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Abstract 
 

The involvement of big populace in the quantitative trading has been increased remarkably since the wired and wireless systems have 

become quite ubiquitous in the fields of finance and economics. Statistical, mathematical and technical analysis in parallel with machine 

learning and artificial intelligence are frequently being applied to perceive prices moving pattern and forecasting. However stock price do 

not follow any deterministic regulatory function, factor or circumstances rather than many considerations such as economy and finance, 

political environments, demand and supply, buying and selling tendency, trading and investment, etc. Historical data assist remarkably 

for prices forecasting as an important option for mathematicians and researchers. In this paper, we have followed backpropagation and 

radial basis function neural network for predicting future prices by modifying these techniques as per requirements. We have also per-

formed a comparative analysis of the two ANN techniques for existing and our modified models. 
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1. Introduction 

Financial sectors are the keen premises for the investors to procure 

high returns with of course an edifice or anticipations for the 

movements of securities’ prices. The concerned activities in this 

sector are also termed as quantitative investments. This generation 

is also very much intended toward financial investment as of about 

30-40% share has occupied globally in this sector only. Financial 

investments refer to put some amount of money and anticipating 

some returns in a certain span of period. A financial market is 

considered as a place where individuals perform financial transac-

tions. It consists of two bodies called buyers and sellers, who be-

come involved in sales and purchase of financial products such as 

stocks, bonds, mutual funds, and so on. It is also called as capital 

market. Capital market is divided in two phase: primary market 

and secondary market. In the primary market, different companies 

release new stocks, bonds and shares at first time for investors as 

IPOs (Initial Public Offering). In the secondary market, already 

issued securities are bought and sold. Types of capital market refer 

to stock, bonds, commodities, money, derivatives, insurance, fu-

ture, foreign exchange, and private market, etc. There are numer-

ous determinants which influence the maneuver of market prices 

like economy, supply-demand, advertising, sentiments, company 

news, naturals disasters, expectations and speculations, political 

environments, GDP growth, etc ([7], [15]). 

In the financial market, the forecasting of movements of stock 

values on daily or a certain duration basis is the primary concern 

and challenging as well for both investors and researchers. As we 

mentioned many factors those regulates the stock values ripples, 

the characteristics of stock market reflect a dynamic, non-

stationary, nonparametric, nonlinear, noisy, and chaotic nature 

([5], [19]). The identification of interaction among these factors is 

very complex ([18]). However many researchers and investors 

find some patterns of prices movements, and perform forecasting 

and investment recommendations on those basis. There has been 

developed many models form mathematics, statistics, computer 

science, machine learning, and artificial intelligence, etc., for fi-

nancial time series forecasting. Some reviews on forecasting mod-

els have been presented by [8], [13], [1], [12], and [14]. Statistical 

techniques have been traditionally applied to perform time series 

analysis using ARMA and ARIMA models ([3]) along with some 

more sophisticated ARCH techniques ([6]). On the other hand 

machine learning techniques are also being applied for finding 

future movements of security prices ([20]). We have performed 

some more literature reviews in the respective sections. 

We have downloaded 5-years automobile NSE data for the stocks 

Ashok Leyland Limited, TATA Motors, Mahindra & Mahindra 

Limited, Maruti, and Suzuki India Limited from 17/07/2012 to 

17/07/2017 on daily basis from the website [17]. We have per-

formed all our programming and result analysis on the MATLAB-

software from MathWorks®. 

In this paper we have considered moving averages and multiple 

regressions as conventional analysis and after that we have applied 

backpropagation technique from artificial neural networks inde-

pendently and in conjugation with conventional methods. In Sec-

tion-2, we have explained about moving averages to perform time 

series analysis as the trend of data. Artificial neural network struc-

ture has been elaborated in the section-3 and the study of back-

propagation learning model is performed in Section - 4. Next in 

Section-5, radial basis function neural network has been explored. 

Further in the Section-6, we have performed result comparison 

and analysis from the various independent and conjugated tech-

niques. Finally we have summarized the paper along with its fu-

ture scope in the section-7. 
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2. Moving Average 

Moving average is characterized by calculating n-days averages 

with different techniques in a sliding window manner. The values 

of n are followed in different perspectives. It may opt two ways 

such as short and long time period. Different researchers consider 

different spans of times for short and long. Short time period may 

consider 5-days, 10-days, 14-days, 15-days, or one-month while 

long time periods may follow 50-days, 100-days, 150-days, or 

200-days. Some best combinations of periods for moving averages 

and threshold return prices have been explored by Horne et al. 

([9]). Mitra ([4]) has also explained the advantages of trading rules 

in India. 

Moving average is process of considering one most recent value 

and dropping one most old value, and proceeding in this sliding 

widow manner. There are different procedures for the calculation 

of moving average. There are six prime techniques: Simple mov-

ing average (SMA), Exponential moving average (EMA), 

Weighted moving average (WMA), Adoptive moving average 

(AMA), Triangular moving average (TMA), and Typical Price 

moving average (TPMA). Wang et al. ([16]) have presented these 

averages with the respective formulas. In this paper we shall be 

followed only the Simple moving Average and Exponential mov-

ing average because will shall be using the data generated by these 

moving averages in further techniques. 

2.1 . Simple Moving Average 

Simple moving average (SMA) is the simple average of n-most 

recent period of stock values. It is calculated for n-time period by 

the following formula: 
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where, t iv   is the stock value for 1,2,....., 1i n  days. 

Some researchers also follow the volume factor that is total num-

ber of shares that being traded collectively. So the formula for 

SMA can be considered as follows: 
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Where, volume average tva  is the average for first k shares in t  

time period. 

2.2  Exponential Moving Average 

Exponential moving average (EMA) is also called Weight expo-

nential moving average since it considers weight factors in expo-

nentially decreasing manner but never zero. The EMA of stock 

prices X for n-time period can be calculated recursively as follows: 
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Where, (0,1) is the degree of weights in decreasing order, 

also known as smoothing factor. tX is the stock price at time 

period t  and tema is EMA at t  time period 

 

 

3. Artificial Neural Network Structure 

Zahra and Seyedmohsen ([21]) performed the comparison analysis 

and efficiency evaluation of ANN along with data normalization 

analysis for predictions of profitability in corporate. Anyaeche and 

Ighracwe ([2]) have applied linear regression, ANN, and back-

propagation ANN to compare forecasting efficiency. 
The concept of artificial neural networks is very much relevant or 

analogous to natural nervous systems in human brain. It can be 

considered as substantially parallel adaptive networks of neurons. 

Neurons are here cognitive to simple nonlinear computing compo-

nents. The mere intention of neural networks is to perform both 

analysis and establishment of such substantive parallel computing 

systems. Neurons are categorized into three types: input, hidden, 

and output. Input neurons receive inputs from external sources as 

a stimulant to the network. Output of neurons produces output 

signals of the network. The intermediate functions are calculated 

by hidden neurons, and these neurons are not visible from the 

external sites.  

A neural network model can be created as a weighted directed 

graph containing neurons as nodes and directed weighted edges as 

links between neurons. Two possible types of connections may ne 

there: 

 a feed forward architecture, which is without loops, and, 

 a feedback (recurrent) architecture, having loops in the net-

work, due to the feedback links 

Artificial neural network models have the capability of adopting 

the change of environments that is also learning. In this process it 

generates an internal model with sampled data, which represent 

structured weight vectors. Learning algorithms develop an archi-

tecture-based approach to assign patterns into weights to produce 

internal models. Learning process continues with update of con-

nections weights. According to the learning nature, it is catego-

rized into two types: supervised and unsupervised. 

3.1. Supervised Learning 

Let us consider a discrete data sample for learning process as 

  
1

,
Q

k k k
X D


 from population space where input vector 

n

kX R  to an output vector
P

kD R . The unknown function 

: n pf R R is characterized by the sample data. Note that the 

sample data may be noisy.  

The structure of the supervised learning may be presented as fol-

lows. kX is the input to the system, and it produces an output kY . 

Supervised learning corresponds to the desired output kD to re-

duce the error ( k kD Y ) in the response to the system. The net-

work is being trained with the pairs of input-output samples, in the 

form of learning of error correction that is also called as steepest 

descent or gradient descent weight adaptation. The error correc-

tion is performed here in the global environment that is estimated 

from difference between desired value ( kD ) and output of the 

network ( kY ). It is implemented usually with the help of differ-

ence equation that is established to perform with such global in-

formation. Here we want to generate the output from system 

which is close to the desired output kD , and we say that the sys-

tem has learned the underlying phenomena if the stimulus 
'

kX close to kX  invoke a response 
'

kY  which is adequately lose 

to kD  .  
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3.2. Unsupervised Learning 

Supervised learning deals with the development of well defined 

“clusters” with a provided set of data samples, 

 , ,n

i iX X R  in such a way that each cluster comprises a 

class of vectors which are have some similar properties.  

3.3.    Least Mean Square Learning 

We have considered a training set of the 

form   1, , ,n

k k k kX d X R d R    . The resultant acti-

vation of the neuron: 

 
T

k k k ks y X W                                            (3) 

 

We can follow the following definition. 

Definition3.1  

The linear error ke due to the dedicated training pair  ,k kX d  

is calculated as the difference between the desired output kd and 

the neuronal signal :k k k ks e d s  . 

Therefore the linear error becomes, 

 
T

k k k k k ke d s d X W               (4) 

 

With the implementation of linear error measure into the weight 

update process,   least mean squared ( )LMS  learning 

algorithm is established. In the case of single adaptive linear neu-

ron, LMS  are of maintaining minimal disturbance based on 

past learning when new data into weight vector is added. 

The recursive update equation from the LMS  can be con-

structed as follows: 
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Here the weights are revised by multiplication of the scaled error 

and the normalized input vector as follows: 
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Where  the rate of learning is, k


is the pattern-normalized 

learning rate kX


is the unit vector in the direction of kX . 

The error changes for kX follows the scope of the change in the 

weight vector kW . 
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ke                           (10) 

 

The error correction term ke is proportional to the error ke itself, 

and it is reduced by the factor  iteratively, which can be called 

as regulatory factor as it regulates the stability and the conver-

gence speed. Generally, stability is achieved if 0 2  . 

4. Back Propagation Neural Network (BPNN) 

4.1. Notations 

The notation summary is given in the following Table 1 
 

Table 1: Table of Notations 

 Input Hidden Output 

Number of neu-

rons 

n+1 q+1 p 

Signal Function Linear sigmoidal sigmoidal 

Index range of 
neurons 

i=0,....,n h=0,....,q j=1,....,p 

Activation xi zh yj 

Signal S(xi) S(zh) S(yj) 

 
The neuronal weights from input-to-hidden and hidden-to-output 

have been represented by ihw and hjw  respectively. Iteration 

index is k . At the input layer, neurons follow linear function as 

follows: 

 

( )S x x           (11) 

 

and at the hidden and output layers, sigmoidal function 
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  typically considers the value 1. Let us assume a set of Q train-

ing vector pairs   
1

, ,
Q

k k k
X D


  where input vector 

n

kX R to an output vector
P

kD R . Training pairs are 

therefore 
1 1 2 2( , ),( , ),..., ( , ),...k kX D X D X D are selected 

from the training set. The generated output signal vector kY  be-

comes the activation vector of output layer neurons. 

4.1 Squared Error Function 

The instantaneous error defined by tk h training pair ,k kX D is 

given by: 
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Where 
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The summation of squared error k is the sum of squares of each 

individual output error ,k

je scaled by one-half of convenience: 
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The mean square error  can be calculated over the entire training 

set: 

1
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kQ
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4.2. The Learning Procedure Skeleton 

The basic process of steepest descent based learning is structured 

as: 

Step 1. Give the input pattern kX form the training set   to the 

network. 

Step 2. Calculate activations, input signals, hidden and output 

neurons sequentially. 

Step 3. Calculate the error vector with the help of output neurons 

and desired output. 

Step 4. With help of the calculated error in Step 3, estimate the 

changes in hidden-to-output and input-to-hidden layer weights 

(along with all biased weights), such that global error gets reduced. 

Step 5. According to the all changes in Step 4, update all weights 

as follows: 

Hidden-to-output layer weights  

 
1k k k

hj hj hjw w w             (17) 

 

Input-to-hidden layer weights 
1k k k

ij ij ijw w w    

Where 
k

hjw and 
k

ijw are changes in weights calculated 

in Step 4. 

Step 6. Repeat Steps 1-5 until the global error gets down below 

considered threshold. 

4.3. Calculations in the Backpropagation Algorithm 

We have considered the sigmoid gain scale factor 1   

throughout the discussion.  

Calculations of Neuronal Signals 

1. At the input layer: 

( ) ,k k
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Where, 
k

ix is 
thi value of kX and 0

kx is bias neuron signal at 

input. 

2. At hidden layer: 

 

0 0

( ) ,
n n

k k k k k

h ih i ih i

i i

z w S x w x
 

    1,2,...,h q               (21) 

 

1
( ) ,

1
k
h

k

h z
S z

e




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0( ) 1kS z                            (23) 

 

Where 
k

ihw are the neuronal weights of output signal ( )k

iS z from 

hidden layer, and 
0

k

hw is biased weight at this layer. 

3. At output layer: 
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where 
k

hjw  are the neuronal weights from outputs. 

Calculations of error gradients 

1. Weight gradients at hidden-to-output layer: 

Using chain rule of calculus: 
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The intermediate partial derivatives can be calculated as follows: 
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which collectively yields: 
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Where, 
'( )k k k

j j je S y  is a signal slope as an error, 
k

j is 

slope scaled error. 

2. Weight gradients at input-to-hidden layer: 

3.  
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which can be expressed as: 
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error backpropagation
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The error factor of the hth hidden node is: 
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and therefore, we have 
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Weight updates 

 

1. For hidden-to-output layer weights: 
1k k k

hj hj hjw w w                             (40) 
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2. For input-to-hidden layer weights: 
1k k k

ih ih ihw w w                            (43) 
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k k k

ih h iw x                            (45) 

4.4. Delta Rule Generalization: Momentum Introduc-

tion 

The momentum term is used in weight update calculation to in-

crease the learning rate along with taking care of stability 

 
1( )k k k k

hj j h hjw S z w               (46) 
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ih h i ihw x w              (47) 

 

Where, 0  is the momentum. The algorithm follows the 

delta rule generalization when weights are updated according to 

Equations (46) and (47). 

5. Radial Basis Function Network 

RBFN is also a network of input, hidden, and output layers while 

it can comprise only one neuron in the hidden layer and it follows 

only a feed-forward technique, however it may contain any num-

ber of nodes in the three layers. The basis stricture of RBFN is 

contains m-nodes in input layer, h-nodes in hidden layer, and 1-

node in the output layer. The synaptic weights are not assigned 

from input to hidden layer whereas the weights are charged with 

applied mathematical functions for hidden to output layer, and the 

output nodes trade on the heels of linear simulation. 

The input-output pairs T = {Xi, di} perform calculations with 

interpolation to acquire function f which takes input Xi and pro-

duce output close to desired output di for n data sample. 

 

( ) ; 1,2,...,i if x d i n          (48) 

 

RBFN produces n function as basis φ(||X −Xi||), i = 1,2,...,n as 

non-linear with Euclidean distance (||X −Xi||), where X as applied 

input and Xi as points of training data. Then the mapping f is 
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From equation, (48) and (49) 
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For basis determination at the hidden layer, many functions can be 

applied. Some of them are given as follows. 

1. Gaussian function: 
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2. Multiquadrics: 

 
2 2 1/2( ) ( )x x t            (52) 

 

3. Inverse multiquadrics: 

 
2 2 1/2( ) 1/ ( )x x t            (53) 

 

The basis function φ is symmetric and weights W can be estimated 

with correct selection of φ as: 
-1W D           (54) 

 

For, 1( ,..., ) 'nW w w and 1( ,... ) 'nD d d . 

There are mainly three parameters those regulates the functioning 

of RBFN, namely activation function, spread factor, and basis. 

Empirical results show that combination of all these factors with 

different set of values may reflect a distinct set of outcomes. 

Spread factor σ may be determined by regulating the outputs based 

on observations.  

In this paper we have focused on regulating the spread factor σ, 

which has been given in the forthcoming algorithm, and determi-
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nation of basis, for which we have proposed four methods ex-

plained in the following subsection. 

5.1. Basis Determination in RBFN  

It is obvious that the maximum length of basis may not be more 

than the total length of training data and weights are estimated 

with the assistance of basis function. The following approaches 

have been followed to determine the centers of the basis functions. 

1. Random Subset basis: A random row may be as the basis 

from the considered set of training data, and once a satisfac-

tory result is obtained, the model can be further employed for 

testing and prediction. 

2. Random mean Subset basis: A random mean value for small 

data subset can be provided for every iteration, until the net-

work is satisfactorily trained.  

3. k-Mean subset basis: The center for basis is determined as 

the cluster mean values for training the model.  

4. Hybrid basis: The hybrid approach can be followed as 

considering combination of any two of above mentioned 

three approaches.  

We have presented a consolidated modified RBFN algorithm here 

to predict the stock prices as follows. 

 

Algorithm: ModifiedRBFNAlgorithm 

1. ;thresholderror;1.0   

2. [ , ] ( );[ , ] ( )m n size traindata p q size testdata   

3. while thresholderror   

σ = σ + 0.1;   # Regulation of spread factor σ 

a) for i = 1:m 

k=1; 

for j = 1:m/2 
2 2( , ) exp( ( ( ) ( )) / 2 )i j traindata i c k    ; 

k = k + 1; 

b) ( '* )*pseudoinv inv    ; 

c) * (:, )W pseudoinv traindata n  

d) for i = 1:1 

k=1; 

for j = 1:m/2 
2 2( , ) exp( ( ( ) ( )) / 2 )test i j testdata i c k    ; 

k = k + 1; 

e) W*testf  ; 

f) Estimate biased weight W0 

g) Predict Value, Y = W0 + f 

h) Calculate error 

4. Estimate center(c) on random basis; go to step (2); 

5. Estimate center(c) on random mean basis. ; go to step (2); 

6. Estimate center(c) on k-mean subset basis; go to step (2); 

7. Estimate center(c) on hybrid manner subset basis; go to step 

(2); 

8. Find minimum error from steps (4), (5), (6), and (7); 

9. Perform prediction with the basis function providing mini-

mum error. 

6. Result Analysis and Comparison 

6.1. Results Discussion with Moving Averages 

Moving averages are generally advantageous for observing the 

trend of data as they are important for long term investing. They 

directly indicate whether after a long time the value of a stock or 

security will increase or decrease. Simple and exponential moving 

averages can be observed in the following Figure:1. 

 

 
(a) Simple Moving Average graphs for the stocks Ashok Leyland, Suzuki, 

TATA motors, and TVS motors 

 

 
(b) Exponential Moving Average graphs for the stocks Ashok Leyland, 
Suzuki, TATA motors, and TVS motors 

Figure 1: Moving Average graphs 

6.2. Results Discussion with BPNN 

The BPNN has been trained to predict the stock value for the next 

day adding data for the last day. Data has been provided to the 

network in sliding window manner for 15-days, i.e., initially 70% 

of the data is allotted for training to the network and for in the 

testing phase, 15-days data was given. For the next testing, new 

15-days data was given again for training and the most former 

data for 15-days was discarded. This process was carried out for  

whole testing data. We have plotted the prediction graphs in the 

Figure:2 for stocks MARUTI, TATA Motors, MAHINDRA & 

MAHINDRA and ASHOK LEYLAND and observed the close-

ness of predicted values as compared to original value.  

Further we have also sketched plot regression in Figure:3 based on 

predicted and actual values of stock prices where the R values in 

the respective sections of the figure demonstrate efficacies of the 

ANN technique. 

 

 
(A) MARUTI 

 
(B) Tata Motors 
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(C) Mahindra & Mahindra 

 

 
(D) Ashok Leyland 

Figure 2: Prediction with BPNN in Sliding Window Manner 

 

  

  
Figure 3: Plot Regression for MARUTI and TATA Motors, MAHINDRA 

& MAHINDRA and ASHOK LEYLAND with BPNN Technique 

6.3. Results Discussion with Modified Rbfn  

The next day closing value is predicted on the input of past data 

for the above considered stocks of companies. The most recent 

data will be added for the next day prediction. The effectiveness of 

models can be observed with the correlation coefficient values 

produced by corresponding plot-regression graphs given in the 

forthcoming figures. 

Following graphs in Figure 8 represent the prediction for 

MARUTI and TATA Motors with existing RBFN and our modi-

fied RBFN techniques. The plot-regression graphs in Figure 9 

have been produced for observing effectiveness of both RBFN and 

modified-RBFN. 

 
 

 
Figure 4: Prediction for MARUTI and TATA Motors with RBFN and 

modifiedRBFN Methods 

 

  

  
Figure 5: Plot Regression for MARUTI and TATA Motors with RBFN 
and modifiedRBFN Methods 

 

Table 2 has been given as follows for comparative effectiveness 

analysis for forecasting, based on correlation-coefficient values for 

RBFN and modified RBFN models studied in this paper. 

 
Table 2: Correlation-Coefficient values 

 RBFN Modified RBFN 
Maruti 0.99641 0.99641 
TATA 0.95011 0.95766 

7. Conclusion  

In ANN techniques are in trend for fitting the models in numerous 

sectors these days. Forecasting is one of the premises where any 

technique may not be appeared as a de facto for a particular model. 

The fact with ANN techniques for forecasting is that any model 

may not perform equally for all the considered stocks, however we 

require to examine the efficiency of any algorithm that is fit to a 

specified data with error values or correlation factor. So the model 

and data combination is important. In this paper, we observed the 

trend of data with moving averages. Further BPNN technique was 

examined with sliding window manner data and effectiveness of 

this model was noticed with correlation factor in plot regression 
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graphs. Radial basis function neural network was developed with 

regulation of basis as preprocessing of input data to the model.  

These days data preprocessing are being focused so frequently as 

input data to artificial neural network model and we also followed 

the same in both of our models. There are numerous opportunities 

to regulate ANN techniques with optimization and data prepro-

cessing methods from statistical and machine learning approaches 

such as principal component analysis, support vector machines, 

regression analysis, particle sworm optimization, etc. as the future 

works. 
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