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Abstract 
 

In this paper, we introduce the concept of bipolar fuzzy soft gamma hyperideals in gamma hyper semigroups. We define bipolar fuzzy soft 

hyper ideals, bi-ideals and interior ideals of gamma hyper semigroups and discuss some properties. 
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1. Introduction 

Zadeh [18] introduced the concept of fuzzy sets in 1965. Algebraic 

hyper structures represent a natural extension of classical algebraic 

structures, and they were originally proposed in 1934 by Marty [7]. 

One of the main reasons which attract researchers towards 

hyperstructures is its unique property that in hyperstructures 

composition of two elements is a set, while in classical algebraic 

structures the composition of two elements is an element. Zhang 

[19] introduced the notion of bipolar fuzzy sets. Lee [4] used the 

term bipolar fuzzy sets as applied to algebraic structures. Bipolar 

fuzzy Γ-hyperideals in Γ-hyper semigroups was studied by Naveed 

Yaqoob  et al [14]. Soft set theory was introduced by Molodtsov 

[8] in 1999, and its a new mathematical model for dealing with 

uncertainty from a parameterization point of view. Maji  et al [6] 

studied the some new operations on fuzzy soft sets. Aygunoglu and 

Aygun [3] introduced the notion of a fuzzy soft group. The concept 

of bipolar fuzzy soft sets has been introduced by Naz et al [12]. 

Aslam et al [2] worked on bipolar fuzzy soft sets and their special 

union and intersection. Bipolar fuzzy soft Γ-semigroups was 

introduced by Muhammad Akram et al [10]. Γ-semigroups was 

introduced by Sen and Saha [16]. In this paper, we define a new 

notion of bipolar fuzzy soft Γ- hyper semigroups and investigate 

some of its properties with examples. 

2. Preliminaries 

In this section, we list some basic definitions.    

 

Definition 2.1[16] 

Let               and             be two non-empty sets. Then 

S is called a  -semigroup if it satisfies the conditions 

(i)        
(ii)                            and       Γ.   

 

Definition 2.2 
A map              is called a hyper operation or join 

operation on the set  , where   is a non-empty set and       
         denotes the set of all non-empty subset of  . A 

hypergroupoid is a set   together with a (binary) hyperoperation.  

 

Definition 2.3 

A hypergroupoid      , which is associative, that is         
        for all        , is called a hyper semigroup. Let   

and   be two non-empty subsets of  . Then we define   












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
B bA,a
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Definition 2.4[1]   

Let   and   be two non-empty sets.   is called a 

 -hypersemigroup if every     is a hyperoperation on   that is 

      for every      , and for every       and         

we have                . If every     is a hyper operation, 

then   is a  -semigroup. If       is a hypergroup for every    , 

then   is called a  -hypergroup. Let   and   be two non-empty 

subsets of   and    . We define                    . 

Also                            
BA
  . Let   be a 

 -hypersemigroup and let    . A non-empty subset   of   is 

called a  -hypersubsemigroup of   if         for every 

       . A  -semihypergroup   is called commutative if for all 

      and     we have        .  

 

Definition 2.5 [8 ]  Let   be an universel set and   be the set of 

parameters.      denote the power set of  . Let   be a non 

empty subset of   then the pair       is called a soft set over  , 

where   is a mapping given by         .  

 

Definition 2.6  
[18]  Let   be a non-empty set. A fuzzy subset   of   is a 

function from   into the closed unit interval      . The set of all 

fuzzy subset of   is called the fuzzy power set of   and is denoted 

by      .  

http://creativecommons.org/licenses/by/3.0/
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Definition 2.7[4]   

A bipolar fuzzy set   in a universe   is an object having the form 

   ⟨    
       

    ⟩     , where   
          and   

    
      . Here   

    represents the degree of satisfaction of an 

element   to the property and    ⟨    
       

    ⟩      and 

  
     represents the degree of satisfaction of   to some implict 

counter property of  . For the simplicity the symbol ⟨  
    

 ⟩ is 

used for the bipolar fuzzy set    ⟨    
       

    ⟩     .   

 

Definition 2.8 [2]  
Let   be the universe set and   be the set of parameter. Let     

and     denotes the set of all bipolar fuzzy subsets of  . Then a 

pair       is called a bipolar fuzzy soft sets over  , where   is a 

mapping given by        . 

It is defined as        ⟨    
       

    ⟩            For 

any 

 

         {⟨       
          

    ⟩    }

 ⟨     
          

    ⟩  

 

Definition 2.9  [2]  

Let       and       be two bipolar fuzzy soft sets over a 

common universe  , then       AND       denoted by 

            is defined as                   where 

      and                 , for all          .  

 

Definition 2.10 1[2]   

Let       and       be two bipolar fuzzy soft sets over a 

common universe  , then       OR       denoted by       
      is defined as                   where       

and                 , for all          .  

 

Definition 2.11 [2]   
Let       and       be two bipolar fuzzy soft sets over a 

common universe   then their extended union is a bipolar fuzzy 

soft set over   denoted by              and is defined by 

                   where      ,         and  

 






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Definition  2.12 [2]   

Let       and       be two bipolar fuzzy soft sets over a 

common universe   then their extended intersection is a bipolar 

fuzzy soft set over   denoted by              and is defined 

by                    where      ,         and 





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
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Definition 2.13[13 ]   

Let       and       be two bipolar fuzzy soft sets over a 

common universe   such that      . The restricted union of 

      and       is defined to be a bipolar fuzzy soft set       

over   where       and               , for all    . 

This is denoted by                     
 

Definition  2.14 [11]  

Let       and       be two bipolar fuzzy soft sets over a 

common universe   such that      . The restricted 

intersection of       and       is defined to be a bipolar fuzzy 

soft set       over   where       and           
    , for all    . This is denoted by                     
 

Definition 2.15 [9]  

Let       be a bipolar fuzzy soft set over   for each         

and          the set                       where       
     

 

          
            

        for all    .  

 

Definition 2.16[17]   

Let         and         be two maps,      and 

    , where    and    are sets of parameters viewed on    

and   , respectively. The pair       is called a fuzzy soft map 

from    to   . If   is a hypergroup homomorphism, then       

is called a fuzzy soft homomorphism from    to   . 

 

Definition 2.17 [3]  

Let       and       be two fuzzy soft sets over    and   , 

respectively, and       be a fuzzy soft function from    to    

(i) The image of       under the soft function       denoted by 

          , is a fuzzy soft set over    defined by            
           , where for all        and for all     , then  

 

         {
 

      
 

              
                

                                                
 

 

(ii) The inverse image of       under the fuzzy soft function 

      denoted by             , is a fuzzy soft set over   

defined by                             , where for all 

         and for all     ,                       . If   

and   is injective(surjective), then       is said to be injective 

(surjective).   

 

Definition 2.18 [15]  

Let       be a fuzzy soft  -function from   to  . If   is a 

homomorphism function from   to  , then       is said to be 

fuzzy soft  -homomorphism. If   is isomorphism function from 

  to   and   is one to one mapping from N to M, then       is 

said to be fuzzy soft  -isomorphism. 

 

3.Bipolar Fuzzy Soft  - Hyper Ideals 
 
In this section, we introduce the notion of bipolar fuzzy soft gamma 

hyperideals in gamma semigroups and discuss some of its 

properties   denotes the Γ- hyper semigroup. 

 

Definition 3.1 

A bipolar fuzzy soft set       over a  - hypersemigroups   is 

called a bipolar fuzzy soft  -subhypersemigroup over   if 

(i)    
     

     
              

          
      

(ii)    
     

     
              

          
      for all         

  Γ and      
 

Definition 3.2  
A bipolar fuzzy soft set       over a  - hypersemigroups   is 

called a bipolar fuzzy soft left  -hyperideal over   if 

(i)    
     

     
          

     

(ii)    
     

     
          

     for all           Γand      

 

Definition 3.3A bipolar fuzzy soft set       over a  - 

hypersemigroups   is called a bipolar fuzzy soft right 

 -hyperideal over   if 

(i)    
     

     
          

     

(ii)    
     

     
          

     for all           Γ and      

 

Definition 3.4 
A bipolar fuzzy soft set       over a  - hypersemigroups   is 

called a bipolar fuzzy soft  -hyperideal of   if 

(i)    
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(ii)    

     
     

              
          

      for all         

  Γ and      
 

Definition 3.5 
A bipolar fuzzy soft set       over a  - hypersemigroups   is 

called a bipolar fuzzy soft  - hyperbi-ideal over   if 

(i)    
       

     
              

          
      

(ii)    
       

     
              

          
      for all         

    Γ and      
 

Definition 3.6 
A bipolar fuzzy soft set       over a  - hypersemigroups   is 

called a bipolar fuzzy soft  -hyperinterior ideal over   if 

(i)    
       

     
          

     

(ii)    
       

     
          

     for all             Γ and 

     
 

Theorem 3.7  

Let       and       be two bipolar fuzzy soft 

 -hypersubsemigroups over  , then             and       
      are bipolar fuzzy soft  - hypersubsemigroup of  .  

Proof. Let       and       be two bipolar fuzzy soft 

Γ -hypersubsemigroups over   defined as             where 

      and                 , for all           
 ,            

   
     

  
      
                 

     
      

    
      

    
      

                                                 
     

 
    
        

     
 

    
     

                  
    
      

    
           

    
      

    
      

                   
    
      

    
           

    
      

    
      

               
    
   

    
        

    
   

    
      

              
      
      

      
      

  

 and 
   

     
        

                 
     

          
          

      

                
     

     
        

     
     

     

                      
          

               
          

      

                       
          

               
          

      

                   
       

            
       

      

                    
            

      

  

 Hence             is a bipolar fuzzy soft 

 -hypersubsemigroup over  .Similarly it can be shown that 

            are bipolar fuzzy soft  -hypersub semigroup over 

 . 

 

Theorem 3.8  
Let       and       be two bipolar fuzzy soft  -hyperleft 

 resp.right  ideals over  , then             and             

are bipolar fuzzy soft  -hyperleft  resp.right  ideals of  .  

Proof. Let       and       be two bipolar fuzzy soft 

 -hyperleftideals over   defined as             where 

      and                 , for all           
 ,         and    .  

   
     

        
                 

     
          

          
      

                
     

     
        

     
     

     

                  
          

     

                
      

 

 and 

   
     

        
                 

     
          

          
      

                
     

     
        

     
     

     

                  
          

     

                
    

 

Hence             are bipolar fuzzy soft  -left  resp.right  

hyperideals over  . 

Similar proof shows that             is a bipolar fuzzy soft 

 -left  resp.right  hyperideals over  . 

 

Theorem 3.9 
Let       and       be two bipolar fuzzy soft  -hyperbi-ideals 

over  , then            and             are bipolar fuzzy 

soft  -hyperbi-ideals of  .  

Proof. Let       and       be two bipolar fuzzy soft 

 -hypersemigroups over   defined as             where 

     ,                 , for all            , 

        and    . 

   
       

        
                 

     
          

          
      

                
     

     
        

     
     

     

                      
          

               
          

      

                       
          

               
          

      

                   
       

            
       

      

                    
            

      

 

 and 
   

       
        

                 
     

          
          

      

                
     

     
        

     
     

     

                      
          

               
          

      

                       
          

               
          

      

                   
       

            
       

      

                    
            

      

 

Hence             is a bipolar fuzzy soft  -hyperbi-ideal over 

 . 

It can be similarly proved that             is a bipolar fuzzy 

soft  -hyperbi-ideal over  . 

 

Theorem 3.10 

Let       and       be two bipolar fuzzy soft 

 -hypersubsemigroups over  , then              is a bipolar 

fuzzy soft  -hypersubsemigroups of  .  

Proof. Let       and       be two bipolar fuzzy soft 

 -hypersubsemigroups over   as defined 

                   where       

           

















BAcifcGcF

ABcifcG

BAcifcF

cH

)()(

\)(

\)(

)(  

  

Case(i)       and     

   
     

      
                 

     
     

    

                  
          

     

                  
          

     

 

and  
   

     
      

                 
     

     
    

                  
          

     

                  
          

     

 

Case(ii)       and    . 
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and  
   

     
      

                 
     

     
    

                  
          

     

                  
          

     

 

Case (iii)       and     then                then by 

theorem 3.7, 

   
     

      
         

     
      

          
      

          
          

     , 

and  

   
     

      
         

     
      

          
      

          
          

     . 

Hence              is a bipolar fuzzy soft 

 -hypersubsemigroup over  .   

 

Theorem3.11 
Let       and       be two bipolar fuzzy soft 

 -hypersubsemigroup over  , then              is a bipolar 

fuzzy soft  -hypersubsemigroup of  .  

 Proof. Straight forward.   

 

Theorem 3.12 

Let       and       be two bipolar fuzzy soft 

 -hyperbi(interior) ideal over  , then              is a bipolar 

fuzzy soft  -hyperbi(interior) ideal of  .  

Proof. Straight forward.   

 

Theorem 3.13 

Let       and       be two bipolar fuzzy soft- -hyper 

bi(interior) ideal over  , then              is a bipolar fuzzy 

soft  - hyperbi(interior) ideal of  .  

Proof. Straight forward. 

Theorem 3.14 

Let       and       be two bipolar fuzzy soft  - 

hypersubsemigroup over  , then              is a bipolar 

fuzzy soft  - hypersubsemigroup of  .  

Proof. Let       and       be two bipolar fuzzy soft  - 

hypersubsemigroup over  , then                    where 

      and                for all    .  

   
     

     
                

     
          

          
      

                
     

     
        

     
     

     

                      
          

               
          

      

                      
          

               
          

      

                   
       

            
       

      

                  
          

      

 

 and  
   

     
     

                
     

          
          

      

                
     

     
        

     
     

     

                      
          

               
          

      

                      
          

               
          

      

                   
       

            
       

      

                  
          

      

 

Hence              is a bipolar fuzzy soft  - 

hypersubsemigroup of  .   

 

Theorem 3.15 
Let       and       be two bipolar fuzzy soft  - 

hypersubsemigroup over  , then              is a bipolar 

fuzzy soft –hypersub 

semigroup of  .  

Proof. Straight forward. 

 

Theorem 3.16 

Let       and       be two bipolar fuzzy soft 

 -hyperbi(interior)ideal over  , then              is a bipolar 

fuzzy soft  -hyper 

bi(interior)ideal of  .  

Proof. Straight forward. 

 

Theorem 3.17 

Let       and       be two bipolar fuzzy soft  - 

hyperbi(interior)ideal over  , then              is a bipolar 

fuzzy soft  - hyperbi(interior)ideal of  .  

Proof. Straight forward. 

 

Example 3.18 

Every bipolar fuzzy soft  -hyper ideal is bipolar valued fuzzy soft 

  hypersubsemigroups but converse is not true. 

Let               and       then   is  -semihypergroup  

 
    b  c  d  e 

              c  {c, d } e 

b  {b, e }   c  {c, d } e 

c  c  c    c  c 

d  {c, d } {c,d } c  d  {c, d} 

e  e  e  c  {c, d } e 

 

Let               and          . Define the bipolar fuzzy 

soft set       as 

                      , where  

                                              
                           
                                              
                         
                                              
                         
Hence       is a bipolar fuzzy soft sub  - hypersemigroups but 

not bipolar valued fuzzy hyperideal. Sinc    
     

     
     

   {     
          

    } 

                                             

 

Example  3.19  

Every bipolar fuzzy soft  -hyperideal is bipolar valued fuzzy soft 

  hyper bi-ideals but converse is not true. 

Let               and         then   is  -hypersemigroup  

 
    b  c  d  e 

              c  {c, d } e 

b  {b, e}   c  {c, d } e 

c  c  c    c  c 

d  {c, d} {c,d} c  d  {c, d} 

e  e  e  c  {c, d } e 

 
    b  c  d  e 

          c  {c, d} e 

b  e    c  {c, d} e 

c  c  c    c  c 

d  {c, d} {c,d} c  d  {c, d} 

e  e  e  c  {c, d} e 

 

Let               and          . Define the bipolar fuzzy 

soft set       as 

                      , where 

                                            
                           
                                              
                           



International Journal of Engineering & Technology 131 

 
                                              
                           
Hence       is a bipolar fuzzy soft  -hyperbi-ideal but not 

bipolar valued fuzzy hyper ideal, 

Since    
     

     
        {     

          
    } 

         .   

 

Example 3.20 
Every bipolar fuzzy soft  -hyperideal is bipolar valued fuzzy soft 

   hyper intrior-ideal but converse is not true. 

For the example 3.19, define the bipolar fuzzy soft set       as 

                      , where  

                                              
                           
                                              
                           
                                              
                           
Hence       is a bipolar fuzzy soft  -hyperinteriorideal but not 

bipolar valued fuzzy soft  -hyperideal, as    
     

     
     

         
          

              .   

 

Theorem 3.21 

Let       be a bipolar fuzzy soft set over  .       is a bipolar 

fuzzy soft  -hypersemigroup if and only if            is a soft 

 -hypersemigroup of   for each         and         .  

Proof. Assume that            is a bipolar soft  -hypersemigroup 

over   for each         and         .For each         and 

   , let            
           

     

and            
           

      , then            
     

. Since 

     
     

 is a  - hypersubsemigroup of  , then            
     

. That is 

     
                    

           
       and 

     
                    

           
        This shows that 

      is bipolar fuzzy  -hypersubsemigroup over  . Thus       

is a bipolar fuzzy soft  -hypersemigroup over  . 

Conversely, assume that       is a bipolar fuzzy soft 

 -hypersemigroup. For each             and          and 

           
     

. 

we have      
             

        and      
       , 

     
       . Therefore       is a bipolar fuzzy 

 -hypersubsemigroup of  . Thus     there exists         

such that 

   
       

             
           

         and    
       

    

         
           

        . Therefore for all         we 

have        
     

, this implies that            
     

, that is      
     

 is 

hyper  -subsemigroup of  . Therefore            is a soft 

 -hypersemigroup of   for each         and         . 
 

Theorem 3.22  
Let       be a bipolar fuzzy soft set over  .       is a bipolar 

fuzzy soft  -hyperleft(right)ideal if and only if            is a soft 

 -hyper left(right) ideal of   for each         and         .  

Proof. Suppose that            is a bipolar soft  -hyperleftideal of 

  for each        ,          and        . For each 

    , let        
     , then         

     
. Since      

     
 is a  - 

hyper left ideal of  , then           
     

, for each    . Hence 

     
               

      and      
               

       

This shows that       is bipolar fuzzy  -hyperleftideal of  . By 

definition 3.2,      is a bipolar fuzzy soft  -hyperleftideal of  . 

Conversely, assume that       is a bipolar fuzzy soft  -hyper left 

ideal of  . For each             and          and    

     
     

 we have      
         and      

        and by definition 

3.2,      
  and      

  is a bipolar fuzzy  -hyper left ideal of  . 

Thus for     there exists        such that    
      

    

     
        and    

      

         
       . Therefore for all 

       we have        
     

, that is      
     

 is hyper  -left ideal of 

 . Therefore            is a soft  -hyper left ideal of   for each 

        and         . Similar proof holds for right ideal also. 

 

Theorem3.23 

Let       be a bipolar fuzzy soft set over  ,       is a bipolar 

fuzzy soft  -hyperideal if and only if            is a soft 

 -hyperideal of   for each         and         .  

Proof. The proof follows from theroem 3.22 

4.Bipolar Fuzzy Soft Image and Inverse Image 

of Hyper  -Semigroups 

Definition 4.1 

[9] Let         and       be two functions,   and   be 

two parametric sets from the crisp sets    and 

  ,respectively.Then the pair       is called a bipolar fuzzy soft 

function from    to   .  

 

Definition 4.2  
Let       and       be two bipolar fuzzy soft sets over the sets 

   and   , respectively, and       be a bipolar fuzzy soft map 

from    to   . 

(i) The image of       under       denoted by           , is a 

bipolar fuzzy soft set over    defined by            
           , where for all        and for all     ,  

 

      

         
      

   
      

     
               

                                                  
 

 

      

         
      

   
      

     
               

                                                
 

 

(ii) The inverse image of       under       denoted by 

            , is a bipolar fuzzy soft set over    defined by 

                            , where for all          

and for all     ,      
  

           

        and       
  

     

      

        

 

Theorem 4.3 

Let         be a homomorphism of  . If       is a bipolar 

fuzzy soft  -hypersubsemigroup of   , then              is a 

bipolar fuzzy soft  -hypersubsemigroup of   .  

Proof. Let       is a bipolar fuzzy soft  -hypersubsemigroup of 

  . Let               then we have  

 

   
     

{ 
     

  
    }     

     
{      

       }

    
           

{      

       }

    
                 

{      

       }

    {      

            

     }

    { 
     

  
      

     
  

    }

   

   
     

{ 
     

  
    }     

     
{      

       }

    
           

{      

       }

    
                 

{      

       }

    {      

            

     }

    { 
     

  
      

     
  

    }
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Therefore              is a bipolar fuzzy soft 

 -hypersubsemigroup of   .   

 

Theorem 4.4 
Let         be a homomorphism of  . If       is a bipolar 

fuzzy soft  -hyperleft(right, bi-ideal, interior) of   , then 

             is a bipolar fuzzy soft  -hyperleft(right, bi-ideal, 

interior)ideal of   .  

Proof. Straightforward. 

 

Theorem4.5 
Let         be a homomorphism of  . If       is a bipolar 

fuzzy soft  -hypersubsemigroup of   , then            is a 

bipolar fuzzy soft  -hypersubsemigroup of   .  

Proof. Let       is a bipolar fuzzy soft  

 -hypersubsemigroup of   . Let                 then we 

have  

   
        

       

          
        

{    
         

   
      

     
    }

    
       

{    
      

     
     }

    
                 

{    
      

     
    }

    
           

{    
      

     
    }

    
     

{    
      

     
    }

    
      

   {     
          

    }

    
            

            
{    
      

   {     
          

    }}

    {    
      

   
      

     
        

      
   

      
     

    }

    {      

            

     }

 

and  

   
        

       

          
        

{    
         

   
      

     
    }

    
       

{    
      

     
     }

    
                 

{    
      

     
    }

    
           

{    
      

     
    }

    
     

{    
      

     
    }

    
      

   {     
          

    }

    
            

            
{    
      

   {     
          

    }}

    {    
      

   
      

     
        

      
   

      
     

    }

    {      

            

     }

 

Therefore            is a bipolar fuzzy soft  -hyper 

subsemigroup of   .   

 

Theorem 4.6 

Let         be a homomorphism of  . If       is a bipolar 

fuzzy soft  -hyperleft(right, bi-ideal, interior)ideal of   , then 

           is a bipolar fuzzy soft  -hyperleft(right, bi-ideal, 

interior)ideal of   .  

Proof. Straighforward. 

 

References 
 

[1] S. M. Anvariyeh, S. Miravakili and B. Davvaz, On Γ-hyperideals in 

Γ - hypersemigroups, Carpathian Journal of Mathematics 26(1) 
(2010), 11-23. 

[2] M. Aslam, S. Abdullah and K.Ullah, Biploar fuzzy sets and its 

application in decision making problem, arXiv, 1303.6932v1[cs.AI], 

2013. 
[3] Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, 

Comput.Math. Appl.58(2009) 1279-1286. 

[4] K. M. Lee , Bi-polar-valued fuzzy sets and their operations, Proc Int 
Conf Intelligent Technologies Bangkok, Thailand,(2000) 307-12. 

[5] K. M. Lee. Comparasion of interval valued fuzzy sets, intuitionistiv 

fuzzy sets, and bi-polar-valued fuzzy sets. J. Fuzzy Logic Intel Syst. 
2004 14 125-9 

[6] P. K. Maji,R. Biswas and R. Roy, Fuzzy soft sets, J Fuzzy Math. 

Appl,9(3) (2001)589-602. 
[7] F. Marty, Sur une generalization de la notion de group, in. proc 8th 

Congress Mathematics Scandenaves, Stockholm, 1994, 45-49. 

[8] D. Molodtsov, Soft set theory first results, Comput. Math. Appl, 37 
(1999)19-31. 

[9] Muhammad Akram, Bipolar fuzzy soft Lie algebras,Quasigroups 

and related systems 21 (2013) 1-10. 
[10] Muhammad Akram, J. Kavikumar and Azme Bin Khamis, Fuzzy 

soft Γ-semigroups, Appl.Math. Inf. Sci 8(2)(2014) 929-934. 
[11] Muhammad Akram, J. Kavikumar and Azme Bin Khamis, 

Characterization pf bipolar fuzzy soft Γ-semigroups, Indian Journal 
of Science and Technology 7(8)(2014) 1211-1221. 

[12] Munazza Naz, Muhammad Shabir and Muhammad Irfan Ali, On 
Fuzzy Soft Semigroups,World Appl. Sci 22 (2013)62-83. 

[13] Naveed Yaqoob and Moin A. Ansari, Bipolar      -Fuzzy ideals in 
Ternary semigroups, Int. Journal of Math. Analysis 7 

(36)(2013)1775-1782. 

[14] Ghareeb,Structures of bipolar fuzzy Γ -hyperideals in 

Γ-semihypergroups, Journal of intelligent and fuzzy systems 27 
(2014) 3015-3032. 

[15] S. Onar, B.A.Ersoy and U. Tekir, Fuzzy soft Γ-ring, Iranian Journal 

of Science and technology, A4 (2012) 469-476. 

[16] M. K. Sen and N. K Saha, On Γ-semigroup, I, Bull.Calcutta Math. 
Soc., 78 180-186 (1986). 

[17] Violeta Leoreanu-Fotea, Feng Feng and Jianming Zhan,Fuzzy soft 

hypergroups, International Journal of Computer Mathematics. 89(8) 
(2012)963-974.  

[18] L. A Zadeh, Fuzzy sets. Information and control. 8 (1965) 338-353. 

[19] Zhang WR. Bipolar fuzzy sets, Proceedings of FUZZ-IEEE, (1998) 
835-840.  


