sheet. 
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So far no studies have been made to scrutinize the out-turn of 

thermal radiation on MHD boundary layer flow of a ferrofluid on 

stretching cylinder with convective heating. The Keller box meth-

od used gives us a numerical solution of the equation obtained. 

This only describes the problem, after similarity functions. The 

effects of the embedded flow controlling  parameters on various 

issues like fluid velocity, temperature skin friction and heat trans-

fer rate revealed in the similarity solution presented in order to 

predict heat transfer characteristics. A comparative study is also 

presented below. 

2. Mathematical Analysis 

Take a ferrofluid, In that we introduce a cylinder. Suppose the 

radius of cylinder is ‘a’, here it is assumed that the cylinder is 

stretching along its axis. The velocity of the fluid ,
0UUw  ,  

the heat flux on the cylinder surface is 
0Tqw 

,
 
 
and 

00 ,TU  

are the functions of 
l

x .A boundary layer is formed on the circular 

cylinder. Suppose the uniform magnetic field of intensity B0 acts 

along the radial direction due to this assumption for small magnet-

ic Reynolds number the impact of induced magnetic field is al-

most negligible. Now the above system is explained by the follow-

ing equations 
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The boundary conditions are 
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The radiative heat flux rq  is simplified by the Rosseland diffusion 

approximation [33] as  
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Where  is the Stefan-Boltzmann constant,

r  is the Rosseland 

mean absorption factors and 
s is the scattering factor. Let us 

consider that the fluid –phase temperature differences within the 

flow are sufficiently small as reported in the work [34]. So that
4T may be expanded as a linear function of temperature T and 

neglecting higher order terms as  
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Now expression (5) reduces to the form 
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It is worth mentioning here that use of the Rosseland diffusion 

approximation is valid   the interior of a medium but it is not em-

ployed near the boundaries. It is good only from optically thick 

boundary layer. Since expression (8) does not contain any term for 

the radiation from the boundary surface therefore is not valid to 

predict a complete description of this physical situation near the 

surface. In the other words the boundary surface effects are negli-

gible in the interior of an optically thick boundary layer region. 

Which is due to the fact that the radiation from the boundaries 

becomes very weak before reaching the interior. 

In the above
rq   is radiative heat flux, 

sh is the convective heat 

transfer coefficient, xr,  are axial  and radial coordinates of the 

cylinder respectively, vu,  are the velocity components along x  

and r  directions. T is temperature, 
nfnf  , and nf  are the 

density, dynamic viscosity, thermal diffusivity of the nanofluid 

respectively is given by 
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In the above equations,
s is the reference density of the solid 

fraction, f  is the reference density of the fluid fraction, sk is 

the thermal conductivity of the solid fraction, pc  is the specific 

heat at constant pressure, 
f is the viscosity of the fluid fraction, 

  is the solid volume fraction of a nano fluid, and nfk  is the 

thermal conductivity of the nano fluid. 

The following variables are defined 
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Here the stream function is   which defined as
r
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Here  Pr is the Prandtl number, M is the Magnetic parameter,   

Curvature parameter, Rd is the radiation parameter and Bi  is 

local Boit number. 
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We know that 0 and 1  for plate and cylinder respective-

ly.
fC is called skin friction coefficient and

xNu     local Nusselt 

number. These quantities can be written as 

U wf

w
f

C
2




, 

)( TT fk f

qwx
Nux




                      

(16) 

 

Here    is heat flux from the plate,    is the skin friction those 

values are 
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For a pure fluid 0 , In the absence of slip condition 0

and magnetic field 0M .  

 

3. Solution of the Problem 

 
Substitute the above values in equations (11) and (12), we have 
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Finite difference method: 
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In order to solve the above equations (18)-(19), we are using new 

dependent variables  p ,  q ,  ,  and  t  such that 
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Now the boundary conditions () becomes  
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Equations (24) – (28), ,......,2,1 Jj   the boundary layer 

thickness  J
 exceeds the edge of the boundary for extremely 

high values, the new boundary conditions are 
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Newton’s method. 

Linearising the non-linear system (24)-(28), by using Newton’s 

method, introduce  
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Where k=0, 1, 2…………………… 

Using the above equation (13) and dropping ‘k’ (for simplicity) 

we get,  
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Now the boundary conditions in (12) become, 
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Block- Elimination Method: 

Solving the linearised differential equations (24) to (28) by using 

block- elimination method as outlined by Cebeci and Bradshaw 

[35], as the system is in block tri-diagonal structure. Generally this 

structure contains constants or variables, whereas here it is noted 

that it contains block matrices. Writing equations (24) to (28) in 

matrix vector form,  
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
























J

J











1

2

1


,       and

 
 

 
  


























J

J

r

r

r

r

r

1

2

1


 

The entries of the matrices are, 

 

     
      






























111312

113

11

11

1

00

00
2

00
2

0

0
2

00
2

00100

112

bbb

aaa

hh

hh

A

          

(40) 

 

Jj2 
 

     
    






































jj

jjj

bb

aaa

h

h

h

A j

13

136

2

2

2

000

00
2

0010

0
2

001

0010
2

][

 

                          

(41) 

 

 

   
    































jj

jj

bb

aa

h

h

B

24

24

2

2

j

000

000
2

0000

0
2

000

00100

  

                          

(42) 

 

1,-Jj1 
 

 

 






















 



00000

0000

00010

00001

0000
2

5

1

j

ja

h

C

   

                          

(43) 

 

Jj2 
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 

























t

q

f

t

q

1

1

1

0

0

1












,        

 





























t

q

f

t

q

j

j

j

j

j

J













1

1

,       

And Jj1 
     

                          
(44)

  

 

 
 
 
 
  


































215

214

213

212

211

1

j

j

j

j

j

r

r

r

r

r

r

, 

 

Suppose the matrix A in equation (39), is non-singular and solving 

the equation using factorization method. 

Write 

LUA ,     

                         (45)

 

  

 

Where  

 

 
     

 
   






























JJ

J

C









1

221

1

L



                   

and 

   
 

   
  




































I

I

I

I

jJ

j

11

1

11

U




 

Here matrix I is 5 X 5 identity matrix,  i  and  i  are 5 X 5 

square matrices in which entries are given by the below equations: 

 
   11 A      

                         
(46) 

 

    111 CA  ,     

                         (47) 

 

     ji BA  1   1j    ,   j=2,3……..J  

                                        (48) 

 

    jji C ,  j=2,3…..J-1   

                         (49) 

 

Using these equations we get, 

 LUδ=r,                                                                                     (50) 

 

  Define   

 Uδ=ω,                                                                      (51) 

 

Now (50) becomes  

Lω=r, 

Here      

 
 

 
  


























J

J











1

2

1


 

Here the entries of 


 are determined by the below equations. 

 1  
   11 r

, 

 i       jjj Br    
 1j

, 
Jj2 

                      
(52) 

 

After finding the elements of ω and using the following relations 

we will get the solution for  


. 

   11   , 

 i     jj      1j , 1-Jj1                        
(53) 

 

Repeat the calculations until we get the convergence criterion, i.e. 

10  i

 

Here  ԑ1 is the small chosen value. 

4. Results and Discussion 

Applied Keller box method to resolve two non-linear equations 11 

and 12. The methods of computations made by using the symbolic 

computational software Matlab. We compared our outcome results 

with those of Akbar et al. [36], Sala Huddin et al. [37] and Malik 

et al. [38]. Our results agreed with them up to nine decimal places. 

These are noted in table 2.  

The change in velocity and temperature for dissimilar values of 

magnetic nano particle volume fractions are tested for both flat 

plate and cylinder and these are shown in Fig.s 2 and 3. We ob-

served that velocity as well as temperature also increases with 

increasing accordingly with solid volume fraction. This increase is 

comparatively high for cylinder than the flat plate. When   = 0, 

0.1, 0.2, with M = 0.5, Pr = 7 (water), Rd = 0.5 and Bi = 0.1. This 

emphasizes the fact that, the volume fraction of nano particle is 

directly proportional to both thermal conductivity as well as ther-

mal boundary layer thickness.  

Also it is tested for changeable values of magnetic parameter how 

both the velocity temperature profiles changes. We observed that 

on increasing the values of magnetic parameter the velocity pro-

files are inversely proportional to temperature profiles. The phys-

ics behind these results is that the transverse magnetic field which 

is perpendicular to the direction of electrically conducting fluid 

leads to a dragging force which is known as Lorentz force which 

opposes or contradicts to the smooth motion of fluid this causes a 

retardation effect, means decrease in velocity and increase in the 

thickness of boundary layer.  It is shown in Fig.s 4 and 5. 

Fig. (6) explains the impact of thermal radiation on temperature 

profile of magnetic nano particle and the remaining parameters 

fixed at    = 0.1, Pr = 7, M = 0.5, Bi = 0.1 both for flat plate and 

cylinder. It is marked that the temperature profile of the magnetic 

nano particle is an ascending function of thermal radiation param-

eter this leads to the enhancement of thickness of thermal bounda-

ry layer. The reason behind this is the increase in the thermal radi-

ation, leads to decrease in Rosseland radiation absorptive. So the 

deviation of radiative heat flux    increases with decrease in the 

absorption coefficient consequently  the rate of radiative heat 

transferred to the fluid increases then both temperature as well as 

thickness of boundary layer increases.  

Fig. (7) tells about the effect of Biot number (convective heating) 

over temperature profile of magnetic nano particle when Bi = 0 

(no convective heating), 0.1, 0.2 and 0.3 with   = 0.1, Pr = 7, M 

= 0.5, Rd = 0.5 for both flat plate and cylinder. We noticed that 
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temperature is an increasing function of parameter 

iB  we have 

the stronger convection results for high surface temperatures 

which leads to go deeper into the stagnant fluid. From Fig. (8), we 

noticed that  magnitude of skin friction coefficient is directly pro-

portional to the values of both the magnetic field parameter as 

well as magnetic nano particle volume fraction. Also remarked 

that the coefficient of drag skin friction is more for cylinder than 

that of flat plate. Here the negative value of coefficient of skin 

friction means the stretching cylinder employ a dragging force 

over the surface of the fluid and the positive values employ the 

opposite. 

Fig. (9) shows that drag Nusselt number (rate of heat transfer) is 

inversely proportional to the magnetic field parameter, however it 

is directly proportional to the magnetic nano particle volume frac-

tion. It’s true, since the thermal conductivity increases with nano 

particle volume fraction. This implies the acceleration of heat 

transfers rate entire the boundary layer.  Increase in both thermal 

radiation parameter and the convective heating parameter shows   

increase in drag Nusselt number. 

In table 3, we compared the results across magnetic and non mag-

netic nano particles. Here we have chosen Al2O3 as non magnetic 

nano particle. Thermal conductivity of Al2O3 is 40 W/m-k. Be-

cause Al2O3 is having high thermal conductivity, than magnetic 

nano particles, and Nusselt numbers of Al2O3 are high even in the 

absence of magnetic field. When magnetic field strength is in-

creased  all the magnetic nano particles arranged into same direc-

tion  and comparatively show higher heat transfer  rates, like non 

magnetic nano particle Al2O3. This collation shown in table 3.  

The heat transfer rate is high for Al2O3 when compared with that 

of magnetic nano particles when there is no magnetic field. Al-

most a percent difference between magnetic and non magnetic 

nano particles increase by increasing solid volume fraction of 

nano particles. When magnetic field strength is increased the 

magnetic nano particles join themselves, also the percent differ-

ence with Al2O3 decreases.   

 

 
Fig. 2: Velocity profiles )(f  under different   

 

 
Fig. 3: Temperature profiles )( under different  

 

 
Fig.4: Temperature profiles different 

 

 
Fig. 5: Temperature profiles )( under different M  

 

 
Fig. 6: Temperature profiles )( under different Rd   

 

 
Fig. 7: Temperature profiles )( under different Bi  
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Fig. 8: 2/1RexfC under different values of &M  

 
Fig. 9: 2/1Re

xxNu under different values of &M  

 

 
Fig. 10: 2/1Re

xxNu under different values of BiRd &  

 
Table1: Thermalphysical properties of base fluid/water and nanoparti-

cle/magnetite [19, 20]. 

Physical properties Water/base 
fluid 

Magnetite/Magnetic Al2O3/Non-
magnetite 

)/( 3mkg  997 

 

5180 3970 

)/( KkgJcp
 4179 670 765 

)/( KmWk  0.613 9.7 40 

 

Table 2: Comparison of )0(f  for different values of M in the absence 

of for clear fluids. 

M Akbar et al. [36] Salahuddin 

et al. [37] 
Malik et al. 

[38] 
Present out 

put 
0 

0.5 
1 

5 

10 
100 

500 

  1000 

1 

-1.11803 
-1.41421 

-2.44949 

-3.31663 
-10.04988 

-22.38303 

     -31.63839 

1 

-1.11801 
-1.41418 

-2.44942 

-3.31656 
-10.04981 

-22.038293 

 -31.63846 

1 

-1.118105 
-1.14415 

-2.44947 

-3.31696 
-10.04983 

-22.38284 

-31.63851 

1 

-1.11803399 
-1.41421356 

-2.44948974 

-3.31662479 
-10.04987562 

-22.38302929 

-31.63858404 

Table 3: Deviation of Nusselt numbers with magnetic field parameter and 

solid volume friction of magnetic and non – magnetic nanoparticles with 

Pr = 7, Bi = 0.1, .1  

 
 

5. Conclusions 

 
The present study investigates the magneto hydrodynamic flow 

and heat transfer analysis of ferrofluid along a stretching cylinder 

with thermal radiation and convective heating. The main findings 

of the study are: 

By considering the thermal radiation and convective heating on 

energy equation we tested the magnetic hydro dynamic flow of 

ferrofluid along a flat plate and stretched cylinder. 

The profiles of temperature, velocity, surface shear stress and 

Nusselt number are good in the case of stretching cylinder.  

On increasing the magnetic field parameter, both the velocity, heat 

transfer rate at the surface decreases. 

There is a decrease in percent difference in heat transfer rate of 

magnetic nano particles along with Al2O3 when magnetic field 

strength is increased. 

The heat transfer increases due to thermal radiation and convec-

tive heating. 

Current results have good agreement with the previous results up 

to nine decimals. 
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