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Abstract 
 

The influence of the heat transfer within a boundary layer flow and magneto hydro dynamic slip flow of a Maxwell fluid over a stretch-

ing cylinder is analyzed and discussed in the present article. The effects of viscous dissipation and thermal jump are assumed. The proce-

dure of heat transfer through hypothesis of Cattaneo-Christov heat flux is considered. We converted non-linear partial differential equa-

tions for mass, momentum and energy into a system of coupled highly non linear ordinary differential equations with proper boundary 

conditions by the help of suitable similarity transformations. The succeeding ordinary differential equations are solved by using Spectral 

relaxation technique. The solution is obtained in zero curvature parameter as well as non-zero curvature parameter.  i.e. for flow above a 

flat plate and flow above a cylinder. The flow and heat transfer attributes are witnessed to be encouraged in an elaborate mode by Prandtl 

number, thermal jump parameter, thermal relaxation parameter, Deborah number, slip velocity parameter, Eckert number and the mag-

netic parameter. Our findings reveal that one of the possible ways to decrease the Deborah number by boosting fluid velocity. It is also 

perceived that in the case of flow over a stretching cylinder, the momentum boundary layer thickness and the velocity of the fluid in-

creases. Furthermore, an increase in slip velocity factor reduces the magnitude of skin friction.  

 
Keywords:  Cattaneo-Christov heat flux model, Stretching cylinder, Temperature Jump, MHD, Velocity slip. 

 

1. Introduction 

The performance and attributes of non-Newtonian fluids is an 

important subject for researchers as well as scientists due to plenti-

ful applications of non-Newtonian fluids in petroleum products, 

pharmaceuticals, paper construction, crystal growth, polymer 

sheet, the coating of wires and so on. A single constitutive rela-

tionship is not enough to mention the physical attributes of non-

Newtonian fluids. Relaxation time is only depending factor of 

Maxwell fluid. Due to this consequence, Maxwell fluid over with 

various geometries was observing by researchers. The short re-

view of Maxwell fluid above a cylinder was given by [1–3]. 

The investigation of non-Newtonian fluids affected by the magnet-

ic field is proposing the concentration of its multidisciplinary ap-

plications for example, purification of crude oil, MHD power 

controllers, electromagnetic propulsion and nuclear reactors. Due 

to this, Hayat [4] and Rashidi [5] shown that the volume fraction 

of nanoparticles, mixed convection parameter improves the wall 

skin friction coefficient and also displayed the investigative as 

well as numerical solutions of the flow over a cylinder with di-

verse flow properties. Shateyi [6] mentioned that fluid temperature 

increases by an increase of Eckert number and thermal radiation. 

Shateyi [6] also demonstrated thermophoresis effects and Maxwell 

fluid flow with chemical reaction over a stretching surface. By the 

frictional heating energy of heat is stored in the liquid. Conse-

quently, the influence of improving Eckert number is increases the 

fluid temperature. Likewise, rise in the thermal radiation parame-

ter values signifies the attractive of radiation in the boundary layer 

and accordingly rises temperature profiles in the area of thermal 

boundary layer. 

In micro/nanosystems a most important task played by slip flow 

such are hard disk drive, micropumps, nozzles and microvalves. 

Sajid et al. [7] examined that the the slip influence on the Maxwell 

fluid flow over a surface of stretching. Sajid et al. [7] and Cai [8] 

explored the joint effect of temperature jump and velocity slip on 

a boundary layer flow over a flat plate. The effect of velocity slip 

and temperature jump on a boundary layer flow of pseudo-plastic 

power law fluid towards a moving permeable surface in occur-

rence of magnetic field utilizing bvp4c with MATLAB was inves-

tigated by Xinnui et al. [9]. They fulfilled that the skin friction 

coefficient and heat transfer rates diminish with the rising values 

of thermal slip and jump parameters. The temperature jump and 

velocity slip influences on unsteady boundary layer flow from a 

stretching permeable surface utilizing rational Bernstein colloca-

tion method was presented by Hosseini et al. [10].  By finite dif-

ference method of implicit functions the slip effect and convective 

boundary condition on magneto hydro dynamic boundary layer 

flow of a nanofluid over a porous nonlinear stretching shrinking 

sheet have been numerically investigated by Daniel et al. [11].  

By a lot of uses of Heat transfer, it becomes a major research area 

to upcoming researchers. Heat transfer uses in nuclear reactors, 

materials processing, energy production and rocket thermal abla-

tion etc. A classical approach of simulation of thermal conduction 

heat transfer is the Fourier law of heat conduction [12]. This mod-

el reduces heat conservative to parabolic energy equation which 

exhibits that the medium under observation encounters an initial 

disturbance which is the major drawback of this model. So to re-

duce disturbance, Cattaneo [13] modified the Fourier’s law by 
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including a relaxation time. This model further refined by Christov 

[14] that a structure in diverse formulation for the Maxwell–

Cattaneo model with finite speed heat conduction. An equation of 

the Maxwell–Cattaneo was numerically explained by Ostoja-

Starzewski [15] with a material time derivative for heat flux. The 

uniqueness and stability of solutions for incompressible fluid ac-

quired by heat flux model of Cattaneo–Christov were explored by 

Zampoli and Tibullo [16]. By using the Cattaneo–Christov model, 

Straughan [17] examined numerically an incompressible thermal 

convection flows. If the Cattaneo number is very large then the 

thermal relaxation coefficient is more important which is found by 

Straughan [17]. Straughan [17] also found that the convection 

phenomena transform from stationary to oscillatory convection 

which is having narrower cells. Haddad [18] conducted an investi-

gation of thermal unsteadiness incorporating fluid inertia utilizing 

heat flux model through a Brinkman porous medium. The struc-

tural steadiness and uniqueness equations of heat flux which are 

given by Cattaneo–Christov were addressed by Ciarletta and 

Straughan [19]. They also demonstrate that the relaxation time is 

only depending factor of solution to a backward in time problems. 

Al-Qahtani and Yilbas [20] presented a closed form solution by 

using the Laplace transform method for Cattaneo and stress equa-

tions. By using vertical and horizontal gradients, the influences of 

thermal relaxation in the Cattaneo–Maxwell equations were exam-

ined by Papanicolaou et al. [21]. The boundary layer flow of 

Maxwell fluids from a stretching sheet by using the Cattaneo–

Christov heat flux model was studied by Han et al. [22]. The non-

Fourier convection in rotary Maxwell fluid flow was numerically 

and systematically examined by Mustafa [23]. He offered both 

numerical and analytical solutions and displayed those results are 

in excellent manner. In place of parabolic Fourier law, Cattaneo– 

Christov heat flux model used in oscillatory convection flow to 

augment the opportunity of oscillatory convection in a classic 

Bernard problem was analyzed by Bissell [24]. The chemically 

reactive boundary layer flow of upper-convected Maxwell fluid 

with the effect of Cattaneo-Christov heat flux model utilizing 

HAM technique was examined by Khan et al. [25]. Raju et al. [26] 

analyzed the influence of MHD on a boundary layer flow of a 

Maxwell non-Fourier fluid over a cylinder under Cattaneo-

Christov heat flux model utilizing Runge-Kutta based shooting 

procedure. They accomplished that in impermeable flow over a 

cylinder case, the skin friction coefficient is high when compared 

with the permeable flow over a cylinder case. Shahid et al. [27] 

examined that the model of Cattaneo-Christov heat flux influence 

on radiative Maxwell viscoelastic magnetic flow over stretching 

permeable sheet. Khan et al. [28], investigated, the hyperbolic heat 

flux on upper-convected Maxwell micro polar fluid over a semi 

infinite stretching surface.   

Reasonably some studies of magneto hydro dynamic non-

Newtonian slip flow and convective heat flows for have occurred 

with a non-Fourier formulation for thermal conduction. The pur-

pose of this article is to analyze the hydrodynamic forced convec-

tive heat transfer in a boundary layer slip flow of Maxwell fluid 

from a stretching cylinder with a model of non-Fourier Cattaneo-

Christov heat flux. Moreover the joint impacts of viscous dissipa-

tion and thermal jump are taken into consideration. This flow 

problem is applicable to polymeric materials processing opera-

tions in which thermal loading may be of the non-Fourier type 

[29-32]. By using the graphs that the physical impact of the 

emerging parameters on temperature, velocity, Nusselt number 

and skin friction coefficient is elaborated. The numerical results 

obtained by using SRM technique are compared with existing 

published results.  

2. Mathematical Formulation 

A steady and axisymmetric boundary layer flow of an incompress-

ible slip flow of Maxwell fluid over stretching cylinder of radius R 

over a stretching cylinder is considered. The Maxwell fluid is 

being moved along the axial x direction and radial coordinate, r, is 

perpendicular to the cylinder axial. Magneto hydrodynamic flow 

analysis is presented along Cattaneo-Christov heat flux and vis-

cous dissipation. Cylindrical coordinates are selected that x-axis is 

along the axial direction of the cylinder and r-axis is perpendicular 

to cylinder axial. As shown in Figure 1, stretching velocity of the 

cylinder is organized by applying two forces that are equal in 

magnitude, opposite in direction such that origin is kept constant.  

 

 
Fig. 1: Physical model and coordinate system 

 

Apply a uniform magnetic field of strength 0B  in the radial direc-

tion. Here the obtained magnetic field is to be ignored because 

magnetic Reynolds number is acknowledged to be smaller. The 

surface and ambient temperatures are taken as wT and T , respective-

ly. The conversation of mass, momentum and energy equations 

takes the following form by applying the assumptions. 
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The consequent boundary conditions for the present problem are 

imposed as below. 
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In above expressions u represents velocity component in the axial 

direction and v represents velocity component in the radial direc-

tion, 0B  represents the magnetic field, σ is the electrical conduc-

tivity, 1  represents the relaxation time and 2  represents the 

thermal relaxation time, lxUuw /0  represents stretching velocity, 

R represents radius of cylinder,    represents the kinematic vis-

cosity,   represents the density, k  represents the thermal conduc-

tivity, T  represents the cylinder surface temperature, l  represents 
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the characteristics length, 1L  represents the slip coefficient and 1k  

represents the jump coefficient, pc  represents the specific heat at 

constant pressure. The following dimensionless quantities trans-

form the governing equations.  
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We observe that the continuity equation (1) is automatically ful-

filled by Eq. (5). Equations (2) and (3) are altered as  
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and the boundary constraints changes as 
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Where γ represents the curvature parameter, 1 ,  2  represents the 

Deborah numbers in terms of velocities time and thermal relaxa-

tion parameter respectively, Pr represents the Prandtl number, Ec 

represents the Eckert number, M represents the magnetic field 

parameter, 1 represents the velocity slip factor, 2  represents the 

temperature jump factor which are specified by  
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For engineering attention, we also establish the physical quantities 

of the system of reduced local Nusselt number and shear stress 

coefficient are xNu  and fC , respectively given by  
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With 
v

xU w
x Re  is a Reynolds number. 

3. Solution of the Problem 

With a specific end goal, the Spectral Relaxation Method (SRM) 

given by Motsa and Makukula [33] and Kameswaran et al. [34] is 

used to deal with the conditions (6)-(7) subject to the boundary 

conditions (8) and (9). The systems of equations are altered by 

Gauss- Seidel method. The iteration scheme obtained by SRM is 
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By the iteration scheme the boundary conditions changes as 
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With a specific end goal, we apply the Chebyshev spectral collo-

cation technique to comprehend the decoupled equations (13) - 

(15). In the process of spectral relaxation method, the domain [0, 

L] transforms as [-1,1] with the substitution 2/)1(   L . 

Where L  represents the boundary conditions at . The necessary 

consideration behind the spectral collocation technique is the be-

ginning of a differentiation matrix 𝒟 which is utilized to expect 

the derivatives of the unidentified variables at the collocation 

points and the matrix vector product of form 
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Where 1N  represents number of collocation points (grid 

points), D = 2𝒟/L, and 
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tor function at the collocation points. The derivatives of highest 

order are acquired in powers of D, that is, 

 

r

pp

r fDf 
)(

            (19) 

 

Where p  denotes the order of the derivative. By implementing 

the spectral relaxation technique to equations (25)- (27), we get 
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Here, 
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In equations (23)-(25), an identity matrix represented by I,  and  

represents diagonal matrix represented by [] are of size 

)1()1(  NN where N  represents the number of grid points, at 

the grid points the values of the functions pf , and   are 

rr pf , and
r
 respectively where the subscript r represents  an 

iteration number. 

To start the SRM technique for equalities (16)-(17), assumed ini-

tial conditions are 
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Which are arbitrarily selected functions that are gratify the bound-

ary conditions. To achieve the convergence we are repeating the 

above process. The convergence of the SRM technique is repre-

sented in vocabulary of the infinity norm as 
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Exactness of the method is familiar by raising the number of col-

location points N until the solutions are reliable and moreover 

raises do not modify the assessment of the results. 

Validation of Numerical Solution:  To evaluate the precision of 

numerical method, we have good concurrence for the numerical 

values of Nusselt number )0(  in the lack of viscous dissipation, 

MHD, slip influences and Cattaneo-Christov heat flux in the case 

of Newtonian fluid i.e. 02121   Ec   in 

opposition to Prandtl number values with those of Grubka and 

Bobba [35], Ali [36], Chen [37] and Ishak [38], which is presented 

in table 1. This ensures that our numerical scheme is a certainty 

and it can be used for further calculation of results. 

4. Results and Discussion 

In this segment complete numerical calculations are accessible for 

different parameters on temperature, transverse velocity, Nusselt 

number and skin friction coefficients profiles. By using the graph-

ical representations, the physical interpreted results are exhibited, 

analyzed and discussed. Physical parameters throughout the nu-

merical simulation are specified in each graph. Further, the graph-

ical results are displayed for diverse values of physical parameter 

in two geometries, one is the flat plate geometry (γ=0) and other is 

the cylinder geometry (γ=1). 

During the numerical calculations, some dimensionless parameters 

values have been fixed 

at 5.0,72.0Pr,5.0,2.0,1.0 2121  Ecn ; 

these numeric values are presented as universal throughout the 

study distant from the variations in the consequent graphs and 

tables. In this article, the dashed and solid lines indicate the 

stretching cylinder and flat plate correspondingly. 

Figure 2 displays the impact of magnetic body force parameter Mn 

on velocity profile )(' f . In the direction of x-axis, the transverse 

magnetic field (imposed in the y-direction, i.e.   - direction) 

produces an imminent Lorentz magneto hydro dynamic body force. 

This makes a major resistance to the boundary layer flow and 

incites a deceleration in the velocity distribution. The case Mn=0 

relates to electrically non conducting polymer flow in which mag-

neto hydro dynamic influences vanish. Physically, the Lorentz 

force is increasing for increasing values of μ and it gives a signifi-

cant control on the boundary layer flow and substantial retardation 

which might be oppressed in materials dispensation operations. 

Figure 3 delineates the velocity field )(f   with the effects of 

Deborah number 
1 (associated with Maxwell fluid). In this dia-

gram, we observe that the Deborah number increases when the 

velocity field )(f   decreases. Physically, the relaxation time is 

the depending factor of Deborah number. It is well known that the 

fluid flow resisted by higher relaxation time. In this larger Debo-

rah number corresponds to larger relaxation time. So with this 

reason as the Deborah number increases, the velocity field 

)(f  and the momentum boundary layer thickness decrease. We 

also observed from figure 3, the results with 01   corresponds 

to the viscous fluid results.  

From fig. 4 that it shows that the velocity level along the cylinder 

or plate to be diminish by the existence of slip velocity within the 

boundary layer. Furthermore, at the surface of the cylinder the 

distribution of velocity decreases with increasing values of the slip 

velocity parameter. But at larger distance, the distribution of ve-

locity is raises. Actually, when slip takes place )0( 1  the flow 

velocity at the cylinder will be less than the velocity of the stretch-

ing cylinder. Furthermore, increasing values of 
1   decreases the 

flow velocity, because all the pulling forces pertaining to stretch-

ing cylinder cannot be transmitted to the fluid at the slip condition.  

From the figure 5 we can say that a boost in the thickness of the 

momentum boundary layer and velocity are affected by a raise in 

curvature parameter γ. When the curvature parameter attains larger 

value, the radius of the cylinder decreases which causes to offer 

less resistance by the surface increasing the fluid velocity.  

The value 01   gives a viscous incompressible Newtonian fluid. 

From the figure 2 we can say that by improving Deborah num-

ber
1 , the velocity distribution is observed to be decreasing. In 

our physics, fluid will come to rest when shear stress is eliminated. 

This kind of phenomenon is revealed in a lot of liquid polymers 

that which can’t be definite in the viscous fluid model. A damping 

force will be developed between two adjacent layers of the flow 

by higher abolition of Deborah number
1 . By this reason there is 

a reduction in the velocity as well as layer thickness. When 01  , 

we get the results of viscous fluid.    

Figures 6-12 are plotted to evaluate the nature of the fluid temper-

ature )(  in opposition to the parameters 

EcMn ,,,,, 2211  and Pr for flat both plate and cylinder 

surfaces, respectively. Figure 6 show that the growth of the mag-

netic parameter Mn enhances strongly the temperature magnitudes. 

The supplementary word exhausted in dragging the polymer in 

opposition to the exploit of the magnetic field (graph 2) is dissi-

pated as thermal energy i.e. heat. This energizes the boundary 

layer to increase its thickness. In the diagram the smooth profiles 

in the free stream (and indeed also in all other figures) indicate 

that a sufficiently higher value for infinity is imposed in the SRM 

solutions.   

It is witnessed from figures 7 and 8 that by enhance in 
1  and 

1 temperature of the fluid enhance all over the boundary layer 

region. Because the action of velocity slip factor and Deborah 

number has led to the decrease in the fluid velocity, therefore, 

extra work made in dragging the fluid in opposition to these three 

physical entities dissipates in the energy and hence improved fluid 

temperature is noticed in the boundary layer.  

Fig. 9 displays that there is a noticeable shrink in temperature all 

over the boundary layer for higher values of non- Fourier Deborah 

number λ2. Due to heat flux relaxation time, the associated reduc-

tion in the Deborah number λ2 embodies the supplementary effect, 

that was captured in the non-Fourier model and that is absent in 

the classical Fourier model. By taking λ2=0, the non- Fourier Cat-

taneo-Christov heat flux sculpt will be reduced to simple Fourier 

law of heat conduction. While the fluid in a longer heat flux is 

associated with lower temperature, fluids with flux relaxation time 

are associated with higher temperature. With growing this causes a 

privileged. The higher rate of heat transfer from the fluid to the 

wall and a lower temperature within the fluid that was caused by 

the increasing Deborah number λ2, as a longer heat flux is 
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achieved.  i.e. heat is depleted from the fluid. A decrement in the 

thermal boundary layer thickness also one of the result. The grow-

ing temperature jump parameter 
2  promotes the decrease in the 

temperature is clearly shown in Figure 10.  

The thermal contact resistances reduces the amount of the exten-

sion of the diverse temperature jump parameters lead to diverse 

temperature of the cylinder is clearly stating that it is easy to un-

derstand that the temperature jump between the wall and the fluid. 

Furthermore, the influence of the temperature jump parameter on 

the temperature becomes smaller with the increasing distance from 

the cylinder. Figure 11 illustrated that temperature profile for flat 

plate and cylinder with the variation in Eckert number Ec. Evi-

dently larger values of Ec lead to larger temperature. It is realistic 

that the dissipative heat due to elastic deformation and viscosity 

lead to energy storage inside the fluid region. In another way, 

fractional heating is the basis of heat storage in the liquid. It is 

noticeable from figure 12 that temperature neighboring to the wall 

rises and then decreases with the boost in Pr.  As Prandtl number 

rises, thickness of thermal boundary layer reduces. As we know 

that, momentum diffusivity exceeded by thermal diffusivity, i.e. 

heat will disseminate quickly than momentum. Temperature no-

ticed to be squeezing nearer and nearer to wall as Pr rises. This 

means that fluid is extremely conductive when Pr < 1. So that heat 

from cylinder diffuses quicker than for large Pr fluids. So, in con-

ducting flows, cooling rate enhances by using Prandtl number. 

Also, the curves are more prominent in the case of flow over a flat 

plate and are very close to each other for the flow over a stretching 

cylinder. The impact of velocity slip parameter 
1  and Deborah 

number 
1   on the local skin friction coefficient is shown in Fig-

ure 13. The rise in the slip velocity parameter 
1 lead to reduce in 

the local skin friction coefficient is also identified. It may be ob-

served that a decrease in the local skin friction coefficient influ-

ences an increase in Deborah number
1  . Actually, the stretching 

velocity of the cylinder is not identical for long time near cylinder 

flow velocity when slip occurs, i.e. velocity slip exists. Addition-

ally, under the slip condition, the pulling of the stretching cylinder 

can be only partially transmitted to the fluid. So raising values of 

the slip velocity will diminish the flow velocity. Figure 14 ex-

plains the effects of the temperature jump 
2  and non-Fourier 

Deborah number
2 . We observe that, as rise in parametric values 

of 
2 wall temperature gradient is diminishing but as rise in pa-

rameter values of 
2  the wall temperature is rising. 

 

0 5 10 15
0

0.2

0.4

0.6

0.8

0.9



f '
 (

 )

Mn = 0, 0.6, 1.2, 1.8, 2.4, 3

Solid line :  = 0

Dashed line :  = 1

 
Fig. 2: Variation of Dimensionless velocity profiles )(f   with Mn . 
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Fig. 3: Variation of Dimensionless velocity profiles )(f   with

1 . 
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Fig. 4: Variation of Dimensionless velocity profiles )(f   with 
1 . 
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Fig. 5: Variation of Dimensionless velocity profiles )(f   with . 
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Fig. 6: Variation of Dimensionless temperature profiles )(  with Mn . 
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Fig. 7: Variation of Dimensionless temperature profiles )(  with

1 .       
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Fig. 8: variation of Dimensionless temperature profiles )(  with 

1 . 
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Fig. 9: Variation of Dimensionless temperature profiles )(  with 

2 .  
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Fig. 10: Variation of Dimensionless temperature profiles )(  with 

2 . 
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Fig. 11: Variation of Dimensionless temperature profiles )(  with Ec . 
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Fig. 12: Variation of Dimensionless temperature profiles )(  with

 
Pr. 
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Fig. 13: Variation of Skin friction coefficient 2/1Re xfC with 

1  and 
1 . 
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Fig. 14: Variation of local Nusselt number 
2/1Re

xxNu with  2  and 

2 . 

 

Table 1: Assessment of Nusselt number )0(   for various values of Pr 

when 02121  EcMn . 

Pr Grubka 
and 

Bobba 

[35] 

Ali [36] Chen[37] Ishak 
[38] 

Present out 
come 

0.72 

1 

3 
10 

100 

0.4631 

0.5820 

1.1652 
2.3080 

7.7657 

0.4617 

0.5801 

1.1599 
1.1599 

0.46315 

0.58199 

1.16523 
2.30796 

7.76536 

0.4631 

0.5820 

1.1652 
2.3080 

7.7657 

0.4631445612 

0.5819767069 

1.1652459519 
2.3080039445 

7.7656516912 

5. Conclusion 

In this paper, a numerical model has been introduced to examine 

the influence of viscous dissipation on magneto hydro dynamic 

slip flow of a Maxwell fluid from a stretching cylinder. The non-

Fourier Cattaneo-Christov heat flux model has been implemented 

(the Cattaneo-Christov heat flux model can be reduced to the clas-

sical Fourier law of heat conduction when Deborah num-

ber 02  ). By Spectral relaxation method, the dimensionless 

boundary value problem with boundary conditions is solved nu-
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merically and exhibited. The major outcomes are summarized as 

follows.  

 By rising the velocity slip and magnetic field strength, the 

velocity distribution diminishes. 

 By raising the Deborah number of Maxwell fluid, the veloci-

ty of the fluid decreases, where as the converse behaviour is 

computed for the skin friction coefficient. 

 A considerable increase in both thermal boundary layer 

thickness and temperature profile observed by raising the 

values of viscous dissipation and magnetic parameter.   

 For higher values of Prandtl number and non-Fourier Debo-

rah number, thermal boundary layer thickness and tempera-

ture magnitude reduces. 

 Heat transfer rate of fluid reduce for high values of thermal 

jump parameter whereas rate of heat transfer raises within the 

boundary layer for high values of non-Fourier Deborah num-

ber. 

 The magnitude of both the Nusselt number  and skin friction 

of flow over a stretching cylinder )0(  were slight higher 

than the flow over a stretching flat plate )0(   
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