
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4.11) (2018) 140-144 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  

 

Research paper 
 

 

 

 

Optimised Combinatorial Control Strategy for Active Anti-Roll 

Bar System for Ground Vehicle 
 

N. Zulkarnain
1,4

*, H. Zamzuri
2
, S. A. Saruchi

2
, A. Hussain

1
, S. S. Mokri

1
, A. Jedi

3
, N. Razali

3,4
 and I. N. A. Mohd 

Nordin
5
  

 
1Centre for Integrated Systems Engineering and Advanced Technologies (INTEGRA), Faculty of Engineering and Built Environment, 

Universiti Kebangsaan Malaysia 
2Vehicle System Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia 

3Centre of Integrated Design for Advanced Mechanical Design (PRISMA), Faculty of Engineering and Built Environment, Universiti 

Kebangsaan Malaysia 
4Centre of Research in Engineering Education and Built Environment (PEKA), Faculty of Engineering and Built Environment, Universiti 

Kebangsaan Malaysia 
5Department of Electrical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia 

*Corresponding author E-mail: shikinzulkarnain@ukm.edu.my    

 

 

Abstract 
 

The objective of this paper is to optimise the proposed control strategy for an active anti-roll bar system using non-dominated sorting 

genetic algorithm (NSGA-II) tuning method. By using an active anti-roll control strategy, the controller can adapt to current road condi-

tions and manoeuvres unlike a passive anti-roll bar. The optimisation solution offers a rather noticeable improvement results compared to 

the manually-tuned method. From the application point of view, both tuning process can be used. However, using optimisation method 

gives a multiple choice of solutions and provides the optimal parameters compared to manual tuning method. 

 

Keywords: anti-roll bar; ride; handling; control strategy; optimisation. 

 

1. Introduction 

The growing market share of light-duty vehicles has prompted 

automotive engineers to examine body roll minimisation strategies 

[1, 2]. During driving manoeuvres in high-centre-of-gravity vehi-

cles, due to its roll-over, dangerous operating scenarios may in-

duce drivers to drive in an aggressive way, engaging in driving 

behaviours such as high lateral acceleration, rapid tire dilation and 

emergency lane change in [3, 4]. Commercially, to counteract the 

roll movement, the most used topology is the use of an anti-roll 

bar. This bar can be implemented in passive and active topologies, 

where some of the most important parameters performance, ener-

gy consumption and costs [3].  

A passive anti-roll bar is also known as a stabiliser bar, which 

usually is a U-shaped rod which is bound parallel to the ground. It 

is also known as torsion spring, where a component that springs 

back when twisted. Most often, this bar is employed on independ-

ent front suspensions. The control arms rise simultaneously on 

both sides when the vehicle drives over a bump. Both ends of the 

anti-roll bar turn upward with them, and the bar does not influence 

the behaviour. However, the control arms on the outside lifts the 

end of the bar and the opposite control arm pulls its end down 

during manoeuvre. The anti-roll bar reduces the movement of the 

control arms and minimises body leaning by resisting and twisting 

this torsion.  

A disadvantage of this passive anti-roll bar is the coupling be-

tween the left and right side of the vehicle. For example, when a 

vehicle driving in a straight line hits a bump with only one side of 

the vehicle, the passive anti-roll bar is twisted by the control arms, 

and its resistance to this movement results in the other wheel be-

ing lifted, reducing road contact and furthermore transferring the 

bumping effect to the vehicle body, thus reducing the passenger 

comfort. This effect is worse when driving during cornering; the 

inner wheel hits a bump, reducing the degree of twisting of the 

anti-roll bar and thus the vertical force on the outer wheel, possi-

bly resulting in loss of control. 

Active anti-roll bars are used to overcome the drawback of the 

passive anti-roll bars, in which a linear or rotary actuator acts in 

series with a conventional passive anti-roll bar to provide forces 

that resist vehicle roll. Under normal driving condition, these sys-

tems reduce anti-roll force and road impact by lowering the hy-

draulic pressure in the actuators, thus decoupling the left and right 

side. During cornering, the actuators are pressurised, applying the 

required anti-roll bar force to maintain near-zero body roll angle. 

This is achieved by real-time response to actual or anticipated 

driving conditions using the centre-of-gravity lateral accelerome-

ters and vertical lateral accelerometers [5]. 

Various methods and approaches are used to design and active 

anti-roll bar systems. Each method has its own advantages and 

disadvantages. Research on active anti-roll bar system is mainly 

covers the ride and handling performance tests. Most researchers 

have been used conventional controllers to control an active anti-

roll bar system; these controllers are Proportional Integral (PI) and 

Proportional Integral Derivative (PID), which have advantages in 

fast tracking application but have a large overshoot. For example, 

the author in [6-8] addressed the problem by using conventional 

controllers. Some authors implemented the modern controllers 

such as LQ controller and predictive controller, which only used 
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trial-and-error tuning method without applying a complex tuning 

method to optimally design the controller [9-11]. Given these 

disadvantages, the proposed control method, namely, composite 

nonlinear feedback and linear quadratic Gaussian (CNF-LQG) 

fusion control strategy is developed to improve settling time and 

to reduce the overshoot. The parameters of this control method are 

optimised by using NSGA-II tuning method [12]. 

2. Combinatorial Control Strategy  

A new concept that combines CNF and LQG controllers emerged 

from an analysis of the CNF and LQG control strategies for an 

active anti-roll bar system. The CNF controller can overcome 

achieve fast response without overshoot and involves some math-

ematical derivation and basic control theory, while the LQG con-

troller provides optimal control. Therefore, the CNF-LQG fusion 

control strategy is used to improve the responses for both handling 

and ride comfort performance. The objective of the active ARB 

controller is to reject disturbance and to improve the roll angle and 

roll rate responses as close to zero. The controllers used in this 

section are the CNF and LQG controllers. These controllers are 

designed and tuned to generate the input of torque to control the 

active ARB system [13]. Figure 1 shows a block diagram configu-

ration of combination of CNF controller, LQR controller, and 

Kalman filter estimator to form a compensator. This solution in 

designing the LQG controller is based on the separation principle 

where the LQR controller and Kalman filter are designed inde-

pendently and then combined to form the LQG compensator. A 

Kalman filter is a typical application and a feasible estimation 

approach that can fuse multiple sensory measurements to provide 

an accurate position estimation.  

 

 
Fig. 1: CNF_LQG fusion block diagram configuration 

 

The CNF controller has two parts namely a linear feedback part 

and nonlinear feedback part. The objective of linear feedback is to 

obtain a small damping ratio for quick response, and nonlinear 

feedback is designed to increase the damping ratio as the system 

output approaches the target reference to avoid overshoot. In this 

study, the target reference is zero. The linear control law for 

torque of anti-roll bar is defined as in (1): 
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The value of P is obtained from Lyapunov method in (2). Then, 

the states are stated in (3). 
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3. Optimisation of Control Strategy 

This section describes the framework for optimising the novel 

CNF-LQG control strategy by using NSGA-II. NSGA-II has been 

recently used in different areas of engineering because of its ad-

vantage of simple yet efficient non-dominance ranking procedure 

to yield different levels of Pareto frontiers [14]. This optimisation 

method is based on the natural evolution principles and genetics of 

population and set of non-dominated solutions can be obtained 

after the optimisation [15]. The main issues for the genetic algo-

rithm are setting process of the objective functions and initial op-

timisation bounding the same way for the output weighting func-

tion. The details of the chosen variables, objective function formu-

lation and constraints are described in the following [12, 16]. 

To design control strategies for an active anti-roll bar system, a 

strict trade-off exists in terms of providing a good ride comfort 

performance and better handling criteria by considering the roll 

angle response. The objective of the problem is to find the opti-

mum values of the control design parameters that indicate good 

ride comfort and handling ability [17]. The optimisation problem 

is solved NSGA-II [18]. Eight real-coded GA variables were de-

veloped in this work to optimise the LQR and CNF controller 

parameters. The upper and lower limits on the parameters are set 

based on manual tuning of the CNF-LQG fusion control strategy 

by using Bryson's rule. The computational time and complexity 

are reduced when choosing the appropriate initial choice of the 

parameters and the bounder limits. 

3.1. Design Variables  

The CNF-LQG fusion control strategy for an active anti-roll bar 

system can be fine-tuned by choosing the suitable value of param-

eters, as listed in Table 1. The control parameters for the LQR 

controller and the CNF controller are considered for optimisation 

process. The values of Q and R are optimised for the LQR control-

ler while the value of   is optimised for the CNF controller. To 

the best of the authors' knowledge, no public domain literature is 

available on design optimisation of CNF controller parameters for 

an active anti-roll bar system by using NSGA-II. From the litera-

ture [14, 19-23], most researchers were studied the optimisation of 

suspension parameters or control design for suspension systems 

and did not study the optimisation control design for an active 

anti-roll bar system itself. This research gap gives rise to the idea 

to optimise the control design for an active anti-roll bar system. 

Table 1 shows the design variables, their bounds for the CNF-

LQG control strategy and the initial design that using intuitive 

method. In this study, the values of Q , R and  are observed as 

three design variables to be optimally found based on multi-

objective optimisation of two different objective functions [17] 

(see in (4) and (5)). 

 

2 2 2 2

1 1 1 1
                                                                   (4)

(0.0001) (0.0001) (0.1) (0.01)

and 

1000 100000                                                            

Q

Beta

   
    

   

                                                     (5)

                               (4) 

 

and

2 2 2 2

1 1 1 1
                                                                   (4)

(0.0001) (0.0001) (0.1) (0.01)

and 

1000 100000                                                            

Q

Beta

   
    

   

                                                     (5)

                                                          

 
Table 1: Design variables and bound for CNF-LQG fusion control strate-
gy 

Design 

Variable 

Lower-Upper Initial Design 

Q  
2 2

1 1

(0.0001) (0.0001)

 
 
 

- 
2 2

1 1

(0.09) (0.09)

 
 
 

 

(5) 
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2 2

1 1

(0.1) (0.01)

 
 
 

 

  
1000-100000 1000 

R  
1-10 3 

4. Results and Discussion 

Appropriate matrices Q  (see in (6)) and parameter R must be 

designed to minimise both 
1f  and 

1f  as much as possible, which 

ensures that the control system design for the LQR controller 

meets multiple performance indexes simultaneously while the 

optimised parameter of   must be designed to achieve a com-

fortable ride and good handling, thereby achieving the acceptable 

control design of the CNF controller. The multi-objective optimi-

sation problem with the objective functions that usually generate 

approaches are applied in this work. Therefore, NSGA-II is im-

plemented to the model to obtain the Pareto-optimal solutions of 

matrices Q , R and   parameter.  

These objective functions are considered in a Pareto optimisation 

process to simultaneously important trade-offs among the conflict-

ing objectives. The evolutionary process of multi-objective opti-

misation is accomplished with a population size of 30, which was 

chosen with probability of crossover and probability of mutation 

of 0.8 and 0.1, respectively. The parameter settings of NSGA-II 

optimization are shown in Table 2. A total of 30 non-dominated 

optimum design points were obtained. Visualization tools can aid 

decision makers in analysing the Pareto set and selecting good 

solutions. Performing an accurate graphical analysis of the Pareto 

set points for a two-dimensional problem is easy, but it becomes 

more difficult for high-dimensional problems [22, 24]. 

 
Table 2: NSGA-II user defined parameters 

Parameter Setting Value 

Number of generation 300 

Population size 30 

Probability of crossover 0.8 

Probability of mutation 0.1 

Distribution index in SBX 20 

Distribution index in polynomial mutation 20 
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The anti-roll bar system design aims to minimise the body roll 

effect. Thus, this work focuses on minimising the roll angle re-

sponse to optimise the controller design. Figure 2 shows the trade-

off obtained between the RMS value of roll angle during the ride 

performance test and the RMS value of roll angle in the handling 

test by using the multi-objective optimisation approach for a vehi-

cle velocity of 70 km/s. 

 

 
Fig. 2: RMS roll angle in handling vs RMS roll angle in ride: trade-off 

NSGA-II found most solutions in the true Pareto front and its 

computational time is also short [25]. The figure shows that the 

Pareto solutions ocated close to the upper left corner have a small 

RMS of body roll angle in the steering input test while larger 

RMS body roll angle in speed bump test, which means the system 

achieved good handling performance but provides poor ride com-

fort. By contrast, the solutions near the lower right corner present 

worse handling but better ride comfort. Thus, in the objective 

space, the solutions as a result of optimisation form a Pareto opti-

mal front, from which designers are able to make the most suitable 

choice that satisfies the practical requirements. Moreover, the 

selection of the solutions should be a compromise between the 

ride and handling performances.  

In accordance with the Pareto chart, point A is applied for simula-

tion. A solution A in central region of the trade-off is chosen for 

analysis. Therefore, the choice of state weighting parameters Q  

is based on the trade-off between both situations, and gives 

1 1
diag , 3.259

0.0714 0.0714
Q R

 
  

 

 and the optimal gain matrix, 

 0.2619 52.9598 56.0426 0.0974 0.4380 0.47574 0.2743 28.4627 0.8716 2.4728

lqr

T

K 

      

 

Then, the value of 1259  . 
The upper and lower limits on the parameters are set based on 

manual or conventional tuning of the CNF-LQG fusion control 

strategy. The appropriate initial choice of the parameters and the 

limits undoubtedly reduces the computational time and complexity. 

The response on time domain for body roll angle and roll rate 

responses are shown in Figures 3 and 4 respectively. The optimi-

sation solution offers a rather noticeable improvement results 

compared to the manually-tuned method. From the application 

point of view, both tuning process can be used. However, using 

optimisation method gives a multiple choice of solutions and pro-

vides the optimal parameters compared to manual tuning method. 

Table 3 is shown the improvement of RMS values of signal re-

sponses for CNF-LQG fusion control strategy from manual tuning 

method and the proposed optimization method in handling per-

formance while Table 4 is shown the comparison of the RMS 

values of signal responses in ride test. 

 

 
Fig. 3: single lane change (a) roll angle response; (b) roll rate response. 
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Table 4: RMS values of CNF-LQG fusion with manually tuned and NSGA-II on handling test 

Signal Response Manually Tuning Method NSGA-II Optimisation Improvement % NSGA-II Over Manually Method 

Roll Angle 0.00017 0.00015 6.67 

Roll Rate 0.00083 0.00082 1.2 

 

Figure 3 illustrates the output results of body roll angle and roll 

rate for the manually tuned and the optimized using NSGA-II in 

Single Lane Change test (handling performance). It is clearly seen 

that the output responses of CNF-LQG fusion control strategy 

using optimized method are reduced more compared to manually 

tuning method. The different between output responses by using 

these two methods are mentioned in Table 4. This results also 

improved for Speed Bump test. 

While, the output results of body roll angle and roll rate for the 

manually tuned and the optimized using NSGA-II in Speed Bump 

test (ride performance) are shown in Figure 4. It is clearly seen 

that the output responses of CNF-LQG fusion control strategy 

using optimized method are identical compared to manually tun-

ing method. The small different between output responses by us-

ing these two methods are mentioned in Table 5.  

 

 
Fig. 4: Speed bump test (a) roll angle response; (b) roll rate response. 

 
Table 5: RMS values of CNF-LQG fusion with manually tuned and NSGA-II on ride test 

Signal Response Manually Tuning Method NSGA-II Optimisation Improvement % NSGA-II Over Manually Method 

Roll Angle 0.000291 0.000289 5.23 

Roll Rate 0.0063 0.0059 6.35 

 

5. Conclusion  

This research discussed the optimization of the proposed control 

scheme namely CNF-LQG implemented base on the nonlinear 

vehicle model. The work on CNF-LQG fusion control design is 

further extended by using genetic algorithm as tuning method. 

This is done to give an optimal set of parameter values on control-

ler design to meet the specified design objective. By using NSGA-

II gives the designer a multiple choice in selection of the solutions 

with regard to the system performance.  
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