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Abstract 
 

Energy derivatives are an energy instrument whose value be determined by on or derived from the values, more basic, a fundamental energy 

asset, such as crude oil, electricity, or natural gas. Energy derivatives are nonstandard products that have been generated by financial 

engineers (I. e exotic derivatives) and include exchange-traded contracts such as options and futures. In energy industries, the risk 

management and pricing model are important because the volatility of pricing in energy products. The price of the volatility can decrease the 

income of business strategies and its affects the consumer´s buying and selling decisions. For this reason, we have to manage the pricing risk 

and it became a pressure in the energy industries to continue the profitability and to avoid competitive disadvantages. The main goal of this 

study is to construct the option-pricing model for energy derivative markets. 
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1. Introduction  

The usage of financial derivatives is traded on over-the-counter 

(OTC) and exchanges has established with low cost technique, 

which is used for hedging the pricing of risk. An extensive variety of 

derivative agreements exists, containing forwards, futures and 

options. Price risk is well defined as a condition in which a variable 

is expected to take on a value conflicting from that, which was 

projected and exposure to adverse price moves in the cash market 

and if the prices move lower in the cash market, producer or supplier 

will get loses. The consumer loses if prices change advanced. Basis 

risk can be representing, the difference between the price used as a 

benchmark in a transaction and the actual price of goods changing 

hands. If the difference between the benchmark price and the actual 

price does not remain constant, there will be a loss or a gain on one 

side of the deal. Encomiasts use the standard deviation to quantify 

the price risk and standard deviation performances the spread of 

possible conclude around the average, or predictable value of the 

variable in question. 

2. Energy Derivatives  

Energy Markets are everywhere undergoing fast deregulation and 

significant to additional competition, enlarged volatility in pricing of 

energy market, and revealing contributors to potentially higher risk. 

Deregulation influences (consumer and producers) and it consumes 

to an enlarged awareness, for monitoring the exposure in pricing of 

energy market, we need risk management and the use of derivative 

tools. Energy derivatives perform to be a new occurrence for many 

market participants; however, it is true that energy derivatives are 

comparatively novel concepts of energy markets.  

Derivatives traded on the energy exchanges are liquid; however, 

OTC agreements normally are not. A party on either side of an 

exchange-traded agreement can cancel its position at any time by 

buying or selling a contract that is opposite its original agreement 

[2]. Energy derivatives are agreements related to a specific energy 

commodity (crude oil, Natural gas, heating oil, coal and electricity, 

etc.) and these energy instruments deliver an opportunity to manage 

the risk associated with the volatility in energy prices and permitting 

a party to lock the price of their energy in advance of the actual 

period of energy consumption.    

Significant success of energy derivatives is the deregulation of the 

energy market place and energy commodity is free from any form of 

price regulation. The modest spot market can be established where 

pricing is liquid and reflective of the true cost of the energy 

commodity at any point of time. The typical energy portfolio in 

energy derivatives, like any other product sold in a market.  Energy 

markets have their own choices on to quote futures.  However, the 

most thought-provoking problem comes from the fixing the price of 

energy product, hedging and constructing of exotic tradable products 

linked to physical assets and it can call real derivatives.             

The worth of a derivative is based on the price difference between 

the underlying energy product and can be used for both speculation 

and hedging purposes. Corporate, whether they sell or just use 

energy, can buy or sell of energy derivatives to hedge against 

variations in underlying energy prices. Speculators can use these 

derivatives to get the profit from the changes in the underlying price 

and can intensify those profits with advantage.  
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3. Standard Energy Options   

Standard energy options, such as calls and puts, are some of the most 

frequently used risk management tools. The literature on options is 

quite extensive [1, 2 & 3]. We remind the reader that in energy 

markets, by definition, there is not much difference between calls, 

puts in energy markets and calls, and puts in all other markets. What 

sets them apart is an unusual diversity of trade energy options, a 

natural consequence of the diversity in the underlying commodity, 

especially power. Typically, energy option specifications include: 

Place of delivery, time of maturity period, Delivery conditions - in 

the case of power, the type of delivered power (round-the-clock, on-

peak and off-peak,), Price in the contract (i.e. Specific Price or 

exercise price) and Size of the contract.   

Options contract, the buyer must make the payment at the time 

beginning of the contracts; this is option price or premium (Initial 

Investment). At the time of expiration date, if the spot price of the 

asset less than the agreed price (K), the holder of the option contracts 

are worthless (less premium), and the buyer, buys the assets in the 

markets at the market price. Else, if spot asset price is more than K, 

the option holder exercise the option, buying the assets at K and the 

capability to immediately make a profit -  difference between the 

spot and the exercise prices (less premium).   

 

 
Fig. 1: Payoff to Call Option  

 

A call option gives right to the owner to buy the fixed number of 

underlying assets with the specific price and specific date.   

The mathematical expression for call option (payoff)  

 

  0,


KSMax T                               (1) 

 

Another type of option, a put, gives the holder the right to sell an 

asset, but not the obligation with the specific date and specific price;  

 

 
Fig. 2: Payoff to Put Option  

 

The mathematical expression for the put option (Payoff) 

 

   KSMin T,0                               (2) 

 

Every day the daily option is exercised during the exercise month. It 

allows its owner to the take the daily decisions during the exercise 

month about buying (call option) or selling (put option) spot power 

or gas with agreed strike price. In the index or cash option, the 

option is exercised every day during the exercise month with a 

specified monthly index at an agreed strike price defined at the 

beginning of the month as a settled value of the monthly index.    

Options on the spot commodity are very common among energy 

derivatives, because they answer the real need to manage price risks 

on a daily basis. They are typically structured as a strip of options 

exercised daily during a certain time period (month, quarter, season, 

and so on). Therefore, their payoffs can be represented as follows for 

the call options. 
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Where n is the no. of the days in agreement and T is the time of the 

expired date in the contract.  

4. Construct of the Option Pricing Model  

The contemporary concept of option pricing model is one of most 

important contribution in modern finance. To calculate a unique risk, 

the neutral price for energy derivatives, we have to assume that there 

is no arbitrage is used in quantitative finance. The arbitrage profits 

can be made from the price changes between the actual and the 

theoretic futures price.    

Consider the price of the assets tS  and divide the time [t, T] into 

small intervals with equal size . For each time  it with, 

ni ,...,1  and the assets price move to itS .  

We can get the change in asset price at time t - tt SS  .  

To find out the expected value of the change under the working 

probability (denote by
 )      

If  ~
, we find the risk neutral expected net [4] return by  

 

  



ttttt SrSSE                (5) 

 

Now, we have the risk – neutral probability by using of probability 

switching method and Martingale property [5],  

 

  ttttt SrSS   ,              (6) 

 

The equivalent form   tttt WSS                              (7) 

 

Where tW is a Wiener process increment with variance equal to

 . Thus, the arbitrage – free dynamics under the 
~

 measure can 

be written as  
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t
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Let 0 , this equation (8) becomes a SDE during the short 

period dt , then the SDE can be written as 



International Journal of Engineering & Technology 150 

 

ttt

t

t dWdtr
S

dS
               (9) 

 

The above equation (9) developed from the Black – Scholes – 

Merton (BSM) model. The assumptions used to derive the BSM – 

PDE, where proportional changes in the asset price (S), drift (r), and 

volatility, ( ).  

Where,   

tdS - The increments in the asset price processing during the small 

interval of time ( dt ),  

tdW - An increment in a Weiner process during dt (Uncertainty)  

According to the risk – neutral assumption, it gives r .  

Let V denotes the value of any derivatives security. The arguments 

allow for the derivatives of the following PDE elucidating the 

evolution of the derivatives price through time, [6] 
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With   ,0t  and  max,0 SS . The BSM equation can be 

derived from several approaches [7 & 8].  

The BSM differential equation must be fulfilled by the price of any 

derivatives with non - dividend - paying stock [2]. These are similar 

to the no arbitrage arguments we used to value stock options for the 

situation where stock price movement are binomial and contain 

setting up a riskless portfolio involving of a position in the energy 

derivatives and a position in the stock. In the absences of arbitrage 

opportunities, the return from the portfolio must be the risk free 

interest rate, r.  

Assume asset price evolve according to the stochastic process called 

GBM.  

 

  ,0, tdWdtdS tt               (11) 

 

Where  (drift) and  (volatility) are constants. The lognormal 

evolution follows 
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Replacing the risk – neutral lognormal for the pricing of asset path 

into the expectation, then the integrated expectation as follows   
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   - Normal distribution.  

To maximize this above payoff term and eliminate the integration 

part, then we obtain with positive value   
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Which occurs when [9] 
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Chang the appropriate limits of integration and it gives  
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Eliminate the r from the first term   
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Simplified the above (18) equation and we can get       
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Let  xN - Cumulative normal distribution function, i.e. 

probability that a variable with a standard normal distribution  

  11,0   ,   
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Now, simplify the valuation equation to 
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The distribution can be rewritten by the property 

   11 1 xNxN   as  
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This is standard B S equation, and we can write this equation for a 

European Call option   
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Tdd  12              (25) 

 

Similarly, we can write the European Put option  

   210 dNKedNeSp rTqT  
            (26) 

Where q- Dividend yield.  

5. Model for Energy Spot Price   

Here, we construct a stochastic model for energy spot price by using 

of Ordinary Least Square Regression Model (OLSR) [10]. On the 

contract, if the returns   were independents and it is assumed by the 

BSM, the correlation coefficient and close to zero and indicating 

inadequate sign for an original seasonality.  

In particular,  

 

dtt rrDR                (27) 

 

Where  

tDR  - Deseasonalised return at time t,  

dr  - Corresponding mean of every month and   

tr   - The return at time, t.   

That the parameter evaluate from OLSR method should be 

´rationally´ close.  
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Where,  

  Long-term mean level for the logarithm of Electricity spot 

prices,  

  Mean Reversion rate,  

W Standard Wiener Process, and  

 The variance in electricity spot prices.  

To solve this SDE with the following equation, substituting with the 

help of Stochastic Calculus. 
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Using Ito´s Lemma as given in [2], we get  
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This model is very similar to Vasicek Model for interest rates, we 

use this methodology, and to solve this above model, we have to 

consider.         
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Then, we have to use Ito´s Lemma,  
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Integrating equally sides w.r.t to t from 1ii ttot yields,  
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Where ii tt  1  

Now, OLSR model is overdue and to deduct the iz term from 

equally sides of the equation, then we get the following equation. 
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Now, we analyze this equation and get an algebra equation,  
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The above equation as a system of Linear equation and we consider  
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Where,  

  = Residual term.  
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From the Equation (41) we got the three indicators 

1. The slope of the regression line is equal to coefficient of the log 

prices. 
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Taking the natural logarithm of both sides gives,  
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2. The deterministic part of the equation (40) is equal to the 

intercept of the regression line, 

 

3.  tec 







 




 1

2

2

           (47) 

4.  

  




 21

2





te

c
             (48) 

5. Form the equation according to volatility parameter, σ and 

reshuffle the equation (40) for the   and we can get the 

following equation,    

 

cmXY               (49) 

 

Now, we have to minimize the variance (residual error  ), which 

would be calculated later by taking the second moment of the 

equation (38). 

 

      22  Var            (50) 

 

We, entitlement to minimum variance

    0 cm .  
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  222
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         (51) 

 

Now, by linearly of the expectation operator 

 

     
   
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,

cXmcEYcE
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YcmGVar
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             (52) 

 

Notice that in the above equation the X’s and Y’s are known entities 

that come from the data. Hence, the variance is a function of m and c 

alone. As discussed earlier, with the use of one variable calculus for 

optimization, we get, 

 

      0222 2 
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
EcEXmEXY

m

G
          (53) 

 

    0222 



cXmEY

c

G
           (54) 

 

Now, we got the proof for the claim from second equation, again 

rearrange the equation.   
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cmXY

cXmEY
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            (55) 

 

For finding the optimum values for m and c.  

From the above, two equations of linear system and set up with 

following equations.  

 

     
        XXYcmX

XYcXmX





1

2

           (56) 

 

Now, the system is solved immediately from multiplying the second 

equation  X and deducting from the initial yielding the equation        
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      
 

      
 
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   

2

,

X

XYXCov
Yc




            (69) 

 

Now, substituting equation (68) and (69) into equation (67) and we 

can get the minimum variance, and After combining the term who 

have been marked with the same symbol above them, the equation is 

reduced to, 
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,

X

Y

YXCov
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
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The second part of the equation (RHS) (38) and calculated the set 

equal from the above equation (70) get the following equation for 
           
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For estimate the integral above, have to use Ito´s isometry theorem, 

[5], [6].   

7. Mathematical Model for Pricing of Energy 

Derivative [11] 

To manage the energy derivatives (price, hedge, and risk), it is 

understood that the dynamics of volatility in energy derivatives 

markets, for pricing of energy derivatives in the occurrence of 

unspanned stochastic volatility (USV). This chapter highlighting on 

the risk – neutral dynamics of the model and efficient pricing of 

derivatives [12 - 21]. We assume that interest rates are deterministic, 

which is innocuous when pricing energy derivatives with short and 

intermediate maturities. Let S(t) denote the time - t spot price of the 

commodity and let F(t,T) denote the time - t price of a futures 

contract expiring at time T. In the case of a constant continuously 

compounded cost of carry rate  ,  the relation between spot and 

future prices is simply  

     tTetSTtF  ,              (72) 

 

 

In the absence of arbitrage opportunities, futures prices are 

martingales [22] under the risk- neutral measure from which it 

follows that 
 
 










tS

tdS
E

dt
t

1
. More generally, the cost of 

carry varies stochastically, reflecting stochastic variation in 

convenience yields. Let  t  denote the time t instantaneous spot 

rate of carrying cost. Furthermore, let  Tty ,  denote the time-t 

instantaneous forward cost of carry rate at time T, defined such that 

futures prices are followed  

 

     








 
T

t

duutytSTtF ,exp,            (73) 

 

In the limit as    tttytT  ,, . It follows that the term 

structure of forward cost of carry rates can be inferred from the term 

structure of future prices.    

One strand of the commodity derivatives literature specifies the 

dynamics of  tS  ,  t  and derives futures prices endogenously. 

Another strand takes futures prices as given and specifies the 

dynamics of the entire futures curve, which is equivalent to the 

dynamics of  tS  and the entire forward cost of carry curve.  

Here, I am introducing the basic HJM model [13] where  tS  and 

 Tty , have the following dynamics:  

 

 
 

   tdWdtt
tS

tdS
S 1              (74) 

 

       tdWTtdtTtTtdy yy 2,,,             (75) 

 

Where  tW1 and  tW2 denote the Wiener process under the risk 

– neutral measure with correlation  . 

For convenience, introduce the process  

 

   
T

t

duutyTtY ,,,               (76) 

 

The dynamics of which are given by  

 

         













  tdWduutduuttTtdY

T

t

y

T

t

y 2,,,   (77) 

 

Then, from the equation (73), we can write,  TtF ,    

 

     TtYetSTrF ,,               (78) 

 

With the following dynamics 
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            (79) 

 

Setting the drift (79) to zero (futures prices are martingale under the 

risk – neutral measure and differentiating w.r.t yields  

 

     













 

T

t

ySyy duutTtTt ,,,               (80) 

 

This condition on the drift of  Tty , is similar to the famous HJM 

drift conditions in term structure modeling. The particular model 

depends on the choice of  Tty ,  and consider the following time 

– homogeneous specification  

 

   tT

y eTt   ,                 (81) 

 

From (80) and follows the drift  Tty ,  is given by  
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Integrating (75) and using that  
   uttT

tT
ee

e




 
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, one 

obtains 
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Where  
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It follows that  tx  has the mean – reverting dynamics  
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 finally, from (73) and using that 
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Where 
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This model is the HJM equivalent of the two-factor [13, 18] model, 

the dynamics of  tS  is given by (3) and   t  (or, alternatively, 

the convenience yield) follows a mean-reverting Gaussian process. 

To see the equivalence, note that  t  is obtained by setting T = t 

in (83). It is straightforward to the dynamics of   t  are given by   

 

       tdWdttttd 2              (89) 

 

With  
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Therefore, the present model implies dynamics of  tS  and   t  

that are similar to [18], with the exception that the mean-reversion 

level is time-dependent, due to the model matching the initial futures 

curve. Here we extend the framework with stochastic volatility and 

resulting model is equivalent to the stochastic volatility model in 

[11].  

  tS and  Tty ,   have the following dynamics:  
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        tdWtdttktd 3            (93) 

 

Where      ,, 321 tWandtWtW denote correlated Wiener 

processes under the risk – neutral [4] measure, with 

231312,  and  representing pairwise correlations.  

The expression for the dynamics of futures prices are given by 
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The Volatility of futures prices be contingent on  t , but since 

futures prices are only exposed to  tW1  and  tW2 , while  t  

is only exposed to  tW3 , it is immediately clear that volatility risk 
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can´t be completely hedged by trading in futures (or spot) contracts. 

To the extent that  tW1   and  tW2  are correlated with  tW3  

(i.e. 13  and/or 23  are nonzero), volatility contains a covered 

component, and volatility risk is partially hedgeable. The volatility 

risk is entirely unhedgeable, if these correlations are both zero. 

From the above, one can derive the condition on  Tty ,  that 

must hold to ensure absence of arbitrage opportunities. [11] give this 

condition.   
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The dynamics of the future curve in terms of a low dimensional 

affine state vector, again assume that  Tty , is given by (81).   

In this case,  Tty , is given by  
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With the following dynamics 
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Consequently, futures prices are given by  
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Obtaining the expression for  t  from (96), the dynamics of the 

log spot price,     tSts log , are given by      
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It follows that futures prices are exponentially affine in 

     tandtxts ,  which, along with  t , jointly establish 

an affine state vector. Note that  t  is an “auxiliary,” nearby 

deterministic, state variable that capture the path information of 

 t . The pricing of European options on futures contract is highly 

tractable. Here, we continue with the case in which  Tty , is 

given in equation (81). For the most exchange – traded products, 

option expires slightly before the expiry of the underlying futures 

contracts. 

Let  KTTtC ,,, 10  for the European call option and an option can 

be price quasi – analytically within the framework of this is paper.  

 

First, the dynamics of the future price,  
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Are given by  
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Next, using standard argument, one can show that the characteristic 

functions of  10 ,TTf define as  

 

     1,,,, 10 ,

10  ieETTtu
TTiuf

t            (107) 

 

Has the exponentially affine solution 
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Where  M and  N  resolve the following system of PDEs  
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The boundary condition   00 N  and   00 M . 

Finally, following [23], one can show that the Fourier translation of 

the call price (modified)   

 

     KTTtCeKTTtC K ,,,,,,ˆ
10

log

10

           (111) 

 

The expression of the above equation (111) in terms of the 

characteristic function of  10 ,TTf . In particular, 

 KTTtC ,,, 10 is given by  
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Where  0,TtP  - price of a zero – coupon bond maturing at time 

0T .  

The pricing approach here differs from the one in [11] and has two 

advantages: First, it permits the computationally efficient Fast 

Fourier Transform algorithm. Second, it only requires the evaluation 

of one integral (as opposed to two integrals). 

8. Conclusion 

In this paper, I introduced and constructed the mathematical model 

for the option-pricing of energy derivative market. Here I presented 

and introduced the energy derivative market, describing some simple 

structure and outline of energy derivatives and how we can derive 

this energy derivative from other underlying market. I.e. financial 

derivatives. From the above discussion, I travelled the traditional 

energy option contract, which was used in the energy derivative 

market. Then, I extended energy option into option pricing model, 

which was construct and derive from Black Scholes Equation. After 

that, I constructed the stochastic model for energy spot price by 

using of Ordinary Least Square Regression Model. Finally, I 

constructed the mathematical model for efficient Pricing of Energy 

Derivative by using of stochastic volatility.  
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