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Abstract

In this paper, we introduce the concept of bipolar fuzzy soft gamma hyperideals in gamma hyper semigroups. We define bipolar fuzzy soft
hyper ideals, bi-ideals and interior ideals of gamma hyper semigroups and discuss some properties.
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1. Introduction

Zadeh [18] introduced the concept of fuzzy sets in 1965. Algebraic
hyper structures represent a natural extension of classical algebraic
structures, and they were originally proposed in 1934 by Marty [7].
One of the main reasons which attract researchers towards
hyperstructures is its unique property that in hyperstructures
composition of two elements is a set, while in classical algebraic
structures the composition of two elements is an element. Zhang
[19] introduced the notion of bipolar fuzzy sets. Lee [4] used the
term bipolar fuzzy sets as applied to algebraic structures. Bipolar
fuzzy I'-hyperideals in T-hyper semigroups was studied by Naveed
Yaqoob et al [14]. Soft set theory was introduced by Molodtsov
[8] in 1999, and its a new mathematical model for dealing with
uncertainty from a parameterization point of view. Maji et al [6]
studied the some new operations on fuzzy soft sets. Aygunoglu and
Aygun [3] introduced the notion of a fuzzy soft group. The concept
of bipolar fuzzy soft sets has been introduced by Naz et al [12].
Aslam et al [2] worked on bipolar fuzzy soft sets and their special
union and intersection. Bipolar fuzzy soft I'-semigroups was
introduced by Muhammad Akram et al [10]. T-semigroups was
introduced by Sen and Saha [16]. In this paper, we define a new
notion of bipolar fuzzy soft I'- hyper semigroups and investigate
some of its properties with examples.

2. Preliminaries

In this section, we list some basic definitions.

Definition 2.1[16]

Let S={a,b,c,...} and {o,B,V,...} be two non-empty sets. Then
S is called a T'-semigroup if it satisfies the conditions

(i)aab €S,

(ii)(aBb)yc = aB(byc) V a,b,ce€ S and a, B,y €T.

Definition 2.2
Amap o: HxH— P*(H) is called a hyper operation or join

operation on the set H, where H is a non-empty set and P*(H) =
P(H)\{¢$} denotes the set of all non-empty subset of H. A
hypergroupoid is a set H together with a (binary) hyperoperation.

Definition 2.3

A hypergroupoid (H,°), which is associative, that is x o (y o z) =
(xoy) oz forall x,y,z € H, is called a hyper semigroup. Let A
and B be two non-empty subsets of H. Then we define

J acb,

aeAbeB

AoB= aOB:{a}oB

Aocb=A-{b}

Definition 2.4[1]

Let S and T be two non-empty sets. S is called a
I-hypersemigroup if every y € T is a hyperoperation on S that is
xyy € S for every x,y € S, and for every o, €T and x,y,z € H
we have xa(yBz) = (xay)fz. If every y € T' is a hyper operation,
then S isa I'-semigroup. If (S,y) isahypergroup for every y € T,
then S is called a I'-hypergroup. Let A and B be two non-empty
subsets of S and y € . We define AyB = U{ayb|a € A,b € B}.

Also ATB = Ufaybla€AbeBandyl}= U . Let S be a

AB
I'-hypersemigroup and let y € I'. A non-empty subset A of S is
called a T -hypersubsemigroup of S if a;ya, € A for every
ay,a, € A. A T'-semihypergroup S is called commutative if for all
x,y €S and y € T we have xyy = yyx.

Definition 2.5 [8] Let U be an universel set and E be the set of
parameters. P(U) denote the power set of U. Let A be a non
empty subset of E then the pair (F,A) is called a soft set over U,
where F is a mapping given by F: A —» P(U).

Definition 2.6

[18] Let X be a non-empty set. A fuzzy subset p of X is a
function from X into the closed unit interval [0,1]. The set of all
fuzzy subset of X is called the fuzzy power set of X and is denoted
by FP(X).
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Definition 2.7[4]

A bipolar fuzzy set A in auniverse U is an object having the form
A = {{x, uh (%), ua(X)): x € X}, where p}:X — [0,1] and pj:X -
[—1,0]. Here wj(x)represents the degree of satisfaction of an
element x to the property and A = {(x, u} (x), pa(x)): x € X} and
1y (%) represents the degree of satisfaction of x to some implict
counter property of A. For the simplicity the symbol (u}, uz) is
used for the bipolar fuzzy set A = {(x, u} (x), ux (x)): x € X}.

Definition 2.8 [2]

Let U be the universe setand E be the set of parameter. Let AC E
and BFY denotes the set of all bipolar fuzzy subsets of U. Then a
pair (F,A) is called a bipolar fuzzy soft sets over U, where F is a
mapping given by F: A — BFU,

It is defined as (F,A) = {{(x,uf (x), uz (x)):x € Uand a € A} For
any

a € A F(a) = {(x, W) (), Wiy (9):x € U}
= (ug(a) (x), IJ-}:(a) (X))

Definition 2.9 [2]

Let (F,A) and (G, B) be two bipolar fuzzy soft sets over a
common universe U, then (F,A) AND (G, B) denoted by
(F,A) A (G, B) is defined as (F,A) A (G, B) = (H, C) where
C=AXB and H(a,b) = F(a) n G(b), forall (a,b) € A X B.

Definition 2.10 1[2]

Let (F,A) and (G, B) be two bipolar fuzzy soft sets over a
common universe U, then (F,A) OR (G, B) denoted by (F,A) v
(G, B) is defined as (F,A) v (G,B) = (H,C) where C=AXB
and H(a,b) = F(a) U G(b), for all (a,b) € Ax B.

Definition 2.11 [2]

Let (F,A) and (G, B) be two bipolar fuzzy soft sets over a
common universe U then their extended union is a bipolar fuzzy
soft set over U denoted by (F,A) U (G, B) and is defined by
(F,A) Ug (G,B) = (H,C) where C=AUB, H:C - BFY and

F(c) if ceA-B
H(c)=:G(c) if ceB-A
F(c)uG(c) if ceAnB

Definition 2.12 [2]
Let (F,A) and (G, B) be two bipolar fuzzy soft sets over a
common universe U then their extended intersection is a bipolar
fuzzy soft set over U denoted by (F,A) N, (G, B) and is defined
by (F,A) U, (G,B) = (H,C) where C=AUB, H:C - BFY and
F(c) if ceA-B
H(c)=4G(c) if ceB-A
F(c)NG(c) if ceAnB

Definition 2.13[13 ]

Let (F,A) and (G, B) be two bipolar fuzzy soft sets over a
common universe U such that A N B # ¢. The restricted union of
(F,A) and (G, B) is defined to be a bipolar fuzzy soft set (H, C)
over U where C=ANB and H(c) = F(c) U G(c), forall c € C.
This is denoted by (H, C) = (F, A) Ug (G, B).

Definition 2.14 [11]

Let (F,A) and (G,B) be two bipolar fuzzy soft sets over a
common universe U such that AnB =+ ¢ . The restricted
intersection of (F,A) and (G, B) is defined to be a bipolar fuzzy
soft set (H,C) over U where C=ANnB and H(c) =F(c)n
G(c), for all c € C. This is denoted by (H, C) = (F,A) ng (G, B).

Definition 2.15 [9]
Let (F,A) be a bipolar fuzzy soft set over U for each t € [0,1]

and s € [—1,0] the set (F,A)®S) = (F(), A) where (F,A)" =
{x € U[uf(a) (%) 2 t, ij)(x) < s} forall a € A,

Definition 2.16[17]

Let ¢:H; > H, and h:E; > E, be two maps, AcE; and
B € E,, where E; and E, are sets of parameters viewed on H;
and H,, respectively. The pair (¢,h) is called a fuzzy soft map
from H; to H,. If ¢ isa hypergroup homomorphism, then (¢, h)
is called a fuzzy soft homomorphism from H; to H,.

Definition 2.17 [3]

Let (f A) and (g B) be two fuzzy soft sets over H; and H,,
respectively, and (¢, h) be a fuzzy soft function from H; to H,
(i) The image of (f,A) under the soft function (¢, h) denoted by
(b, h)(f, A), is a fuzzy soft set over H, defined by (¢, h)(f A) =
(d(H),h(A)), where for all b € h(A) and for all y € H,, then

f2(x), ifx € ¢~ (y)

4 \v
O(Dp(y) = {¢(X)=y h(a)=b
0 otherwise

(ii) The inverse image of (g, B) under the fuzzy soft function

(¢, h) denoted by (b, h)~*(g, B), is a fuzzy soft set over B
defined by (¢, h)~1(g,B) = (¢~ (g),h~1(A)), where for all
a€h7'(A) and for all x € Hy, $7(8)a(X) = gna)(¢(X)). If ¢
and h is injective(surjective), then (¢, h) is said to be injective
(surjective).

Definition 2.18 [15]

Let (¢, Y) be a fuzzy soft I'-function from X to Y. If ¢ isa
homomorphism function from X to Y, then (¢, ¢) is said to be
fuzzy soft I'-homomorphism. If ¢ is isomorphism function from
X to Y and ¢ is one to one mapping from N to M, then (¢, ) is
said to be fuzzy soft T'-isomorphism.

3.Bipolar Fuzzy Soft I'- Hyper Ideals

In this section, we introduce the notion of bipolar fuzzy soft gamma
hyperideals in gamma semigroups and discuss some of its
properties S denotes the T'- hyper semigroup.

Definition 3.1
A bipolar fuzzy soft set (F,A) over a I'- hypersemigroups S is
called a bipolar fuzzy soft I'-subhypersemigroup over S if

0] Xief}}‘flzug(a) (x) = min{pg (), M@ (2)}

(i) sup HE(a) () < max{pp (V), Kp@) (@)} forall x,y,z €S,
XEyyz

y€eT and a € A.

Definition 3.2

A bipolar fuzzy soft set (F,A) over a I'- hypersemigroups S is

called a bipolar fuzzy soft left T-hyperideal over S if

0] Xg;gzué(a) (X)) = W@ (@)

(i) sup Wp@)(X) < Kp@)(2) forall x,y,z€ S, y €Tand a € A.
XEyYyzZ

Definition 3.3A bipolar fuzzy soft set (F,A) overa T-
hypersemigroups S is called a bipolar fuzzy soft right
I-hyperideal over S if

(i) inf e (0 = i ()

(i) sup Upm)(X) < ppEy)(y) forall x,y,z€S, y €T and a € A.
XEYYZ

Definition 3.4
A bipolar fuzzy soft set (F,A) over a I'- hypersemigroups S is
called a bipolar fuzzy soft I'-hyperideal of S if

(i) nglgzuﬁa) () = max{pge (), Ky (2)}
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(i) sup HE(a) (%) < min{uge) (¥), Hp@) ()} forall x,y,z €5,
XEYYZ
yeT and a € A.

Definition 3.5
A bipolar fuzzy soft set (F,A) over a I'- hypersemigroups S is
called a bipolar fuzzy soft I'- hyperbi-ideal over S if

(i) _inf o) (p) = min{ugq (%), i) (2)}

pEXQYPzZ

(i) sup ppe)(p) < max{ppe)(X), Hp@) ()} forall x,y,z €S,
PEXQyPz
a,BET and a € A.

Definition 3.6
A bipolar fuzzy soft set (F,A) over a I'- hypersemigroups S is
called a bipolar fuzzy soft I'-hyperinterior ideal over S if

i : + +
() , ;{gg Bzup(a)(p) 2 Pry (V)

€
(i) sup pp@)(P) < Wp@e)(y) forall x,y,z€S, o, €T and
pexayBz

a€EA

Theorem 3.7
Let (F,A) and (G,B) be two bipolar fuzzy soft
I'-hypersubsemigroups over S, then (F,A) A (G,B) and (F,A) v
(G, B) are bipolar fuzzy soft T'- hypersubsemigroup of S.

Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft
I'-hypersubsemigroups over S defined as (F,A) A (G,B) where
C=AxB and H(a,b) = F(a) nG(b), for all (a,b) eC=AX
B, x,y,z€Sy€eT
inf (i (2} =

ZEXY

inf {min{u;(a)(z), “E(b) @)}

= i £ Wi (@, inf 1 ()

min{min{uf ) (), 1f . (y)}, min{ug ) (x), O3
min{{min{ug ) (¥, 1g ) GO} min{ug . (@), 1) (D3}
min{(“;(a) n “E(b))(x)' (u;(a) n Mg(b))(Y)}

miny ;) (9, 1 py (D}
and

sup {Ugam (@)} =

ZEXYY

v

sup {max{g()(2), HG(b) @1}
ZEXYY
=  max{ sup Wi.(z), inf pt..(z

{ZEXEYHF(a)( ) Zexyyllc(b)( )}

= max{max{iga) (%), Hp@) ()} min{ug ) (X)) Homy (D1}
= max{{max{f ) (%), Km0} max{izay (), Koy )3}
= max{(Kg) Y How)) ), (M) Y Ham) (D}

= max{iyap) (X), Mg b )}

Hence  (F,A)A(G,B) is a bipolar fuzzy  soft
I -hypersubsemigroup over S .Similarly it can be shown that
(F,A) v (G, B) are bipolar fuzzy soft I'-hypersub semigroup over
S.

Theorem 3.8

Let (F,A) and (G, B) be two bipolar fuzzy soft T-hyperleft
(resp.right) ideals over S, then (F,A) A (G,B) and (F,A) v (G, B)
are bipolar fuzzy soft T-hyperleft (resp.right) ideals of S.

Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft
I -hyperleftideals over S defined as (F,A)A(G,B) where
C=AXxB and H(a,b) = F(a) nG(b), for all (a,b)eC=AX
B, x,y,z€S and y € T.

Jnf (fian @) = inf (min{ii (), 1w (D)

— ; +
= min{ ggyup(a) @, ggyus(b) (2)}

= min{u;f(a)(y), uE(b)(y)}

= Wian M}
and

sup {Hpan (@)} = sup {max{ppa)(2), Hew) (D1}
ZEXYY ZEXYY

=  max{ sup U (z), inf pgcm(z
{ZEngHF(a)( ) ZEnyuG(b)( )}

IA

max{ul?(a) ) HG(b) 3

M (ab) (V)

Hence (F,A) A (G,B) are bipolar fuzzy soft T'-left (resp.right)
hyperideals over S.

Similar proof shows that (F,A) Vv (G,B) is a bipolar fuzzy soft
T-left (resp.right) hyperideals over S.

Theorem 3.9
Let (F,A) and (G, B) be two bipolar fuzzy soft T-hyperbi-ideals
over S, then (F,A) A (G,B)and (F,A) v (G, B) are bipolar fuzzy
soft I'-hyperbi-ideals of S.
Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft
' -hypersemigroups over S defined as (F,A) A (G,B) where
C=AXxB, H(ab) =F()nG(b), for all (a,b)e C=AX%XB,
x,y,Z€S and y €.
inf {Hﬁ(a,b)(z)} =

ZEXQY Pz

— : : + ; +
= min{ inf ugey(2), inf e (2)}

zé%y{mm{“;(a) @), wm @)}

> min{min{pge) (%), K@) (2} min{ug ) (X), 1w (21}
min{min{uy (X), bp) ()}, min{pg ) (2), wwm) (23}
min{(Ua) N KEwy) (O, (K@ N Kém)) ()}

= min{piap ), Wiap @}
and
ESUP {Hﬁ(a,b)(z)} =

zZeExayPz

=  max{ sup pt.(z), inf puf.,(z
{ZexngF(a)( ) Enyllc(b)( )}

sup {max{}g ) (2), Hgw) (23}
ZEXYY

< max{max{igg) (X), Hpa) (2)} min{pge) (%), How) (2)}3

= max{{max{ug ) (X), K ) ()} max{ig) (2), Howpy (2)}}

= max{(Kgg) Y Kgp)) X), (Mp@) Y How)) (@D}

= maX{HH(ab)(X) HH(ab)(Z)}
Hence (F, A) A (G, B) is a bipolar fuzzy soft I'-hyperbi-ideal over
S.
It can be similarly proved that (F,A) Vv (G,B) is a bipolar fuzzy
soft I'-hyperbi-ideal over S.

Theorem 3.10
Let (F,A) and (G, B) be two bipolar fuzzy soft
T'-hypersubsemigroups over S, then (F, A) N, (G, B) is a bipolar
fuzzy soft I'-hypersubsemigroups of S.
Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft
I'-hypersubsemigroups over S as defined
(F,A) n; (G,B) = (H,C) where C=AUB
H(®) = (F(9)
F(c) if ceA\B

G(c) if ceB\A
F(c)nG(c) if ceAnB

H(c) =

Case(i) ce A\Band yeT
; + —
Zg}}fy{UH(c) (@} = inf UF(C) (2)

ZEX

> mll’l{ug(c) (X)r uF(c) (Y)}

= min{ufi e (), Wi M}
and
sup (Ui ()} = Sup g (2)
ZEXYY ZEXYY

< max{ppe X)), Br (D}

= max{pye &), Kpe M}
Case(ii) ce B\A and y €T.
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. + _ . +
zé%y{uﬁ(c)(z)} = Zg(lgyp-c(c)(z)

and
sup {H}_i(c) ()} = sup HG(o) (2)
ZEXYY ZEXYY
< max{lg (X)) Ko (N}
= max{py ), Hpe M}
Case (iii) CE AnB and y € T then H(c) = F(c) N G(c) then by
theorem 3.7,
infy{uﬁ(c) (2)} =z infy{uﬁ(c) (0, Wiy 3

ZEXY. ZEXY,
= min{uﬁ(c) ), uﬁ(c) m}
and

sup {M) (@)} = sup {pyey (X, Koy ()}
ZEXYY ZEXYY

= max{uﬁ@ ), HH(c) w3}
Hence (F,A) N, (G, B) is a bipolar fuzzy soft
I'-hypersubsemigroup over S.

Theorem3.11

Let (F,A) and (G,B) be two bipolar fuzzy soft
I'-hypersubsemigroup over S, then (F, A) U, (G, B) is a bipolar
fuzzy soft I'-hypersubsemigroup of S.

Proof. Straight forward.

Theorem 3.12

Let (F,A) and (G,B) be two bipolar fuzzy soft
I'-hyperbi(interior) ideal over S, then (F,A) N, (G, B) is a bipolar
fuzzy soft T'-hyperbi(interior) ideal of S.

Proof. Straight forward.

Theorem 3.13

Let (F,A) and (G, B) be two bipolar fuzzy soft-I'-hyper
bi(interior) ideal over S, then (F, A) U, (G, B) is a bipolar fuzzy
soft T- hyperbi(interior) ideal of S.

Proof. Straight forward.

Theorem 3.14

Let (F,A) and (G,B) be two bipolar fuzzy soft T -
hypersubsemigroup over S, then (F,A) Ng (G,B) is a bipolar
fuzzy soft I'- hypersubsemigroup of S.

Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft T -
hypersubsemigroup over S, then (F,A) ng (G,B) = (H, C) where
C=AnB and H(c) = F(c) n G(c) forall c e C.

. + — P +
Zg}{yua(c)(Z) = Zg(lgy{mm{up(c)(z), Heo) (23}

= min{ inf kg @), inf uge (@)}
2 min{min{u;(c) (X)' H;(c) (Y)}r min{ug(c) (X), ug(c) (Y)}}
= min{min{p;f(c) (x), “E(c) )} min{u;f(c) x), u&c) 0}
= min{(Kfc) N Ke)) ) (MEe) N B )}
= min{f; oy (%), Ky N}
and
Zsegly)yuﬁ@(Z) = Zglyay{max{uﬁ(q(Z). Moo @}

= max{ sup Up(2), sup Ug) (2}

ZEXYY ZEXYY
< max{max{z) (X), M) (YD} max{ug ) (%), g (D1}
= max{max{ug ) (X), Hg(o) X}, max{up (V) Heo (D1}
= max{(Kg) N Hae) XD (Mg N Hee)) 3}
= max{uﬁ(c) x), HH(c) )2

Hence (F,A)ngr(G,B) is a
hypersubsemigroup of S.

bipolar fuzzy soft T -

Theorem 3.15
Let (F,A) and (G,B) be two bipolar fuzzy soft T'-
hypersubsemigroup over S, then (F, A) Ug (G, B) is a bipolar

fuzzy soft —hypersub
semigroup of S.
Proof. Straight forward.

Theorem 3.16

Let (F,A) and (G, B) be two bipolar fuzzy soft
T-hyperbi(interior)ideal over S, then (F,A) Ny (G, B) is a bipolar
fuzzy soft I'-hyper

bi(interior)ideal of S.

Proof. Straight forward.

Theorem 3.17

Let (F,A) and (G, B) be two bipolar fuzzy soft T-
hyperbi(interior)ideal over S, then (F, A) Ug (G, B) is a bipolar
fuzzy soft T'- hyperbi(interior)ideal of S.

Proof. Straight forward.

Example 3.18

Every bipolar fuzzy soft I'-hyper ideal is bipolar valued fuzzy soft
I' —hypersubsemigroups but converse is not true.

Let S={a,b,c,d, e} and T = {y} then S is I'-semihypergroup

Y a b c d e
a {a,b} {b, e} c {c,d} e
b {be} e c {c,d} e
c c c c c c
d {c,d} {cd} c d {c, d}
e e e G {c,d} e

Let E = {u,v,w,x,y} and A = {u,v,y}. Define the bipolar fuzzy
soft set (F,A) as

(F,A) = {F(u), F(v), F(y)}, where

F(u) = {(a,0.6,—0.5), (b,0.7,—0.6), (c, 0.4,—0.2),

(d,0.3,-0.1), (e, 0.9,—0.8)}

F(v) = {(a, 0.8,—0.4), (b, 0.9, —0.7), (c, 0.6, —0.3),

(d,0.2,-0.1), (e, 1,—0.9)}

F(y) = {(a,0.7,-0.8), (b, 0.8, —-0.9), (c, 0.5, —0.4),

(d,0.2,-0.3), (e, 1,—0.9)}

Hence (F,A) is a bipolar fuzzy soft sub I'- hypersemigroups but
not bipolar valued fuzzy hyperideal. Sinc aier;£cp§(a)(a) >

BN TN CYRTRN ()
=04 %06

Example 3.19

Every bipolar fuzzy soft T'-hyperideal is bipolar valued fuzzy soft
' hyper bi-ideals but converse is not true.

Let S={a,b,c,d,e} and T = {a, B} then S is T-hypersemigroup

[ a b © d e
a {a, b} {b, e} C {c,d} e
b {b, e} e c {c,d} e
c c € c c c
d {c, d} {c,d} c d {c, d}
e e e c {c,d} e
B a b € d e
a {b, e} e ® {c, d} e
b e e c {c, d} e
c c € c c c
d {c, d} {c,d} c d {c, d}
e e e c {c, d} e

Let E = {u,v,w,x,y} and A = {w, x,y}. Define the bipolar fuzzy
soft set (F,A) as

(F,A) = {F(w),F(x),F(y)}, where

F(w) ={(a,0.2,-0.1), (b, 0.4,-0.3), (¢, 1,—0.9),

(d, 0.6,—0.7), (e, 0.7,—0.8)}

F(x) = {(a,0.1,-0.2), (b, 0.2,-0.3), (¢, 0.7,-0.8),

(d, 0.4,-0.5), (e, 0.5,—0.6)}
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F(y) = {(a0.3,-0.1), (b, 0.4,—0.2),(c,0.9,—0.7),
(d,0.6,—0.3), (e,0.8,—0.5)}

Hence (F,A) is a bipolar fuzzy soft T -hyperbi-ideal but not
bipolar valued fuzzy hyper ideal,

Sinceaéggeu;f(a) () = max{pg (d), ui (@)}
=0.6 #0.7.

Example 3.20

Every bipolar fuzzy soft I'-hyperideal is bipolar valued fuzzy soft
I — hyper intrior-ideal but converse is not true.

For the example 3.19, define the bipolar fuzzy soft set (F,A) as
(F,A) = {F(w), F(x), F(y)}, where

F(w) ={(a,0.3,-0.2), (b, 0.6,—0.5), (¢, 0.9,—0.8),
(d,0.2,-0.1), (e,0.8,—0.7)}

F(x) ={(a 0.4,—0.3),(b,0.5,—0.4), (c,0.8,—0.7),
(d,0.3,-0.1), (e, 0.6,—0.5)}

F(y) = {(a 0.3,-0.2), (b, 0.4,-0.5), (c,0.7,—-0.9),
(d,0.2,-0.1), (e, 0.5,—0.8)}

Hence (F, A) is a bipolar fuzzy soft I'-hyperinteriorideal but not
bipolar valued fuzzy soft I'-hyperideal, as aeiggdu;'(a)(a) =

maX{HF(a)(b)» “lt(a)(d)} =02 %06

Theorem 3.21

Let (F,A) be a bipolar fuzzy soft set over S. (F,A) is a bipolar
fuzzy soft T'-hypersemigroup if and only if (F,A)(®S) is a soft
I'-hypersemigroup of S for each t € [0,1] and s € [—1,0].

Proof. Assume that (F, A)(*%) is a bipolar soft I-hypersemigroup
over S foreach t € [0,1] and s € [—1,0].For each x;,x, € S and
a€gA - let t = min{uf) (X1, Mi@) (X2
and s = max{pg() (X1), W) (x2)} . then xq,x; € pf:t(:)) . Since

u;t(':% is a T- hypersubsemigroup of S, then x;,x, € pg[(':%. That is

H;(a) (x1v%z) 2 t = min{p}'(a) (x1), H}t(a) (x2)} and
Hr@a) (X1¥X2) < s = max{ip) (X1), Hp@)(X2)}. This shows that
W) is bipolar fuzzy I-hypersubsemigroup over S. Thus (F,A)
is a bipolar fuzzy soft I'-hypersemigroup over S.

Conversely, assume that (F,A) is a bipolar fuzzy soft
I'-hypersemigroup. For each a € A,t € [0,1] and s € [-1,0] and
Xq,Xp € u;t(':)).

we have pEqy (1) 2t Rfe) () 2t and  ppey () <s
ug(a)(xz) <s Therefore  pp;y is a  bipolar  fuzzy
I'-hypersubsemigroup of S. Thus y €T there exists z € x,YX,
such that

inf (z) = min{pi .\ (x1), K (%)} =t and sup (z) <
zexlyxz( ) {HEa) (X1)) ME@) (X2)} z5x1$x2( )
max{ppa)(X1), U@y (X2)} < s. Therefore for all z € x;yx, we

(ts) (t,s)

have z € ), this implies that x;vx, € gy, that is (&)

is
F(a)
hyper T -subsemigroup of S. Therefore (F,A)®%) is a soft
I'-hypersemigroup of S for each t € [0,1] and s € [—1,0].

Theorem 3.22

Let (F,A) be abipolar fuzzy soft set over S. (F,A) is a bipolar
fuzzy soft T'-hyperleft(right)ideal if and only if (F,A)®S) is a soft
I-hyper left(right) ideal of S for each t € [0,1] and s € [—1,0].
Proof. Suppose that (F, A)(*9) is a bipolar soft T-hyperleftideal of
S for each te€[0,1], s€[-1,0] and a€ A,y eT. For each
X1 €S, let t=pfe(x,), then x; € u}(,t(g Since uff(?) isarl-

hyper left ideal of S, then xyx; € pi-t(z)) for each x € S. Hence

Wiy (XvX1) 2 t= ey (X)) and  Prg) (XyX1) < S = Hrga (Xq)-
This shows that gy is bipolar fuzzy T'-hyperleftideal of S. By
definition 3.2,(F, A) is a bipolar fuzzy soft I'-hyperleftideal of S.

Conversely, assume that (F,A) is a bipolar fuzzy soft T-hyper left

ideal of S. For each a € A,t €[0,1] and s € [-1,0] and x; €

p;t(':% we have pif,) () = t, and e, (x,) < s and by definition

3.2, uf:'(a) and pg(, is a bipolar fuzzy I'-hyper left ideal of S.

Thus for y €T there exists z € xyx; such that einf (z2) =
ZEXYXq
W@ (x1) =t and  sup (z) < pge,)(x) <'s. Therefore for all

ZEXYXq

Z € xyx; We have z € u;té%, that is u(Ft(Zg is hyper T-left ideal of

S. Therefore (F,A)®) is a soft I-hyper left ideal of S for each
t € [0,1] and s € [—1,0]. Similar proof holds for right ideal also.

Theorem3.23

Let (F,A) be abipolar fuzzy soft set over S, (F, A) is a bipolar
fuzzy soft T'-hyperideal if and only if (F,A)(®S) is a soft
I'-hyperideal of S for each t € [0,1] and s € [—1,0].

Proof. The proof follows from theroem 3.22

4 Bipolar Fuzzy Soft Image and Inverse Image
of Hyper I'-Semigroups

Definition 4.1

[9] Let n: H; — H, and y: A — B be two functions, A and B be
two parametric sets from the crisp sets H; and
H,,respectively. Then the pair (1, ) is called a bipolar fuzzy soft
function from H; to H;.

Definition 4.2

Let (F,A) and (G, B) be two bipolar fuzzy soft sets over the sets
H,; and H,, respectively, and (n, y) be a bipolar fuzzy soft map
from H; to H,.

(i) The image of (F,A) under (n, ) denoted by (m, )(F, A), isa
bipolar fuzzy soft set over H, defined by (m, ))(F,A) =

(M(F), Y(A)), where for all b € Y(A) and forall y € H,,

. sup sup piy(x), i) # ¢
Mgy ) = | 1®=yb@=b
0 otherwise
inf inf ., (%), im™1(y) #
uﬁp(b)(Y)={ n(x):ylll(a):buF(a)() = *é
0 otherwise

(ii) The inverse image of (G,B) under (n, {») denoted by

(M, ¥)"1(G, B), is a bipolar fuzzy soft set over H; defined by
M U)Y(G,B) = M~ 1(G), Y~ (B)), where for all a € y~*(B)
and for all x € Hy e (7) = Ky, (109) and o (v) =

HEym (169)

Theorem 4.3

Let n: H; = H, be a homomorphism of S. If (G, B) is a bipolar
fuzzy soft I'-hypersubsemigroup of H,, then (n,¥)~"1(G,B) is a
bipolar fuzzy soft I'-hypersubsemigroup of H;.

Proof. Let (G, B) is a bipolar fuzzy soft I'-hypersubsemigroup of
H,. Let x,y,z € Hy,y € I} then we have

inf furs @) = inf {ug,,, (@)

zexyy U M(a) ZEXYY
= 3 +
B 'l(Z)gll{XYY) {"g"’@ (n(z))}
= inf ¥ Z
n@en®hyM) {"g"’(a) @) }
= min {ugq,(a)n(X). ugw)n(y)}
— i + +
= min i (005 @)}
and

zselplql()y {"gwm (m (z))}
i {I’-;%) (“(Z))}

U
n(z)en(xyy)
{Mgy M@}

sup {ucy @)

sup
n@enh)n(y)

max {ugq,(a)n(X), ug,ma)n(y)}

IA

max{us (0. K @)
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Therefore  (n,¢)"3(G,B) is a
I'-hypersubsemigroup of H;.

bipolar  fuzzy  soft

Theorem 4.4

Let n:H; — H, be a homomorphism of S. If (G, B) is a bipolar
fuzzy soft T'-hyperleft(right, bi-ideal, interior) of Hj, then

(M, U)"1(G, B) is a bipolar fuzzy soft T-hyperleft(right, bi-ideal,
interior)ideal of H,.

Proof. Straightforward.

Theorem4.5

Let n: H; — H, be a homomorphism of S. If (F,A) is a bipolar
fuzzy soft T'-hypersubsemigroup of Hy, then (m, Y)(F,A) isa
bipolar fuzzy soft I'-hypersubsemigroup of H,.

Proof. Let (F,A) is a bipolar fuzzy soft

I'-hypersubsemigroup of H;. Let x;,y,z; € H,,y €I, then we
have

inf {ut (z = inf sup  su t
zlexlvyl{u"”")( V) 21€X1YY1 {teq“r()zl)w( )p i ( )}

inf { SuP UF(b)(Zl)}

ZE€X1YY1 (Y(a)

v

B inf Z
N@ENCORYING) {lp(a)pbuF(b)( )}

= inf su zZ
n(ZJEn(xvy){ (a)pbuF(b)( )}

= inf Sup Z
zExyy{ @ PF(b)( )}
= sup min 530) (X)' |J'F b (})

(@)=b { (b) (b) }

> sup sup mm{pF(b)(x) uF(b)(Y)}
xyyen~! (x)h~ ' (y)n~(v1) (W(@=b

min{sup SUP M) (X), Sup sup uF(a)(y)}
N=y(a)=b yi@)=b

2 min {40, Wiy (yo}
and
su I Z = su { nf inf p t}
zlexR(y{ T]F(b)( 0} zlexll:\)(yl tEﬂ_l(zl)'~|1(a) b F(a)()

IA

su| inf z }
p {w(a):buF(b)( 1)

ZEX1YY1
sup { HE® (Z)}
n@en@hynw) w@=b!F®

= z
(Z)En?xvy) {"’("") bup(b)( )}

= su inf z }
zexey{lll() o ()

< inf max; X), Ug,
RRLI {HF(b)( ) HF(b)(Y)}

< inf max X
xyyEnL(xph- ()N~ (72) {w(a) b () 0, “F(b)(”}}

= max]{ inf inf inf pg, }
{ By Bl (), Jof | Inf e ()

< max {unm,, (X1), Mg (yl)}
Therefore (n,¢)(F,A) is a bipolar fuzzy soft T -hyper
subsemigroup of H,.

Theorem 4.6

Let n: H; = H, be a homomorphism of S. If (F,A) is a bipolar
fuzzy soft T-hyperleft(right, bi-ideal, interior)ideal of H,, then
(M, W)(F, A) is a bipolar fuzzy soft I'-hyperleft(right, bi-ideal,
interior)ideal of H,.

Proof. Straighforward.
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