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Abstract 
 

A numerical analysis is performed for investigating the slip flow of a viscous dissipative Casson fluid towards a stretching sheet with 

Cattaneo-Christov heat flux and variable viscosity. The nonlinear partial differential equations are transformed with appropriate similari-

ty variables into a system of nonlinear ordinary differential equations. Numerical solutions are carried out by using efficient Spectral 

relaxation method. Notable accuracy of the present results has been obtained with previous results in a limiting sense from the literature. 

It is found that thermal relaxation time has an inverse relationship with the fluid temperature. Interestingly, the fluid velocity is gradually 

decreasing with higher values of slip factor.  
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1. Introduction 

The study of heat transfer over a stretching sheet has applications 

in various industrial and engineering processes. Many processing 

industries such as paper production, food processing hot rolling, 

glass-fabric, and purification of crude oil plays an important role 

for governing momentum and heat transfer boundary layer flow 

for a stretching sheet [1-3]. The heat conduction law proposed by 

Fourier [4] has been the source to predict the heat transfer behav-

ior in different realistic situations. One of the most important 

flaws of this model is it produces a parabolic energy equation 

means an initial disturbance would instantly affect the system 

under assumption. Several modified versions of the Fourier’s law 

have been introduced by many researchers ([5–7]).  The Fourier’s 

law with the inclusion of relaxation time for heat flux is revised by 

Cattaneo [8]. For forced temperature gradient, time is required to 

establish the steady heat conduction.  Christov [9] obtained a ma-

terial invariant formulation of the Cattaneo’s model during the 

consideration of Oldroyd’s upper-convected derivative. Straughan 

[10] employed Cattaneo-Christov model to report the thermal 

convection in an incompressible flow. Ciarletta and Straughan 

[11] discussed the structural stability and uniqueness of Cattaneo-

Christov equations. Han et al. [12] applied Cattaneo-Christov 

model to compute the slip flow and the heat transfer of viscoelas-

tic fluid bounded by a stretching plate.  The boundary layer theory 

of Cattaneo-Christov heat flux model to viscoelastic fluid flow 

over an exponentially stretched surfacing is investigated by Khan 

et al. [13]. Malik et al. [14] examined the effect of variable viscos-

ity and MHD on a boundary layer flow in Casson fluid with Cat-

taneo-Christov heat flux model. They found that temperature dis-

tribution within the boundary layer increases more rapidly in Fou-

rier’s law case than Cattaneo-Christov heat flux model. The 

boundary layer flow between two stretched rotating disks with 

Cattaneo-Christov heat flux model is studied by Hayat et al. [15]. 

The thermally stratified stretching boundary layer flow with Cat-

taneo-Christov heat flux model is numerically investigated by 

Hayat et al. [16]. 

Most of the industrial fluids exhibits a non-Newtonian fluid be-

havior such as paper making, processing of food, drilling of petro-

leum products, slurry transporting, ceramic processing, blood and . 

Casson fluid is a type of non-Newtonian fluid model and it is one 

of the most commonly used rheological models such as blood, 

chocolate, juices etc. Casson [17] considered the validity of the 

Casson fluid model in his studies about the flow characteristics of 

blood. The boundary layer flow of a Casson fluid to a heat transfer 

towards an exponentially stretching surface in presence of thermal 

radiation is studied by Nadeem et al. [18]. Mukhopadhyay et al. 

[19] reported the two-dimensional flow over unsteady stretching 

surface. The boundary layer in a Casson fluid and a heat transfer 

through a nonlinear stretching surface is carried out by Mukho-

padhyay [20]. Nadeem et al. [21] illustrated the three-dimensional 

steady flow of Casson fluid past a porous linear stretching sheet. 

Mukhopadhyay et al. [22] numerically studied the steady bounda-

ry layer flow and a heat transfer in the Casson fluid over exponen-

tially stretching permeable surface with prescribed heat flux. Ma-

hanta et al. [23] examined the effects of MHD three-dimensional 

Casson fluid pass a porous linear stretching sheet. The boundary 

layer flow for a Casson nanofluid convinced by nonlinear stretch-

ing surface is discussed by Mustafa et al. [24]. Animasaun et al. 

[25] explored the boundary layer flow to steady incompressible 

laminar free convective magneto-hydrodynamic (MHD) Casson 

fluid. Das et al [26] analyzed heat transfer to unsteady Casson 

fluid in a vertical plate. The heat and mass transfer of Casson fluid 
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over an exponentially permeable stretching sheet is reported by 

Raju et al. [27]. An idea of generalized Couette flow for an in-

compressible Casson fluid between the same plates utilizing the 

same boundary condition is illustrated by Ramesh et al. [28]. A 

free convection flow of the Casson fluid over a fluctuating vertical 

plate with constant wall temperature is carried out by Khalid et al. 

[29]. The MHD stagnated point flow of Casson nano fluid over a 

non linear stretching sheet with the velocity slip and the convec-

tive boundary conditions is numerically examined by Ibrahim et al. 

[30]. Sethetal [31] investigated about erects of Joule dissipation 

and Navier’s partial slip on hydromagnatic thin film flow of a 

Casson fluid embedded in a non-Darcy porous medium. Shateyi et 

al. [32] reported the free convective flow of a Casson fluid over an 

unsteady permeable stretching surface with viscous dissipation 

effect.  

The effect of viscous dissipation has a significant impact on vig-

orous natural or mixed convection processes. Gebhart [33] initiat-

ed a number to represent an effect of viscous dissipation in the 

system. An effect of the viscous dissipation parameter on the finite 

amplitude B´enard convection is examined by Turcotte et al. [34]. 

Barletta et al. [35] studied the stability of a flow was induced in 

viscous dissipation.  The impact of viscous dissipation in a porous 

medium with the horizontal temperature gradient along the upper 

boundary and an adiabatic lower boundary is reported by Barletta 

et al. [36].  The effect of viscous dissipation on convection on the 

flow in a Darcy medium is illustrated by Barletta and Nield [37]. 

The impact of viscous dissipation on the double diffusive convec-

tion occurring solely due to the viscous dissipation is carried out 

by Barletta and Nield [38] and reexamined by Roy and Murthy 

[39] with Soret effect. Khader and Mziou [40] studied the bounda-

ry layer flow of a viscoelastic fluid over a permeable stretching 

surface with viscous dissipation effect using Chebyshev spectral 

method. An impact of viscous dissipation on the convective insta-

bility induced by inclined temperature gradients in a non-parcy 

porous medium with a horizontal throw flow was presented by 

Roy and Murthy [41]. The effects of viscous dissipation and uni-

form heat source/sink on MHD boundary layer flow over a 

stretching sheet numerically investigated by Metri et al. [42]. 

Palani et al. [43] examined the effects of viscous dissipation,   

MHD and heat source on free convective flow with variable sur-

face temperature past a semi-infinite vertical plate. 

Inspired by the above-mentioned studies, it is noted that steady 

temperature jump and velocity slip flow of a viscous dissipative 

Casson fluid towards a stretching sheet with variable thickness has 

not been discussed so far. The viscosity of the fluid is presumed to 

be erratic with temperature. Cattaneo-Christov heat flux model is 

employed in this present work to investigate the insight of heat 

transfer phenomena. The transformed differential equations are 

solved numerically by using Spectral relaxation method. The ef-

fects of the governing parameters of the problem are discussed and 

studied. 

2. Mathematical Formulation 

Consider a steady, incompressible two-dimensional boundary 

layer flow of viscous dissipative Casson fluid over stretching sheet 

with variable thickness. Assume that the velocity of sheet be, 
m

w bxUU )(0   , where U0 denotes reference velocity. It is con-

sidered that the wall thickness of the stretching sheet may increase 

or decrease with distance from slot by varying the power index m. 

For 1m  the problem reduces to flat stretching sheet. The vis-

cosity of the fluid is assumed to be variable i.e. 


TT
e0 . 

Cattaneo-Christov heat flux model is employed to explore the heat 

transfer characteristics instead of Fourier’s law. Cartesian coordi-

nates are chosen in such a way that x-axis is along the along the 

variable sheet and y-axis is perpendicular to the sheet.  

 

 
Fig. 1: Physical model and coordinate system 

 

The magnetic field of strength B0 is applied normal to the sheet  
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where τ is Cauchy stress tensor, ρ is the density, 

Dt

D  is material 

time derivative, V is the velocity field, and   is an operator and 

BJb   is the body force.  

The stress tensor is defined as 
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where   is the product of the component of rate of deformation 

rate itself i.e. 
jiijee   

ije  indicates the ),( ji  component of the 

deformation rate, 
c is the critical value of   based on non-

Newton model, 
zp  is the yield stress on the field and 

B is a plas-

tic dynamic viscosity of the non-Newtonian fluid. By employing 

the boundary layer approximation, the conservation law of mass, 

momentum and energy equations takes the form: 
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where T is the temperature of the fluid, u  and v  are the velocity 

components along x and y directions respectively, 
0B is the mag-

nitude of magnetic field,  is the kinematic viscosity,  is the 

density, pc is the specific heat,  is the Casson parameter,  is the 

dissipative function, q  is the heat flux and  is the variable vis-

cosity.  

From equation (6) 
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where k   the thermal conductivity of the fluid, 

2 is the thermal 

relaxation time and   is the extra stress.  

From equations (6) and (7): 
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where 1D  the temperature jump coefficient and 1L is the slip veloci-

ty coefficient. 

The similarity transformations are 

 

)(
1

)(2

,)(,
2

)()1(

)],('
1

1
)([

2

)()1(

),(')(

1

0

1

0

)1(

0

0
















F
m

bxU

TT

TT
y

bxUm

F
m

m
F

bxUm
v

FbxUu

m

w

m

m

m


































      (11) 

 

By using the above transformations, the governing equations are 

changed as follows: 
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The transformed equations are 
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The corresponding boundary conditions are 
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 The wall shear stress at the sheet is given below 
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The skin friction can be defined as 
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While the dimensionless forms of skin friction 
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3. Solution of the Problem 

The transformed nonlinear equations (15)-(16) subject to the 

boundary conditions (17) are numerically solved by the Spectral 

Relaxation Method (SRM) (Motsa and Makukula [44] and 

Kameswaran et al. [45]). The SRM method uses the Gauss- Seidel 

approach to decouple the system of equations. In the system of 

SRM technique the iteration scheme is obtained as 
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The boundary conditions for the above iteration scheme are 
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The decoupled equations (21) - (25), are dealt by the Chebyshev 

spectral collocation method. The computational domain [0, L] is 

changed to the interval [-1, 1] using 2/)1(   L  on which 

the spectral method is applied. Here L  is used to invoke the 

boundary conditions at . The crucial thought behind the spectral 

collocation technique is the introduction of a differentiation matrix 
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Where 1N  is the number of collocation points (grid points), 
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sented the vector function at the collocation points. Higher-order 
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where p  is the order of the derivative. By implementing the 

spectral method to equations (25)- (27), we get 
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Here, 
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From the equations (32)-(33), the identity matrix and diagonal 

matrix are denoted as  I and D, respectively, all of size 

)1()1(  NN where pf , and   are the values of the func-

tions  respectively, when calculated at the grid points, N  repre-

sents the number of grid points and r denotes the iteration number. 

The Casson parameter is given by  

 

y

cB

P




2


     

(34) 

 

Where 
B  plastic dynamic viscosity, Py is the yield stress of the 

fluid and 
c is the critical value of  which is product of the de-

formation rate with itself. For such fluid, only the initial shear 

threshold is reached, the fluid displaces linear share stress behav-

iour with respect to shear rate. It is clear from the expression that 

Casson factor is directly proportional to dynamic viscosity. Hence, 

enhance in  means enhance in plastic dynamic viscosity 

B which be a symbol of a higher resistance to the fluid flow and 

as outcome, a downfall is observed in the fluid velocity on in-

creasing the Casson parameter. 

The initial guesses to begin the SRM technique for equalities (24)-

(25) are taken as 
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which are randomly selected functions that are satisfies the 

boundary conditions. The iteration is repeated until convergence 

attained. The convergence of the SRM strategy is indicated in 

terms of the infinity norm as 

 

 rrrrrr ppffMaxEr    111 ,,       (36) 

 

Accuracy of the method is established by increasing the number of 

collocation points N until the solutions are consistent and moreo-

ver increases do not change the value of the solutions. 

4. Results and Discussion 

In order to get a clear insight of the physical problem, the velocity 

and temperature profiles have been discussed by assigning numer-

ical values to the governing parameters encountered in the prob-

lem. Figure 2 shows that the flow behavior is affected along with 

the change in the Casson parameter  .When the Casson parameter 

is increased from 1 to ∞, the flow is progressively decreased. In 

Figure 3 it is noted that the temperature distribution increases 

inside the boundary layer with an increase in Casson fluid parame-

ter  . Casson parameter has prompt the decrement in the velocity 

of fluid, thus, extra work done in dragging the fluid against the 

physical entries dissipates in the form of energy, and so increase in 

thermal boundary layer thickness is witnessed. 

Figure 4 show how the velocity profile is affected by the magnetic 

field. On increasing M causes fluid velocity inside the thin film as 

well as the film thickness is decreasing significantly. The interest-

ing reason behind such an effect is that the magnetic field might 

be owed to induction of a retarding body force, is stated as Lo-

rentz force, due to the presence of magnetic field in an electrically 

conducting thin film. The effects of a magnetic field significantly 

influences the temperature profile that is presented in figures 5. It 

is also observed that the temperature profile increases with in-

creasing values of the magnetic field parameter.  

The dependence of the axial velocity profile )(' f on variable 

viscosity parameter γ is illustrated in Figure 6. It is clearly wit-

nessed that as γ increases the boundary layer thickness decreases 

and the fluid velocity distribution is lowered notably. Physically, 

this is because a given larger fluid variable viscosity implies high-

er temperature difference between the surface and the ambient 

fluid. Hence, it can be concluded that an increase of γ, the temper-

ature distribution throughout the boundary layer increases and it is 
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shown in Figure 7. Figures 8 and 9 displays the impact of wall 

thickness parameter 1  on the velocity profile and temperature 

profile, respectively. It can be seen that for m > 1, the velocity 

profile )(' f  decreases at any point near the stretched sheet as the 

wall thickness parameter increases, and for m < 1 a significant 

decrease in velocity is observed. Moreover, it reveals that the in-

crease of wall thickness parameter leads to thicker boundary layer. 

From Figure 9 shows that the wall thickness parameter reduced 

the temperature distribution and decreased the thickness of the 

boundary layer for m < 1 where as reverse trend is noticed as 

1m . The flow velocity decreases for higher values of 1  and 

m < 1 since under the variable wall thickness not all the pulling 

force of the stretching sheet can be transmitted to the fluid causing 

a reduce for both fiction between the fluid layers and temperature 

distribution for the fluid. However in the case of m > 1 the veloci-

ty of the flow layers will increase causing enhance for the friction 

force between this layers and hence increasing its temperature.  

Figure 10 shows that, the presence of slip velocity within the 

boundary layer causes the velocity level along the sheet to de-

crease. For higher values of the velocity slip parameter the veloci-

ty distribution reduce near the surface of the sheet but it incre-

ments at larger distance. As slip occurs )0( 2  , the flow of the 

stretching sheet becomes greater than the flow velocity near the 

sheet. Besides, increasing the values of velocity slip parameter 
2  

will considerably decrease the flow velocity because the condition 

of slip. From Figure 11 it is can be witnessed that not all the pull-

ing force of the stretching sheet can be transmitted to the fluid, but 

the behavior of temperature distribution for the variation of the 

velocity slip parameter 
2  is displayed. Also, it is seen that tem-

perature and boundary layer thickness is higher for slip boundary 

when compared to the no-slip boundary )0( 2  . It is concluded 

that the slip parameter 
2  should be assigned as minimum as 

much as possible in cooling systems.  

The illustration of different thermal jump parameter 
3  is pre-

sented in Figure 12. The increasing temperature jump parameter 

supports the decrease thermal boundary layer thickness.  In this 

considered problem the temperature jump between the wall and 

the fluid indicates the thermal contact resistance which decreases 

the amount of heat exchange. It is also concluded that the slip 

velocity also has the similar influence on the velocity near the 

sheet. Moreover, with the increasing distance from the stretching 

sheet, the effect of temperature jump parameter on the temperature 

becomes smaller. Effects and influences of thermal time relaxation 

parameter λ on temperature distribution are revealed in Figure 13. 

Temperature distribution within the boundary layer region de-

creases when thermal relaxation time parameter is increased. Ac-

tually when thermal time relaxation parameter is considerably 

high, then fluid particles need extra time in transferring the heat to 

its adjacent particles. For λ=0 the heat transfers with infinite speed 

through the whole material and hence temperature field is domi-

nant for λ=0. The effects of viscous dissipation parameter (Ec) on 

the temperature profile are demonstrated in the Figure14. It repre-

sents the convection of kinematic energy into internal energy by 

work done against the viscous fluid stresses. Hence, higher vis-

cous dissipative heat causes arise in the temperature, which is 

illustrated in Figure14. In Figure 15, the influence of Prandtl 

number Pr in the boundary layer on temperature profile is demon-

strated. The numerical outcome reveals that an effect of increasing 

values of Prandtl number results in decreasing to the temperature 

and it is noted that decrease of thermal boundary layer thickness 

and in general lower average temperature within the boundary 

layer. Thus, in the case of smaller Prandtl number the boundary 

layer is thicker and the rate of heat transfer is reduced. Figure 16 

shows that absolute values of the skin friction coefficient increases 

as in Mp  increases. The negative sign of skin friction coefficient 

implies that the stretching sheet exerts a dragging force on the 

fluid and positive sign implies the opposite. In Figure 16, it is 

witnessed that by increasing β, the skin friction coefficient de-

creases. Figure 17 exhibits the influence of magnetic parameter 

and Casson parameter on Nusselt number. It reveals that increas-

ing the magnetic parameter and Casson parameter lead to signifi-

cant decrease in the local heat transfer rate.  

In order to validate the accuracy of our numerical solution, we 

have compared our results with those of Wang [46], Salahuddin et 

al [47] and Malik et al [48]. Table 1 shows these values with those 

using the spectral relaxation method. This comparison is found to 

be in excellent agreement. 
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Fig. 2: Dimensionless velocity profiles )(f   for the various values of . 
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Fig. 3: Dimensionless temperature profiles )(  for the various values of  . 
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Fig. 4: Dimensionless velocity profiles )(f   for the various values of 

Mp. 
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Fig. 5: Dimensionless temperature profiles )(  for the various values 

ofMp. 
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Fig. 6: Dimensionless velocity profiles )(f   for the various values of . 
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Fig. 7: Dimensionless temperature profiles )(  for the various values 

of . 
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Fig. 8a: Dimensionless velocity profiles )(f   for the various values 

of
1 for m < 1.  
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Figure 8b: Dimensionless velocity profiles )(f   for the various values 

of
1 for m > 1. 
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Fig. 9a: Dimensionless temperature profiles )(  for the various values 

of
1 for m < 1. 
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Fig. 9b: Dimensionless temperature profiles )(  for the various values 

of  for m > 1. 
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Fig. 10: Dimensionless velocity profiles )(f   for the various values 

of
2 . 
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Fig. 11: Dimensionless temperature profiles )(  for the various values 

of
2 . 
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Fig. 12: Dimensionless temperature profiles )(  for the various values 

of
3 . 
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Fig. 13: Dimensionless temperature profiles )(  for the various values 

of . 
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Figure 14: Dimensionless temperature profiles )(  for the various values 

of Ec . 
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Fig. 15: Dimensionless temperature profiles )(  for the various values of 

Pr. 
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Fig. 16: Skin friction coefficient 2/1Re xfC for the various values of Mp  

and  . 
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Fig. 17: local Nusselt number 2/1Re

xxNu for the various values of Mp  

and  . 

 

Table 1: Comparison of skin friction coefficient for different values of M 

when γ = 0. 

Pr Wang [46] Salahuddin et 
al. [47] 

Malik et al. 
[48] 

Present results 

0.07 
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0.0656 

0.1691 
0.4539 

0.9114 

1.8954 
3.3539 

6.4622 

0.0654 

0.1688 
0.4535 

0.9108 

1.8944 
3.3522 

6.4619 

0.0651 

0.1683 
0.4537 

0.9109 

1.8948 
3.3521 

6.4626 

0.0656225696 

0.1690885738 
0.4539161580 

0.9113576837 

1.8954032582 
3.3539041437 

6.4621995452 

5. Conclusion 

This paper numerically studied the slip flow of a viscous dissipa-

tive Casson fluid with Cattaneo-Christov heat flux model in the 

presence of variable viscosity. Some important results of our in-

vestigation are given below: 

 Hydrodynamic boundary layer is thinner in Casson fluid 

when compared with the viscous fluid. 

 The energy dissipation is due to heat, viscous dissipation and 

deformation work has the effect to thicker the thermal 

boundary layer increases in the temperature profile, and 

hence decreases the heat transfer rate from the surface. 

 The temperature distribution is higher to the slip boundary 

flow than to the no-slip boundary layer flow, but this behav-

ior is contrary for the velocity field. 

 Temperature distribution increases more rapidly in Fourier’s 

law case compared to Cattaneo-Christov heat flux model. 

 The absolute value of Nusselt number and skin friction coef-

ficient decreases for the higher values of Casson fluid param-

eter. 
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Nomenclature 

pc – Specific heat at constant pressure (J/kg K) 

F– Dimensionless stream function 

u - Velocity component in x-direction (m/s) 

v - Velocity component in y-direction (m/s) 

T - Temperature of the fluid (0C) 

wT - Temperature at the stretching surface 

T - Ambient fluid temperature 

U0 – Reference velocity 

Pz – Yield stress on the field 

Mp - Hartmann number 

Ec - Eckert number 

I – Identity Matrix 

[ ] – Diagonal Matrix 

𝒟 – Differentiation matrix 

φ – Dissipative function 

0B - Magnetic field strength 

q – Heat flux 

λ2 – Thermal relaxation time 

L – Scale 

L1 – Slip velocity coefficient 

t – Time 

N– Number of grid points 

Pr – Prandtl number 

fC - Skin friction coefficient 

D1 – Temperature jump coefficient 

1  - The plate surface 

2  - Slip velocity factor 

3 - Thermal jump factor 

Greek symbols  

 - Thermal conductivity (W/m K) 

 - Thermal viscosity (N s/m) 

   -Fluid density (kg/m3) 

γ – The variable viscosity 

λ – Thermal relaxation parameter 

w - Wall shear stress  

 - Plastic dynamic viscosity of  

 Non-newtonian fluid 

 / - Kinematic viscosity of the fluid 

 – Similarity variable 

 – Extra stress tensor 

β – Cason parameter 

 - Non-dimensional temperature 

Subscript 

w – Condition at the surface 

 - Condition at infinity 

r – Iteration number 

Super script 

p - Differentiation with respect to   
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