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Abstract 
 

In this paper, we investigate the adjacency matrix of  reverse super edge magic vertex graph and use this graph to construct other reverse 

super edge magic graphs with the same edge weight set. Additionally, by combining known reverse super edge magic  labelled graphs, 

we give a construction for a new reverse super edge magic graph 
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1. Introduction 

Let G be a finite simple undirected graph. The set of vertices and 

edges of a graph G will be denoted by V(G) and E(G), respective-

ly, ( )v V G  and ( )e E G . For simplicity, we denote 

V(G) by V and E(G) by E. 

A labeling of a graph G is a mapping that carries a set of graph 

elements into a set of numbers (usually positive integers), called 

labels. Kotzig and Rosa in 1970 introduced edge magic total label-

ing [5]. 

An edge magic total (EMT) labeling is a one-to-one mapping f 

from VuE onto the integers 1,2, ... ,v·+ e with the property that for 

every (x, y) in E, f(x) + f(y) + f(xy) = k for some constant k. A 

graph that has an edge magic total labeling is called an edge magic 

total graph. An edge magic total labeling is called a super edge 

magic total (SEMI) labeling if f(V) = {1, 2, ... , v} and a graph that 

has SEMT labeling is called a SEMT graph. Research in SEMT 

labeling has been particularly popular during the last decade. For 

details, see the Gallian's dynamic survey [4]. There are many open 

problems, some of which will be listed in the conclusion of this 

paper. 

S.Venkata Ramana etal [13] introduced the concept of reverse 

super edge-magic labeling  of G.    A one to one  map f from 

V E  onto  the integers  { 1,2,….. v + } is a reverse edge-

magic labeling  if there exists a constant k so that for any edge xy, 

f(xy)-{f(x)+f(y)} =k .The constant k is called the reverse edge-

magic number for f .  A reverse edge-magic labeling f is called  

reverse super edge-magic if f(V) = {1,2,3,….., v } and 

f(E)={ v +1, v +2, v +3,……….. v + }.a graph G is called 

reverse super edge-magic if there exists a reverse super edge-

magic labeling of G. 

Concerning SEMT graph, researchers usually concentrate on some 

specific class of families of graphs, such as trees, cycles, bipartite 

graphs, friendship graphs, wheels, generalised Petersen graphs. 

See [2, 3, 5, 6, 7, 11]. In this paper, we use the adjacency matrix of 

a known SEMT  graph to construct other labeled graphs with the 

same edge-weights set. Additionally, we give a construction of 

new graphs by combining several graphs that have SEMT. Adja-

cency matrix methods have been used to generate a reverse super 

edge magic graph in [12]. However, this is the first time that adja-

cency matrices are used to generate SEMT graphs. 

2. Adjacency Matrix 

Let G = (V(G), E(G)) be a graph and f be an EAV labeling of G. 

Let V = {Xl, X2, ... , Xv} be the set of vertices in G with the labels 

{1, 2, ... , v}. Let A be an adjacency matrix of G, then the rows 

and columns of A can be labeled using 1,2, ... ,v. A is symmetric 

and every skew diagonal (diagonal of A which is traversed in the 

"northeast" direction) line of matrix A has at most two "I" ele-

ments. The weights set {f(x) + f(y) : x, y єV} generates a consecu-

tive integers a, a + 1, ... , a + e - 1 for some positive integer a. The 

weight f(x) + f(y) is the same as the sum of labels of vertices on 

skew diagonal adjacency matrix that has "1" element. 

A graph that has an EAV labeling and has the maximum possible 

number of edges is called maximal EAV graph. If G has a maxi-

mal EAV labeling then a = 3. Enomoto et al. [2] proved that  the 

maximal number of edges in a SEMT graph is 2v - 3. 

Let A = (aij) be an adjacency matrix of a maximal EAV graph G. 

We can easily see that  {alj : alj ≠ 0, ,j = 1, ... ,v} = v -1 and {ail : ail 

≠0,i = 1, ... ,v}= v -1. Note that avv is counted twice.       Thus the 

maximal width of the band of non-empty skew diagonal line is 2v 

- 3.     

Let A be the adjacency matrix of an EAV graph G of order v. If 

we move the element "1" of A along the skew-diagonal line, then 

this matrix is an adjacency matrix of an EAV graph that has the 

same weights set as A. Two graphs G and G* are EA V-equivalent 

if G* is obtained by the previous technique of moving the "1" 

element from G. Note that EAV-equivalent graphs are not neces-

sarily isomorphic with respect to the graph structure and/or to the 

vertex labels. 

Figure 1 shows an example of generating a new maximal EAV 

graph from an old one. Graph 

G* is obtained from graph G by moving the element "I" from 

position (1,4) to position (2,3) in the same skew-diagonal line. 

Baca et al. [1] proved that if G has an EAV labeling then G has 

SEMT labeling. Thus, in this paper, we consider an adjacency 
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matrix of an EAV graph. Another known result for maximal 

RSEM labeling is given in the next section. 

 

 

3. Maximal RSEM Labeling 

Figure 2 gives all maximal EAV-equivalent graphs with the one in 

Fig 1. Using the computer search we can find all possibilities of 

maximal EAV-equivalent graph from a given EAV graph with 

small order. Table 1 gives the result of the searching. Sugeng and 

Miller in [12] showed that the number of maximal EAV-

equivalent (both connected and disconnected) graphs with size v is 

  
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v v
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MacDougall and Wallis [9] studied SEMT maximal graphs. They 

called SEMT a strong edge-magic-total labeling. They proved the 

following propositions: 

 

 

Proposition 1 [9] Any SEMT labeling for a graph of order v can 

be obtained from any other by a sequence of single edge replace-

ments. 

This proposition is the same as our technique of moving the "1" 

element along the skew diagonal line of the adjacency matrix of a 

EAV graph. 

Proposition 2 [9] Every maximal SEMT graph of order v can be 

extended to one of order v+1 . 

Proposition 3 can be generalized to the following theorem, giving 

a new SEMT graph from two known maximal SEMT graphs. 

Theorem 1 [9] Let Gl and G2 be any maximal SEMT graphs of 

order v and w, respectively.    Then there are SEMT graphs of 

orders v + w - 2, v + w - 1, and v + w, each of which contains G1 

and G2 as induced sub graphs. 

Considering the new maximal SEMT graph G with order v + w 

like in the above theorem, 

Observation 1 If G1 and G2 are maximal SEMT graphs order v 

and w respectively, then we can construct a new maximal graph G 

with order v + w. 

Next, we give new results on maximal SEMT labeling of regular 

graph. 

Proposition 3 If an r-regular graph G is a maximal SEMT graph 

then the number of vertices v is equal to 2,3 or 6 and 

• if v = 2 then r = 1, or 

• if v = 3 then r = 2, or 

• if v = 6 then r = 3. 

Proof. ·If G is an r-regular maximal SEMT labeling then 

2 3
2

rv
v  . It follows that v/6 . Thus, v is equal to 2,3 or 6.  

The 1-regular graph with two vertices is K2 and the 2-regular 

graph with three vertices is cycle C3. It is known that K2 and C3 

are SEMT graphs. Figure 3 gives EAV 3-regular graph on 6 verti-

ces. 

 

4. Non-MAXINLAL RSEM Graph 

In this section, we show how the adjacency matrix of an EAV 

graph can be used for manipulating a given non-maximal RSEM 

graph. 

 

 
 

Theorem 2  
Any non-maximal RSEM graph can be extended to a maximal 

RSEM  graph. 

 

Proof  
If G is a non-maximal RSEM graph of order v, then its adjacency 

matrix A has v rows and v columns but only p < 2v - 3 non-empty 
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skew-diagonal lines. Putting element "1" in 2v - 3 – p empty 

skew-diagonal lines, we obtain a maximal RSEM graph. 

Since the composition of edge in the graph has changed, then the 

edge labels for the new graph will also change. Figure 4 illustrates 

a maximal RSEM labeling extending a non maximal RSEM graph 

of order 5. We can see that P5 is not a maximal RSEM graph. It 

has only 4 edges. To extend P5 to a maximal RSEM graph, we 

need 3 more edges. 

 

Theorem 3  

Let G1 and G2 be any non-maximal RSEM graphs of order v and 

w respectively. 

Then there exists an RSEM graph of order v + w which contains 

G1 and G2 as induced sub graphs. The minimum number of addi-

tional edges needed is 2v - 1 + min {wt( ei) : ei є E(G2 )} - 

max{wt(ej) : ej є E(G2)}. 

 

Proof:- 
Note that the weight of an edge xy under a labeling a is wt(xy) =  

a(xy)-{ a(x) + a(y)}. Let G1 and G2 be non-maximal RSEM graphs 

of order v and w respectively, and with number of edges e and f, 

respectively. Let V(G1 ) = {xl, x2,... , xv}  and V(G2 ) = {y1, y2, ... , 

yw}. Label the vertices in G1 and G2 as     a(xi) = i, for i = 1, ... , v. 

a(yj) = v + j, for j = 1, ... ,w. 

Let A and B be the adjacency matrices of G1 and G2, respectively. 

Create a new adjacency matrix C with order ( ) ( )v w v w    

such that  
0

0

A
C

B

 
  
 

. 

Matrix C contains several empty skew-diagonal line bands in the 

middle. If we put "1" elements in every skew-diagonal line of the 

set of these empty skew-diagonal bands and make the matrix 

symmetric, then we obtain a EAV graph with v + w vertices. 

Complete the edge labels then we have an RSEM graph C with 

order v + w. 

We already knew how to generate a bigger order RSEM graph 

from given RSEM graphs. On the other hand, we can also gener-

ate a smaller maximal (respectively, non-maximal) RSEM graph 

by deleting k vertices (and edges incident with those vertices) of a 

maximal (respectively, non-maximal) RSEM graph G to obtain a 

RSEM sub graph G . However, we can only delete vertices that 

have the following properties: 

• the k-largest labeled vertices, or 

• the k-smallest labeled vertices, or 

• the l-largest labeled vertices and the (k - l)-smallest labeled ver-

tices. 

Note that l k v  . This requirement keeps the d-band set of 

the adjacency matrix of such graphs preserved to be a set of con-

secutive integers. The sub graph G has v - k vertices. Note that, if 

we use either of the last two options, then we not only have to re-

label the edges, but  we also have to re-label the vertices by 

• 
*( ) ( )i iv v k     for the second option, 

• 
*( ) ( ) ( 1)i iv v k     for the third option. 

Thus, we have the following observation. 

 

Observation 2:-  
Every SEMT graph with order at least 3 contains a smaller RSEM 

sub graph. 

5. Conclusion 

As mentioned in the introduction section, there are many results in 

RSEM labeling. However, many interesting problems remain 

unsolved. Here we list just a few. 

• Are all trees RSEM graphs? (Conjecture from Enomoto et al. 

[2]). 

• Can we use adjacency matrix to obtain all path-like trees? (Note 

that path-like tree is a tree that is derived from a path by moving 

some edges [8]). 

• Can we find a relationship between RSEM labeling and other 

labeling using adjacency matrices? 

• Can we use the algebraic properties of the adjacency matrix to 

find new properties of  RSEM graph? 

• Find RSEM labeling for various families of graphs. 

• Find RSEM labeling by utilizing the properties of decomposition 

of graphs. 
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