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Abstract 
 

This article represents a numerical investigation of heat transfer and slip flow of a nanofluid over a stretching cylinder in magnetic field. 

In order to explore the heat transfer characteristics Cattaneo-Christov flux model is utilized in place of Fourier’s law. By using, suitable 

transformations, the governing   partial differential equations are changed into non-linear ordinary differential equations.  A numerical 

method, known as, spectral relaxation method is used to solve these equations. By using pictorial graphs, the relevant physical parame-

ters that appear in temperature and velocity distributions are analytically discussed.  Various types of nanoparticles like Alumina (Al2O3), 

Titanium oxide (TiO2), Copper (Cu) and Silver (Ag) with water as their base fluid has been assumed. It was identified that absolute value 

of skin friction coefficient and Nusselt number increases as each of nanoparticle volume fraction or Reynolds number increases. Temper-

ature profile goes up in a faster way in Fourier’s law case than Cattaneo-Christov heat flux model. It is also found that the choice of cop-

per (for large values of nanoparticle volume fraction) and alumina (for small nanoparticle volume fraction) leads to highest cooling per-

formance in solving this problem. In order to examine the accuracy of the method, thorough comparison has been made with some previ-

ous results. 
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1. Introduction 

It is known fact that Choi [1] was the first person  to coin the term 

“nanofluid” that means the fluid in which  nano-scale particles are 

pendant inside the basic fluid with low-level thermal conductivity, 

for example, oils, ethylene glycol, water and so on [2]. In recent 

years, the concept of nanofluid  is proposed as a route for surpas-

sing the performance of heat transfer rate in liquids. The material 

with sizes of nanometers consists of unique chemical and physical 

properties [3]. Fluids can flow smoothly through micro-channels 

not clogging metals as they are small enough and behave like 

liquid molecules [4]. This fact has enticed many researchers      [5-

16] and helped them to investigate the heat transfer characteristics 

in nanofluids. They also found that, the effective thermal conduc-

tivity of the fluids increases appreciably and enhances the heat 

transfer characteristics in the presence of nanoparticles in the flu-

ids. A good number of articles are found on this topic [17-22], and 

book by Das et al. [4].  Recently, Gangadher et al. [23] investigat-

ed the Newtonian heating impact on MHD micrpolar nanofluid 

over a permeable stretching shrinking sheet. They assumed titani-

um oxide (TiO2), alumina (Al2O3) and copper (Cu) as water based 

nanofluids. 

In olden days heat transfer is addressed mostly using classical 

Fourier’s law of heat conduction [24]. Energy equation via Fouri-

er’s law is parabolic. It also shows that the entire system is instant-

ly affected by the initial perturbation. This issue has been con-

trolled through with the thermal relaxation time in the Fourier’s 

law (see Cattaneo [25]). Energy equation is subjected to Cattaneo–

Christov heat flux that results hyperbolic partial differential equa-

tion [26, 27]. Christov [28] developed the analysis of Cattaneo 

[25] by presenting thermal relaxation time and using Oldroyd’s 

upper convected derivatives for the material-invariant formulation. 

Han et al. [29] examined Cattaneo–Christov heat flux in the 

stretched flow of Maxwell fluid over a surface with constant 

thickness. Thermal conductivity of liquid taken as assumed con-

stant. Straughan [30] used Cattaneo–Christov model for thermal 

convection in an incompressible flow of viscous fluid. Ciarletta 

and Straughan [31] are discussed the structural stability and 

uniqueness of the Cattaneo–Christov equations. Cattaneo-Christov 

heat flux in MHD flow of an Oldroyd-B fluid over a stretching 

surface with homogeneous/heterogeneous reactions is used by 

Hayat et al. [32]. The effect of Cattaneo - Christov heat flux in the 

stretched flow over a variable thick surface is explored by Hayat 

et al. [33]. Mustafa et al. [34] analyzed that the non-linear thermal 

radiation inspires the rotating flow of magnetite-water nanofluid 

by a stretched sheet. Waqas et al. [35] examined that in the pres-

ence of variable thermal conductivity, Burgers fluid flow with 

Cattaneo–Christov heat flux model. Abbasi and Shehzad [36] 

examined that three dimensional flow of Maxwell fluid with Cat-

taneo-Christov heat flux model. investigated Jeffrey fluid flow 

with Cattaneo-Christov heat flux because of variable thick surface 

investigated by Hayat et al. [37]  . Li et al. [38] examined heat 

transfer in MHD viscoelastic flow with Cattaneo-Christov heat 

flux model. Hayat et al. [39] analyzed stagnation point flow of 

Maxwell fluid with Cattaneo-Christov heat flux and homogene-

ous-heterogeneous response. 

http://creativecommons.org/licenses/by/3.0/
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Anomalous convection diffusion with Cattaneo-Christov heat flux 

because of coupling transport of cells is inspected by Liu et al. 

[40]. To investigate Cattaneo-Christov heat flux Reddy et al. [41] 

assumed three various geometries in presence of cross diffusion 

impacts. Hayat et al. [42] inspected two-dimensional stratified 

flow of Eyring-Powell fluid with Cattaneo-Christov heat flux. 

Effect of Cattaneo–Christov heat flux is put forth by Tanveer et al. 

[43]. Muhammad and Nadeem [44] reported Maxwell fluid flow 

using Cattaneo- Christov heat flux theory. Hayat et al. [45] ex-

plored numerical results for flow between two stretchable rotating 

disks with Cattaneo-Christov heat flux model. Recently, Raju et al. 

[46] investigated the MHD flow over a stretched cylinder with 

Cattaneo-Christov heat flux model with injection or suction. 

It should be noted that no-slip conditions are employed in all the 

attempts mentioned above. Be that as it may, in a micro-electro 

mechanical system and some coated surfaces like as Teflon, resist 

adhesion, the no-slip boundary condition is not applicable. Hence, 

the slip phenomenon must be acknowledged. The fluids with the 

slip phenomenon at the boundary have important technological 

applications like polishing of artificial heart valves and internal 

cavities. A lot of models explain the relation between the velocity 

gradient normal to the surface and the tangential component of the 

velocity at the surface. Thus, another dimension is added to the 

above study by acknowledging the impacts of partial slip at the 

stretching wall. A significant number of scientists at present have 

focused on the flow and heat transfer analysis at micro-scale with 

slip effects. Turkyilmazoglu[47] has got good a number of solu-

tions for the heat and mass transfer analysis of viscoelastic fluids 

due to a stretching surface with slip conditions. 

Freidoonimehr et al. [48] has given the MHD stagnation point 

flow towards a porous rotating surface with the velocity slip con-

dition. Turkyilmazoglu[49] performed an investigation to learn the 

characteristics of heat and mass transfer in the viscous flow to-

wards a stretching surface with velocity and thermal slip condi-

tions. Mukhopadhyay [50] examined those slip effects in a porous 

stretchable surface with the thermal radiation in MHD flow. Mal-

vandi et al. [51] numerically investigated the two-dimensional 

stagnation point flow of a nanofluid induced by a stretchable sheet 

with Navier’s slip condition. Turkyilmazoglu [52] acknowledged 

the MHD slip flow of an electrically conducting non-Newtonian 

fluid towards a shrinking surface. The slip effect in the mixed 

convective boundary layer flow over a flat plate was reported by 

Bhattacharyya et al. [53]. Rashidi et al. [54]  presented the numer-

ical effect of magnetic, slip, and relative temperature difference on 

the velocity and temperature field in the flow by a rotating disk. 

The variable properties over a rotating disk were analyzed in the 

entropy era. Mukhopadhyay [55] examined the MHD axisymmet-

ric flow of a viscous fluid by a stretched cylinder heat transfer. 

The partial slip effect was calculated by the flow analysis. Recent-

ly, Kiran Kumar et al. [56] studied the three dimensional slip flow 

in suspended carbon nano tubes through a slandering sheet in the 

presence of heat source. 

The main aim of this paper is to steady the slip flow and heat 

transfer of a nanofluid due to the stretching cylinder in the pres-

ence of Cattaneo-Christov heat flux model. Cattaneo-Christov heat 

flux model which is modified version of the established stands of 

Fourier’s law is used as a part of this work to investigate the in-

sight of heat transfer phenomena. The nanofluid model proposed 

by Tiwari and Das [6] is used. Various types of nanoparticles like 

alumina (Al2O3) , silver (Ag), copper (Cu) and titanium oxide 

(TiO2) with water as their base fluid has been assumed. For accu-

racy, the modeled differential equations are solved numerically 

using Spectral relaxation technique. The effects of the parameters 

governing the issue are thoroughly discussed and analyzed.  

2. Mathematical Formulation 

Consider  the steady laminar nanofluid flow of an incompressible 

electrically conducting fluid (with electrical conductivity  ) 

caused by a stretching tube with radius a in the axial way in a fluid 

extremely at rest as occurred in Fig. 1, where z – axis is deliberate 

along the axis of the tube and r – axis is measured in the radial 

way. Cattaneo-Christov model for heat conduction is utilized to 

investigate the heat transfer. It is considered that the surface of the 

tube is at constant temperature 
wT  and the ambient fluid tempera-

ture is
T , where 

TTw

 (heated cylinder). We also consider that 

the uniform magnetic field with intensity of 
0B  acts in the radial 

way and the impact of the induced magnetic field is insignificant, 

which is applicable when the magnetic Reynolds number is small.  

 

 
Fig. 1: Physical model and coordinate system 

 

The viscous dissipation, Ohmic heating and Hall effects are aban-

doned as they are also considered to be small. The field is a water 

based nanofluid consisting various types of nanoparticles: Ag, 

Al2O3, Cu and TiO2. It is considered that the base fluid and the 

nanoparticles are in thermal equilibrium and no slip occurs be-

tween them. The thermo physical properties of the nanofluid are 

given in table 1. Under these considerations, and the following 

nanofluid model planned by Tiwari and Das (2007), the governing 

equations are  
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Subject to the boundary conditions  
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Here, czww 2 , where c is a positive constant, T is the fluid 

temperature, u and w are the velocity components along the r and 

z – axes correspondingly. The effective dynamic viscosity
nf , the 

effective density nf   the thermal relaxation time, the heat capaci-

tance  
nfCp , 1L and 2L the slip and jump coefficients, nf  the con-

ductivity of the fluid and the thermal conductivity of the nanofluid 

nfk are given as 
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Here   is the solid volume fraction. 

Following Wang [57] we take the similarity transformations 
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The following ordinary differential equations are obtained by sub-

stituting (8) into Eqs. (2) and (4): 
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Eq. (3) gives the pressure in the form 
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Physical quantities of interest are the Nusselt number Nu and the 

skin friction coefficient 
fC , which are defined as 
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Where wq  and w  are the heat transfer and skin friction from the 

surface of the cylinder correspondingly, and those are given by 
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3. Solution of the Problem 

With a specific end goal to tackle the conditions (9)-(10) subject 

to the boundary conditions (11) and (12) the Spectral Relaxation 

Method (SRM) given by Motsa and Makukula (2013) and 

Kameswaran et al. (2013) is used. The method uses the Gauss- 

Seidel approach to decouple the system of equations. In the sys-

tem of SRM technique the iteration scheme is obtained as 
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The boundary conditions for the above iteration scheme are 
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With a specific end goal to comprehend the decoupled equations 

(25) - (27), we use the Chebyshev spectral collocation technique. 
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Where 1N  is the number of collocation points (grid points), D 
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represented the vector function at the collocation points. Higher-
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where p  is the order of the derivative. By implementing the 

spectral method to equations (25)- (27), we get 
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In equations (36)-(37), I, [] are an identity matrix and diagonal 

matrix respectively, all of size )1()1(  NN where N  rep-

resents the number of grid points, pf , and  are the values of the 

functions pf , and   respectively, when calculated at the grid 

points and the iteration number is represented by subscript r. 

The initial guesses to begin the SRM technique for equalities (28)-

(29) are chosen as 
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which are randomly chosen functions that satisfy the boundary 

conditions. The iteration is repetitive until convergence is 

achieved. The convergence of the SRM technique is characterized 

in terms of the infinity norm as 
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Accuracy of the scheme is recognized by increasing the number of 

collocation points N until the solutions are consistent and addi-

tionally increases do not change the value of the solutions. 

4. Results and Discussion 

By using the spectral relaxation method, the non-linear ordinary 

differential equations (9) and (10) which are subjected to the 

boundary conditions (11) and (12), were solved numerically. Four 

different types of nanoparticles namely Silver (Ag), Copper (Cu), 

Titanium oxide (TiO2) and Alumina (Al2O3) with water as base 

fluid are taken. The thermo physical properties of fluid water and 

nanoparticles Ag, Cu, TiO2 and Al2O3 are represented in table 1. 

The Prandtl number for the base fluid i.e. water is kept constant at 

7. It is worthy to mention that this study is minimized to those of a 

viscous or regular fluid when  =0. Figure 2 demonstrates the 

temperature profile for various nanoparticles. It can be obsered 

that temperature profile for nanoparticles increses gradually from 

the surface of the stretching sheet. The fluid temperature in the 

case of Ag-water nanofluid is less than those in Al2O3-water, Cu-

water and TiO2-water nanofluid. The physics behind these out-

comes is true because thermal conductivity of Silver (Ag) is high-

er than those in Copper (Cu), Alumina (Al2O3) and Titanium oxide 

(TiO2). Figure 3 and 4 represents the effect of transverse magnetic 

field parameter Mn on the nanofluid velocity )(f   and tempera-

ture distribution )( . Figure 3 depicts an increase of magnetic 

field parameter Mn  which tends to decrease the nanofluid velocity 

in the case of Cu-water when Mn = 0, 0.5, 1, 1.5 and 2 with Pr = 

7, Φ = 0.1, Re = 1, 5.0&1.021   . This clear-

ly indicates that the transverse magnetic field contradicts the 

transport phenomena. This is because of the fact that variation of 

Mn leads to variation of the Lorentz force. Due to magnetic field, 

the Lorentz force produces more resistance to transport phenome-

na. In all cases, the velocity vanishes at some huge distance from 

the surface of the cylinder. The temperature of nanofluid is dis-

covered of the cylinder increases. (Fig. 4). Figure 5 and 6 exempli-

fy the effect of nanoparticle volume fraction  on the nanofluid 

velocity and temperature profiles, respectively, in the case of Cu - 

nanoparticle and water base fluid (Pr =7) when = 0, 0.05, 0.1 

and 0.2 with Mn = 0.5, Pr = 7, Re = 

1, 5.0&1.021   . It is observed that, when the 

nanoparticles volume fraction accelerates, the nanofluid velocity 

decelerates and temperature increases. These figures illustrate this 

agreement with the physical behavior. When the volume of nano-

particle increases, the thermal conductivity layer also increases. 

From figures 7 and 8, it is worth to mention that the Reynolds 

number Re indicates the relative importence of the inertia effect  

when compared to the viscous effect. Thus, both velocity and 

temperature profiles decrease as Re increase and the increasing Re 

in turn leads to increase in the magnitude of the Nusselt number 

and skin friction coefficient (Fig. tables 6 and 7). 

The slip coefficients have a have a great influence on the velocity 

and temperature as vividly shown in Figure 9 and 10 respectively. 

The velocity of the fluid decreases with momentum slip con-

stant
1 . This is because momentum slip enhances the velocity at 

the fluid-solid boundary. In case of the no-slip condition, the fluid 

velocity by the side of a solid surface is equivalent to the velocity 

of the stretching sheet.  i.e., 0)0( 1  f while with an in-

crease in  slip parameters, the momentum boundary layer thick-

ness decrease. The momentum slip coefficient accelerates the 

temperature profile and temperature of the fluid increases with 

momentum slip parameter
1 . With momentum slip, more heat is 

transferred which leads to to a reduction in surface temperature 

that reduces the velocity of the fluid. The velocity curves exhibit 

the rate of change. The rate of transport decreases with the in-

creasing distance )(  which is normal to the sheet. In all cases the 

velocity vanishes at some large distance from the sheet (at 15 ). 

Figure 11 display the influence of temperature jump factor on 

dimensionless temperature distribution and other parameters kept 

at constant =0.1, Pr=7, Mn =0.5, Re=1, 
1 =0.1 and  =0.2.  It 

is noticed from figure (11) that increase in temperature jump pa-

rameter from α=0 to 1.0 promotes the decrease in the temperature 

profile. It is undoubtedly understood that the temperature jump 

between the wall and the nanofluid means the thermal contact 

resistance which decelerates the amount of heat transfer. Then, we 

can infer that the slip velocity also has the similar behavior on the 

velocity near the plate. Due to existence of the temperature jump, 

various temperature jump parameters lead to various temperatures 

at the cylinder. Moreover, with the increasing distance from the 

cylinder, the effect of the temperature jump factor on the tempera-

ture becomes smaller. 

Figure12 demonstrate the behavior of temperature distribution for 

higher values of thermal relaxation parameter λ for Cu-water 
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based nanofluid with  =0.1, Pr=7, Mn =0.5, Re=1, 

1 =0.1, 

2 =0.1. It is noticed that for higher values of thermal relaxation 

parameter λ , the temperature reduces. In fact, thermal relaxation 

time increases for higher λ. It implies particles require considera-

bly more time to transfer heat to its neighboring particles and thus 

parameter fall in. Figure13, delineates  the influence of Reynolds 

number Re and slip velocity factor 
1 on skin friction coefficient 

for cu-water based nanofluid and other parameters taken constant 

as  1.0 , Pr=7, Mn =0.5, λ=0.2 and 
2 =0.1. Actually, nega-

tive sign of skin friction coefficient implies the stretching cylinder 

implies a dragging force on the nanofluid and positive sign im-

plies the opposite. 

From figure 13, it can be observed that the increasing value of 

Reynolds number increases the size of the skin friction coefficient 

because it minimizes the velocity profile (see fig.7) and slip veloc-

ity decreases the skin friction coefficient. From figure 14, it is 

observed that both slip velocity and thermal jump factor leads to 

decrease the Nusselt number. Tables 2 - 5 show the comparison of 

the present out comes with the previous literature. It is noticed that 

the obtained outcomes are in agreement with the published work 

[57, 61]. This comparison acts as a worth noticing measure in 

giving accurate and efficient result. From Table 2-5 it is observed 

that magnitude of the skin friction coefficient increases when 

Nusselt number decreases with the increasing of the magnetic 

field parameter. This comparison gives nine digits accuracy. Ef-

fect of nanoparticle volume fraction on Nusselt number and the 

skin friction coefficient is given by [15] when Mn =0.5, Re=1, 

1 = 
2 =0.1, Pr=7, λ=0.5 for various nanofluids Al2O3, Cu, Ag, 

TiO2 water based nanofluids. The tables show that by using vari-

ous types of nanofluids, the values of skin friction coefficient and 

Nusselt number changes. This clearly shows that the nanofluids 

type will be essential in the cooling and heating process. It is also 

found that for all values of nanoparticles volume fraction ϕ, choos-

ing alumina as the nanoparticle leads to the maximum amount of 

the skin friction coefficient, while choosing silver it leads to the 

minimum amount of skin friction coefficient. For small values of 

nanoparticles solid volume fraction  , choosing copper as the 

nanoparticle leads to the maximum amount of Nusselt number, 

while choosing alumina as the nanoparticcle it leads to the maxi-

mum amount of it for large value of . Also, it can be seen that 

selecting Titanium oxide leads to the lowest amount of Nusselt 

number. Tables vividly display the behavior of the Nusselt number 

for various values of thermal relaxation parameter λ using various 

nanofluids. For higher values of λ, the Nusselt number value de-

creases. 
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Fig. 2: Temperature profiles )( under various types nanoparticles. 
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Fig. 3: Velocity profiles )(f  under various values of magnetic field 

parameter Mn. 
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Fig. 4: Temperature profiles )( under various values of magnetic field 

parameter Mn . 
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Fig. 5: Velocity profiles )(f   under various values of nanoparticle vol-

ume fraction . 
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Fig. 6: Temperature profiles )(  under various values of nanoparticle 

volume fraction . 
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Fig. 7: Velocity profiles )(f  under various values of Reynolds num-

ber Re . 
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Fig. 8: Temperature profiles )( under various values of Reynolds 

number Re  
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Fig. 9: Velocity profiles )(f  under various values of momentum slip 

parameter
1
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Fig. 10: Temperature profiles )( under various values of momentum 

slip parameter
1  
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Fig. 11: Temperature profiles )( under various values of thermal slip 

parameter 2
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Fig. 12: Temperature profiles )( under various values of thermal re-

laxation parameter  
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Fig. 13: Skin friction coefficient 
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Table 1: Thermo Physical properties of water and nanoparticles 

 3(kg/ m )  c (j/ kgK)p
 k(W/ mK)  5 110 (K )   

Pure water 997.1 4179 0.613 21 

Copper 

(cu) 

8933 385 401 1.67 

Silver 

(Ag) 

10500 235 429 1.89 

Alimina 

(Al2O3) 

3970 765 40 0.85 

Titanium 

Oxide 
(TiO3) 

4250 686.2 8.9538 0.9 

 

Table 2: Comparison of the skin friction coefficient )1(f  for several 

values of M when Re=10, Pr = 7, 021   for clear fluids. 

M Present out 

Comes 

Ishak et al. 

(2008) 

Wang 

(1988) 

0 
0.01 

0.05 

0.1 
0.5 

1 

2 
5 

-3.34447466 
-3.34616380 

-3.35290714 

-3.36130711 
-3.42742814 

-3.50769113 

-3.66154894 
-4.08263292 

-3.3444 
-3.3461 

-3.3528 

-3.3612 
-3.4274 

-3.5076 

-3.6615 
-4.0825 

-3.34445 

 

Table 3: Comparison of the Nusselt number )1(  for several values of M 

and Pr when Re=10, 021    for clear fluids. 

M Pr=0.7 (air) Pr=7 (water) 

 Presenet 
Out comes 

Ishak 
et al. 

(2008) 

Wan
g 

(198

8) 

Present 
Out comes 

Ishak 
et al.  

(2008) 

Wan
g 

(198

8) 

0 1.56821175 1.5687 1.56 6.15799699 6.1592 6.16 

0.01 1.56821175 1.5693  6.15760797 6.1588  

0.05 1.56586866 1.5665 6.15606360 6.1573 

0.1 1.54706606 1.5644 6.15414072 6.1554 

0.5 1.54706606 1.5478 6.13903001 6.1402 

1 1.52739974 1.5284 6.12072591 6.1219 

2 1.49103834 1.4924 6.08570039 6.0864 

5 1.40489535 1.4012 5.98998891 5.9855 

 

Table 4: Comparison of the skin friction coefficient )1(f   for several 

values of M, Re when Pr = 7, 021   for clear fluids. 

M Re=1 Re=5 

 Presenet 
Out comes 

Ishak 
et al. 

(2008) 

Wang 
(1988) 

Present 
Out comes 

Ishak 
et al.  

(2008) 

Wang 
(1988) 

0 -1.1799527 -1.178 -1.17 -2.4175881 -2.417 -2.4 

0.01 -1.1838896 -1.183  -2.4198870 -2.419  

0.05 -
.1.2068461 

-1.206 -2.4296412 -2.429 

0.1 -1.2344238 -1.234 -2.4417338 -2.441 

0.5 -1.4269254 -1.426 -2.5352329 -2.535 

 

Table 5: Comparison of the Nusselt number )1(  for several values of 

M and Re when Pr = 7, 021   for clear fluids. 

M Re=1 Re=100 

 Presenet 
Out comes 

Ishak 
et al. 

(2008) 

Wan
g 

(198

8) 

Present 
Out comes 

Ishak 
et al.  

(2008) 

Wan
g 

(198

8) 

0 2.05818236 2.0587 2.05 19.1185105 19.158 19.1 

0.01 2.05730215 2.0572  19.1183972 19.158  

0.05 2.05166521 2.0516 19.1179439 19.158 

0.1 2.04491803 2.0449 19.1173773 19.157 

0.5 1.99806483 1.9978 19.1128512 19.153 

 
 

Table 6: Impacts of the magnetic parameter for dissimilar types of 

nanofluids on skin friction coefficient when Pr 

=7, 1.0,5.0,5.0 21   Mn , Re=1. 

  Nanoparticles 

Cu Ag Al2O3 TiO2 

0.05 -1.42316344 -1.4430925 -1.35645469 -1.36037647 

0.1 -1.65567312 -1.69399633 -1.52223751 -1.53033129 

0.15 -1.91631497 -1.97304187 -1.71291618 -1.72555853 

0.2 -2.21393912 -2.29014377 -1.93449470 -1.95220372 

 

Table 7: Impacts of the magnetic parameter for dissimilar types of 
nanofluids on Nusset number when Pr 

=7, 1.0,5.0,5.0 21   Mn , Re=1. 

  Nanoparticles 

Cu Ag Al2O3 TiO2 

0.05 

0.1 
0.15 

0.2 

0.35145922 

0.26746447 
0.19588181 

0.13839452 

0.34413629 

0.25419041 
0.17965259 

0.12254558 

0.36038433 

0.28502729 
0.21926797 

0.16352744 

0.37044414 

0.30321561 
0.24356280 

0.19171135 

 

Table 8: Impacts of the thermal relaxation parameter for dissimilar types 
of nanofluids on Nusset number when Pr 

=7, 1.0,5.0,1.0 21  Mn , Re=1. 

  
Nanoparticles 

Cu Ag Al2O3 TiO2 

0 
1 

5 

10 

0.18676319 
0.10815385 

0.03790460 

0.02210804 

0.15943472 
0.09858139 

0.03809433 

0.02291491 

0.24054617 
0.11930961 

0.03403085 

0.01890033 

0.28995665 
0.13613157 

0.03510397 

0.01886764 

5. Conclusion 

A thorough research is done to solve the Cattaneo-christov heat 

flux model on the slip velocity and temperature jump on MHD 

flow of a nanofluid due to stretching cylinder. Cattaneo-Chirstov 

heat flux model is used to discover the heat relocation phenomena. 

Spectral relaxation method is applied to solve the governing non-

linear differential equations. The main findings of this problem are 

as follows. 

 In order suppress the velocity field, which in turn cause the 

augmentation of the temperature field. 

 The growing temperature jump parameter leads to the decline 

of temperature near the wall with the incline distance from 

the cylinder, as the effect of temperature jump parameter be-

comes smaller. 

 The local Nusselt number and magnitude of skin friction 

decreases with the increasing slip velocity parameter. 

 Temperature profile increases more rapidly in Fourier's law 

case rather than Cattaneo-Christov heat flux model.  

 Selecting copper (for small nanoparticle solid volume frac-

tion) and alumina (for large values of nanoparticle solid vol-

ume fraction) leads to the highest cooling performance for 

this issue. 
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