

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.11) (2018) 217-222

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Securing RF Communication Using AES-256 Symmetric

Encryption: a Performance Evaluation

A. Jamaluddin*, N. N. Mohamed, H. Hashim

Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

*Corresponding author E-mail: ardaniaahh@gmail.com

Abstract

Radio Frequency (RF) communication plays a vital role for sensor node data transmission, which typically runs on top of lightweight

protocol such as Constrained Application (CoAP) and Trivial File Transfer Protocol (TFTP). Introducing a cryptographic scheme to the

process is known to be the common and most efficient method to protect RF communication. This paper presents the performance com-

parison of AES-encrypted data transmission over RF communication via Raspberry Pi boards, experimented on a client-server architec-

ture. The performance analysis is measured based on throughput metric and the transmission time delay when sending three types of

payload which are, a plaintext data, a ciphertext with padding and a ciphertext without padding. The result from the study indicates that

there is a significant difference in data transmission time between the three types of data due to the data expansion factor. The result also

showed that adding padding to the ciphertext has increased the data size slightly but not significant enough to affect transmission time of

ciphertext.

Keywords: cryptography; symmetric encryption; Advanced Encryption Standard; Raspberry Pi; RF Communication; Slice of Radio.

1. Introduction

Today, internet is migrating from connecting people to connecting

things, leading to the new concept of Internet of Things (IoT). One

of the most efficient wireless communication for IoT sensor nodes

is via Radio Frequency (RF), typically run on top of CoAP and

TFTP protocols which provide zero security mechanism [1]. A

popular method to protect the sensor node data transmission over

RF in a more secure way is by implementing the cryptographic

algorithms [2]. Cryptographic algorithms are ranked by their

speed in encrypting/decrypting data and their robustness to with-

stand attacks. Hence, real-time processing of data encryp-

tion/decryption is essential in network based applications such as

IoT to keep pace with the input data inhalation rate. Cryptographic

algorithms are broadly generalized as symmetric and asymmetric

encryption. The idea of including cryptography in IoT as one of

the security methods is a transpiring arena. It plays its important

character in protecting any sorts of communication and gives the

well enhanced provision to offer the requisite shield against the

data intruders as well as attacker.

Symmetric key cryptography is the algorithm that uses a secret or

private key to lock (encrypt) and unlock (decrypt) [3] the data in a

particular way between two or more parties. However, by having

the condition that both parties have access to the secret key is one

of the main disadvantage of this algorithm. This is because, by

using the same private key making it critical to keep the key secret

as the chances for the secret key to fall into the wrong hands over

a massive network is hugely high. Thus, asymmetric key cryptog-

raphy is introduced. If symmetric key cryptography allows only a

private key between two parties, asymmetric key cryptography

however allows a key pair consists of a public key and a private

key. The public key is made to give access to everyone, while the

private key maintains its function as confidential properties as

only allows the owner to access the data.

If time is the dominant factor in encrypting and decrypting a mes-

sage, then symmetric encryption is an ideal candidate as it com-

prises only one way factor of delivering and receiving. Reason is

that, asymmetric encryption systems have high overhead, in which

they are not usable to provide full-time in a practical real-world

security enhancement. Symmetric encryption too, is feasible and

adaptable as it can be implemented on various stages especially in

small embedded devices. Advanced Encryption Standard (AES)

[4] in conclusion could be seen to be faster in terms of speed and

systematically efficient in terms of performance compared to other

encryption algorithms. Due to that, it is said to be suitable to en-

crypt the actual data and commands. Therefore, AES was chosen

as the standard algorithm in this experiment.

Recent advancement in embedded RF devices and sensor nodes

communication has increased significantly which normally inter-

connect to the internet using wireless technology (e.g. radio fre-

quency, Wi-Fi) and run on top of CoAP and TFTP protocols. In

many situations, the connection is exposed to vulnerability during

sensor node data transmission. The authors in [5-6] has proposed

data encryption using ElGamal and RSA asymmetric schemes

through RF transmission to strengthen the protocol security. The

works provided alternate solution for various stakeholders to exe-

cute a rapid product research and development of any crypto-

graphic protocol for smart devices. This previous work has be-

come our motivation to further the research study in RF technolo-

gy with three ultimate aims in order to improve the data security

using encryption schemes to be implemented on IoT embedded

devices. The first objective is to study the encryption method to be

integrated into RF client-server communication. Next is, to pro-

vide a security solution using symmetric encryption method that

will satisfy the minimal requirement for a reliable RF transmission

in IoT technology. Lastly is, to analyze performance when sending

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

218 International Journal of Engineering & Technology

the unencrypted (plaintext) and encrypted (ciphertext) data using

AES algorithm through RF transmission in terms of transmission

time and data transmission throughput.

To rapidly build and test the AES algorithm without major chang-

es in the RF transmission software code, a flexible RF transceiver

is needed. Slice of Radio (SRF B023) wireless RF transceiver has

the capability to be the most feasible device that could reconfigure

AES algorithm in RF data transmission. The Slice of Radio brings

secure wireless data transmission to embedded device such as

Raspberry Pi in a simple and low cost package. The transceiver is

attached together on two Raspberry Pi Arm processor boards,

implementing python source code to execute the program. The

proposed work comprises of a persuasive argument that it could

make a noteworthy contribution on a topic that is important to the

development of IoT embedded devices, particularly in enhancing

the security of the data uploaded using a low budget devices.

2. Related Works

In the present era, not only business but almost all the aspects of

human life are driven by information. Securing the data to be up-

loaded to the Internet has been a prerequisite thing to do before

transmitting it, especially in a wireless environment. However,

current practices show that there are preponderances of data that

remained unsecured, mostly due to the fact that security features

are not built into products or users are disregarding them. This

leads to the unauthorized access to the information by many false

hands. For instance, the implementation of large sized protocol

such as Secure Socket Layer (SSL) or Transport Layer Security

(TLS) deteriorate the efficiency and performance of the security

on the data that it may be compromised by brute force. Based on

review findings, in order to achieve confidentiality and integrity of

security properties, it is crucial to decide the suitable security

mechanism for this work. Therefore, the study of encryption

method [7] is done to support the practicality of the protocol on a

low cost module. The Raspberry Pi microcomputer board [8] and

its Slice of Radio RF transceiver is chosen as a perfect module due

to its low power consumption and promotes a rapid result in the

experimentation.

In the aspect of speed and as well as level of security, symmetric

encryption scheme were given due importance [9] and thus was

selected as a general protocol to be used in this work. In particular,

the AES encryption scheme was selected. There are two factors

identified which contribute to the selection of encryption algo-

rithm. Within a limited CPU and memory storage, the first factor

greatly depends on the speed. It has to be fast and facile to be

implemented on both software and hardware. The second one is

that it must be powerful with no collision found in the algorithm.

Compared to another symmetric block cipher such as DES and

3DES, AES works faster even in small devices such as on mobile

phone and smart card [9-10]. Besides, data size expansion analysis

is also included to analyze the effect of the transmission time on

the variable size of the file. Thus, the transmission of plaintext is

first tested followed by ciphertext and measured afterwards.

In the cryptography family, AES belongs to the category of block

ciphers. A block cipher is an algorithm that encrypts data per-

block basis. This is in contrast to stream ciphers which are based

on generating a “perpetual” cryptographic key stream and using

that to encrypt one bit or byte at a time. As such, block ciphers

work on a larger data at a time. In terms of speed, stream ciphers

is basically faster than block ciphers as the blocks need to work on

a larger data and require more CPU cycles [11]. Even so, the scru-

tinization of this experiment is to ascertain whether it is possible

to provide a security solution that will satisfy the minimal re-

quirement for a reliable RF transmission to be applied in IoT tech-

nology. In this case, we have chosen to perform the encryption

process in block-oriented encryption mode because it provides the

integrity protection and authentication as well as its capability of

bulk encryption of known size data which we are assuming in this

experiment.

The size of each block is measured in bits. If it is 256 bits long,

then AES will operates on 256 bits of plaintext to produce 256 bits

of ciphertext [4]. The keys supported by AES comprises of three

different lengths which is 128 bits, 192 bits and 256 bits key. The

strength of the security is measured by the length of the keys

which wins 256 bits key all the way round. However, to provide a

full strength of security in this experiment, 128 bits of key is not

strong to prove the security of the data in the developed system.

This leads to the decision of using AES 256 bits key (32 bytes) to

provide the best stronghold of security for the data encrypted.

3. Methodology

To find a suitable device to be used in energy constricted envi-

ronment could be challenging and time costing. In this work, the

Raspberry Pi Arm Boards Version 3 have been selected to be de-

ployed for reason that it is highly supported by researchers and

commonly applied in similar applications. It has also been selected

due to its compatibility in terms of size and performance. It is

small in size, but it has the capability equivalent to a computer.

Therefore, it is manageable to handle and execute the Python Lan-

guage on it. The microprocessor has a number of input and output

(I/O) ports including USB port, HDMI, Micro USB power and SD

card interface (to install Raspbian, the standard Raspberry Pi oper-

ating system).

Under the requirement of energy constricted environment, a low

power consumption device is needed to carry out the transmission.

To form the secure transmission for Raspberry Pi over RF, the

Slice of Radio device is connected to the device. It is very easy to

use because it sends and receives via the standard onboard PI seri-

al port, which means special software or drivers would not be

needed. The experiment can be executed when the serial port is

configured accordingly. Figure 1 shows the closed-up look of

Slice of Radio (SRF B023).

Fig. 1: Slice of Radio (SRF B023)

The workflow to test the communication is shown in Figure 2.

The SRF must be attached on both Raspberry Pi ARM boards and

the Raspbian Linux Operating System was installed on both de-

vices to execute the program. Then, the SRF USB Radio is

plugged in GPIO header and new serial port is identified. Before

powering up, the devices should be connected with a mouse, key-

board and a display. It is important to make sure that RF modules

are configured with 115200 bps as baud rate.

International Journal of Engineering & Technology 219

Fig. 2: Flowchart of the communication test using Slice of Radio

Figure 3 shows a client-server test bed set up using two Raspberry

Pi Arm boards V3 devices. The experiment was conducted in the

laboratory where the two Raspberry Pi Arm boards were placed at

a distance of approximately one meter apart. Both devices were

associated with the keyboard and mouse to execute the program

and a monitor connected to HDMI port respectively to display the

program. For power adapter, the micro USB Power Supply which

provides at least 700 mA at 5V is important. In this work, the PC

power supply was used to power up the devices. The workstation

comprised of a client-server infrastructure communicates via RF

using the Slices of Radio on each Raspberry Pi respectively.

Fig. 3: Client-Server test bed set up

RF (Radio Frequency) is able to transmit data on low power con-

sumption. Bound by the protocol of RF Communication Protocol

standard, the Slice of Radio held its performance based on the

theory of operation in three ways for this project.

Firstly, when the serial data is received on SRF, it goes into the

memory. Once the complete packets (payload) of data were pro-

duced, it would be sent out over the radio transmitter. By default,

the buffer size is 12 characters per payload. If longer data are said

to be send out, it will simply split it up in to smaller packets. For

example, as can be seen in Figure 4, the data is split in to 4 pack-

ets and each one is transmitted in turn.

See the quick brown fox jump over the lazy dogs

-----1--------|--------2------|-------3-------|-------4-----|

Fig. 4:. Packet structure

Secondly, the data will wait in the transmit buffer before being

sent. This process is called as timeout, which happens only when

the data sent were less than a packet. By default, the timeout is

100ms for SRF. Finally, to improve the performance and efficien-

cy, padding is the efficient option to fill the buffer for a better

performance, especially when the data comprises variable lengths.

For example as shown in Figure 5, by adding the padding option

(++), both packets will be sent immediately without timeout be-

cause of the completed characters per packet.

Mary had a little lamb++

--------1------|-------2------|
Fig. 5: Packet with padding

4. Performance Evaluation

In this work we consider two types of transmitted data, which are

plaintext and ciphertext. Here, we take plaintext as to mean the

original unencrypted data, while ciphertext is the text produced

after the plaintext has been encrypted by AES algorithm. The

objective is to analyze the effect on data transmission time when

sending encrypted (ciphertext) data as opposed to the original data.

This section provides information on the performance metrics to

evaluate these two situations when sending the plaintext and ci-

phertext data transmitted via RF Communication. The metrics are

explained below.

4.1. Data Transmission Throughput

The throughput of data transmission defines how much data can

be transmitted in a given amount of time. From the result of exe-

cution time, the throughput of every data is calculated to indicate

the performance and transmission speed as in (1):

 (1)

4.2. Transmission Time Difference when Sending

Plaintext and Ciphertext

The transmission time when sending both plaintext and ciphertext

via RF Communication are the method that has consumed majori-

ty of the time spent on this experiment. There obviously a differ-

ence in the transmission of both types of data respectively. The

difference is calculated using the equation below.

 (2)

For plaintext and ciphertext:

Td is Time Difference

Tc is Transmission Time for Ciphertext

Tp is Transmission Time for Plaintext

For plaintext and ciphertext with padding:

Td is Time Difference

Tc is Transmission Time for Ciphertext with padding

Tp is Transmission Time for Plaintext

4.3 Data Expansion Rate

Due to the addition of padding to complete the 12 characters per

payload, the size of the data of ciphertext was actually predicted to

be expanded significantly per addition. The data expansion rate

could be measured using the two equations below:

a) For plaintext and ciphertext:

220 International Journal of Engineering & Technology

 (3)

b) For plaintext and ciphertext with padding:

 (4)

5. Results and Discussion

The output of the experiment can be summarized in Table 1 until

Table 5-6. In this experiment, the main aspect to be examined is

the increase in the time of transmission due to data expansion

factor from server to client. In methodology section, the quality is

measured based on the metrics of throughput of data transmission

and delay on transmission time between plaintext (T), ciphertext

(C) as well as ciphertext with padding (P). In this section, the

plaintext used are numbered from T1 to T10 where Cn is the ci-

phertext of Tn and Pn is the ciphertext with padding of Tn, for n =

1 to 10.

Table 1: Types of data and its respective sizes

Types of Data Plaintext (T) Ciphertext (C) Ciphertext with Padding (P)

Data Size (KB)

T1 0.014 C1 0.031 P1 0.036

T2 0.026 C2 0.064 P2 0.072

T3 0.040 C3 0.095 P3 0.096

T4 0.050 C4 0.128 P4 0.132

T5 0.062 C5 0.128 P5 0.132

T6 0.074 C6 0.160 P6 0.170

T7 0.086 C7 0.192 P7 0.192

T8 0.098 C8 0.224 P8 0.228

T9 0.112 C9 0.226 P9 0.266

T10 0.126 C10 0.256 P10 0.264

Total 0.688KB 1.504 KB 1.588 KB

Table 2: Transmission time for plaintext and ciphertext and the time difference

Data (T/C) Plaintext Transmission Time (ms) Ciphertext Transmission Time (ms) Time Difference (ms)

1 0.990 3.296 2.306

2 2.816 5.975 3.159

3 3.190 7.552 4.362

4 3.595 8.279 4.684

5 5.638 11.295 5.657

6 6.665 13.647 6.982

7 7.583 14.407 6.824

8 8.459 18.571 10.112

9 9.422 19.463 10.041

10 10.550 21.334 10.784

The time difference is theoretically expected to be present in the

transmission of data especially when the data sizes of two types of

data are different to begin with. The assumption has indeed been

proven when the transmission time in Table 2-3 increased gradual-

ly for plaintext, ciphertext and ciphertext with padding labelled as

1 to 10 (T/C/P) proportional to the each data size.

Table 3: Transmission time for plaintext and ciphertext with padding and time difference

Data (T/P) Plaintext Transmission Time (ms) Ciphertext with Padding Transmission Time (ms) Time Difference (ms)

1 0.990 3.340 2.350

2 2.816 6.590 3.774

3 3.190 8.396 5.206

4 3.595 9.889 6.294

5 5.638 11.418 5.780

6 6.665 10.638 3.973

7 7.583 12.255 4.672

8 8.459 14.459 6.000

9 9.422 18.765 9.343

10 10.550 18.983 8.433

Table 4:. Throughput of data transmission

Types of Data Plaintext Ciphertext Ciphertext with Padding

Throughput (KB/s)

T1 14.141 C1 9.422 P1 10.778

T2 9.233 C2 10.711 P2 10.926

T3 12.539 C3 12.579 P3 11.434

T4 13.908 C4 15.461 P4 13.348

T5 10.997 C5 11.337 P5 11.561

T6 11.103 C6 11.730 P6 15.980

T7 11.341 C7 13.327 P7 15.667

T8 11.585 C8 12.062 P8 15.769

T9 11.887 C9 11.612 P9 14.175

T10 11.943 C10 12.000 P10 13.907

Average (KB/s) 11.868 12.024 13.3545

International Journal of Engineering & Technology 221

The throughputs for these types of data in Table 4 are calculated

by using the equation provided in methodology section. According

to rhetorical assumption made, the higher the throughput of data

transmission, the better the performance. For being directly sent

from server to client, ciphertext with padding has indeed proven to

have the highest throughput. Meanwhile, the lowest would be

ciphertext due to the incomplete characters per payload, creating

timeouts which causes delay that slowed the process of transmis-

sion. The problem then solved by adding padding to align the data

size and completed the characters per payload, so that delay would

be prevented.

Table 5: Data expansion factor

Data (T/C/P) Data Expansion Factor between Ciphertext and Plaintext Data Expansion Factor between Ciphertext with Padding and Plaintext

1 2.214 2.571

2 2.462 2.769

3 2.375 2.400

4 2.56 2.640

5 2.065 2.129

6 2.162 2.297

7 2.233 2.233

8 2.286 2.327

9 2.018 2.375

10 2.032 2.095

Instead of using rate in expansion data size, the unit is changed to

factor to act as an indicator for the increment or decrement on the

data size. In Table 5, there is a slight expansion of data size be-

tween ciphertext and plaintext. This is due to the encryption pro-

cess that used CBC mode of operation with 32 bits of key that

translated the plaintext into series of hex strings configuration,

which load the payload longer than the plaintext. The hex strings

however did not alter any data on plaintext.

In theory, AES does not expand the data, except for a few bytes of

padding at the end of the last block. This is to align the data to the

size of a block thus explaining the expansion in Table 5. Most

symmetric ciphers work on blocks of data considerably larger than

a single byte (AES-128, for example, works 16 bytes at a time).

Padding at the end of the data is important to fill and align the

incomplete block if the data is not a multiple of the block size. The

resulting data inherently are not compressible at any rate because

they are basically random; no dictionary-based algorithm is able to

effectively compress them.

Fig. 6: Comparison of Transmission Time between Plaintext (T), Cipher-
text (C) and Ciphertext with Padding (P)

As seen in Figure 6, it can be concluded that the transmission time

increased gradually for all types of data due to increased payload.

As the characters increased per payload, the transmission time for

the three types of data too, was increased. From the result, we can

see how the two types of encrypted data affects transmission time

by comparing their performances to that of the plaintext transmis-

sion. This is because for plaintext, 12 characters per payload were

directly being sent from server to client. The transmission time for

ciphertext with padding was expected to be faster than the trans-

mission time of ciphertext without padding. This is due to the

ciphertext payload that has been sent, which was less than a de-

fault 12 characters per packet length incurred some delay as the

packet needed to be stored at the buffer temporarily for 100 ms or

more. This action is called as timeout as explain in methodology

section. The data was finally received at the client, but with a re-

dundant time delay. Hence, ciphertext with padding which allow

stuffing at the end of the data to fill the last block to complete the

payload, transmission time is comparatively faster than ciphertext

alone.

6. Conclusion

This paper presents the performance evaluation of data transmis-

sion when sending three types of data: the plaintext, the cipher text

without padding and ciphertext with padding over RF. Based on

the result presented in Table 2-3, ciphertext with padding trans-

mission performed best in term of transmission time which can

reduce 7.92% time over the ciphertext without padding transmis-

sion. This may come from the fact that padding technique can

prevent the delay and timeout in the transmission [8]. Besides, the

transmission time when sending ciphertext with padding has pro-

duced average delay of 5.5825ms which is approximately two

times slower than the plaintext transmission. There are several

points can be concluded from the experiment results. In conclu-

sion, encryption scheme has increased the transmission time over

RF. By adding padding on the ciphertext can reduce the delay

slightly.

In future work, it would be interesting to study a broader metrics

other than the transmission time and throughput performance met-

rics in a higher level of devices, so that its practicality could be

applied to a higher level, more so to industries.

Acknowledgement

This project was made possible by funds from Malaysian National

Research Grant Scheme (NRGS) 600-RMI/NRGS 5/3 (5/2013)

from the Ministry of Education, Malaysia.

References

[1] Paul B, Chiriyath A. R and Bliss D. W. Survey of RF

communications and sensing convergence research. IEEE Access, 5,

252–270.
[2] Saleh M. E, Aly A. A and Omara F. A. Data security using

cryptography and steganography. Int. J. Adv. Comput. Sci. Appl.,

2016, 7(6), 391–397.
[3] Zakir M and Sarker H. A cost effective symmetric key

cryptographic algorithm for small amount of data. Proceedings of

the IEEE Int. Multitopic Conf., 2005, pp. 1–6.

222 International Journal of Engineering & Technology

[4] F. Information. Announcing the Advanced Encryption Standard

(AES). 2001.

[5] Adnan S. F. S, Isa M. A. M, Rahman K. S. A, Muhamad M. H and

Hashim H. Simulation of RSA and ElGamal encryption schemes

using RF simulator. Proceedings of the IEEE Symp. Comput. Appl.

Ind. Electron., 2015, pp. 124–128.
[6] Isa M. A. M, Hashim H, Manan J. L. A, Adnan S. F. S and

Mahmod R. RF simulator for cryptographic protocol. Proceedings

of the IEEE Int. Conf. Control Syst. Comput. Eng., 2014, pp. 518–
523.

[7] Joshi A, Wazid M and Goudar R. H. An efficient cryptographic
scheme for text message protection against brute force and

cryptanalytic attacks. Procedia Comput. Sci., 48, 360–366.

[8] Thota P and Kim Y. Implementation and Comparison of M2M
Protocols for Internet of Things. Proceedings of the Int. Conf. Appl.

Comput. Inf. Technol., 2017, pp. 43–48.

[9] Alanazi H. O, Zaidan B. B, Zaidan A. A, Jalab H. A, and Shabbir
M. New comparative study between DES, 3DES and AES within

nine factors. J. Comput., 2010, 2(3), 152–157.

[10] Singh G and Supriya S. A study of encryption algorithms (RSA,
DES, 3DES and AES) for information security. Int. J. Comput.

Appl., 2013, 67(19), 33–38.

[11] Singhal N and Raina J. P. S. Comparative analysis of AES and RC4
algorithms for better utilization. Int. J. Comput. Trends Technol.,

2011, 2(6), 177–181.

