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Abstract 
 

The peristaltic flow of a viscoelastic fluid in the tapered microchannel with variable viscosity is investigated. This study is reinvigorated 

by discovering fluid dynamic in peristaltic motion as signified by biological flows, pharmacodynamics and gastro-intestinal motility 

enhancement. The microchannel non-uniform and asymmetry is developed by choosing a peristaltic wave train on the wall with different 

amplitudes and phases. The flow analysis has been arisen for low Reynolds number and long wavelength case. The solutions for stream 

function, axial velocity and pressure gradient are obtained. The effects of pertinent parameters on the average pressure rise per wave-

length are investigated by means of numerical integration. The axial velocity and phenomena of trapping are further discussed.  

 
Keywords: Peristaltic transport;   Variable viscosity; viscoelastic fluid; Tapered microchannel. 

 

1. Introduction 

In recent years, the investigation of peristaltic transport in a chan-

nel is well knows as a crucial type of flow occurring in numerous 

practical applications, like urine transport from kidney to bladder 

through the ureter, roller and finger pumps, chyme motion in the 

gastrointestinal tract, movement of ovum in the fallopian tube, 

transport of lymph in the lymphatic vessels and vasomotion of 

small blood vessels such as arterioles, powder technology and 

many others [1-11]. The minority of the physiological systems in 

human body cannot be formed by a symmetrical channel, particu-

larly the sagittal cross section of the uterus. Eytan and Elad [12] 

and Eytan et al. [13] developed the intra uterine fluid in the sagit-

tal cross section of the uterus by an asymmetric channel in lubrica-

tion approach. Mishra and Ramachandra Rao [14]   extended the 

flow in an asymmetric channel generated by peristaltic waves 

propagating on the walls. Hayat and Ali [15] studied the peristaltic 

motion of Carreau fluid in an asymmetric channel. 

Vajravelu et al., have developed a peristaltic transport of a Wil-

liamson fluid in asymmetric channels with permeable walls [16].  

A good number of the studies in the literature have been carried in 

uniform geometry only but it is well known that in most of the 

practical applications, such as the physiological body organs, peri-

staltic mechanism involved in small blood vessels, lymphatic ves-

sel, intestine, ducts afferents of the male reproductive tracts and in 

transport of spermatozoa in the cervical canal are generally ob-

served to be non-uniform flow geometry [17-20].    Srivastava and 

Srivastava [21] observed the peristaltic flow in the vas deferens by 

assuming it to be a non-uniform diverging channel and a tube. 

They appeared at a more realistic representation by expressing 

non-Newtonian (Power law fluid) fluid flow in a non-uniform 

tube.All the above-citied studies point out that physiological fluid 

with constant viscosity but its fails to give better understanding 

when peristaltic mechanism involved in small blood vessels, lym-

phatic vessel, intestine, ductus efferentes of the male reproductive 

tracts and in transport of spermatozoa in the cervical canal. There-

fore, it is extremely attractive to include the effect of variable 

viscosity instead of making an allowance for the viscosity of the 

fluid to be constant. Hayat and Ali [22] considered the peristaltic 

transport of a Newtonian fluid with variable viscosity in an asym-

metric channel. The influence of slip condition on the peristaltic 

motion of a magnetohydrodynamic (MHD) viscous fluid with 

variable viscosity has been reported by Ali et al. [23]. 

Motivated by these studied that the general case of asymmetric 

wall oscillation in non-uniform channel may also exist in biologi-

cal conduits, e.g., the uterus [24]. In this learn, the present study is 

an asymmetric flow of a particulate suspension in a non-uniform 

microchannel induced by sinusoidal peristaltic waves. In addition 

that, the most generalized form of a two dimensional channel is 

suggested to study the peristalsis, so called as the tapered micro-

channel or generalized micro-tapered asymmetric channel. To the 

best of our knowledge, no investigation has been made yet to ana-

lyze the effect variable viscosity on the peristaltic flow of a visco-

elastic fluid in the tapered microfluidic vessel. The governing 

equations are modeled and then solved analytically by using long 

wavelength and low-Reynolds number assumptions. Expressions 

for the axial velocity, stream function and average pressure rise 

per wavelength are presented. Numerical computation has also 

been performed for the average pressure rise.  The effects are pre-

sented and analyzed for an adequate range of influential physical 

parameters. 

2. Mathematical Formulation  

We consider a two – dimensional flow of a viscoelastic fluid with 

variable viscosity through an asymmetric microchannel of non-

uniform cross-section with sinusoidal wave trains propagate on the 

channel walls with unvarying speed c.   Let Y = H1 and Y = H2 be 
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respectively the upper and lower wall boundaries of the tapered 

microchannel of width 2d. The geometry of the proposed wall 

surfaces are defined (Fig.1) as  
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where d is the half-width of the channel, 1a  and 2a  are the am-

plitudes of lower and upper wall respectively,  c is the phase 

speed of the wave,  'k  1  is the non – uniform parameter,   is 

the wave length and the phase difference   varies in the range 

 0 , 0  corresponds to symmetric channel with waves 

out of phase i.e. both walls move towards outward or inward sim-

ultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Schematic diagram of tapered asymmetric channel 

 

The governing equations of motion for the present investigation 

are  
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where V,U are the components of  velocity along X and Y di-

rections respectively, t  is the dimensional time,     is the density, 

)y(  is the  viscosity function and P  is the pressure.  

The no-slip boundary conditions are  
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To make the above equations non-dimensional, it is suitable to 

introduce the following non-dimensional variable and parameters,   
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in which Re  is the Reynolds number, b,a  are amplitudes of 

the lower and upper walls respectively,  is the wave number and 

0 is the constant viscosity.  

Invoking Eq.(7) into Eqs. (3) – (5), we have  
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The corresponding boundary conditions 
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It is important noted that the dimensionless flow rate F is fluctuat-

ing exponentially with the relation AtQeF  , where A and Q  are 

flow constant. The constant  Q  is responsible for the negative 

and non-negative flow rate 0F  or 0F  according as 0Q or 

0Q  . The negative flow rate shows for backward pumping, 

when the flow is reversed to the direction of the peristaltic motion. 

However, the positive pumping denotes to the case when volumet-

ric flow rate and pressure rise are both positive. It was observed 

experimentally by Kikuchi [25] that the flow rate of blood reduced 

exponentially with time. It was also recommended that this varia-

tion of flow rate is independent on the structural details of the 

microchannel. 

In the forthcoming analysis, we will use [22-23] 
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where   is the viscosity parameter. 

3. Exact Solution  

Adopting the long wavelength and low Reynolds number approx-

imations [14-16], Eqs. (8-9) can be written as  
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Eq. (20) reveals that p  is function of y  alone. 

The set of eqs. (19-20), subject to the conditions (10) are solved 

exactly for u , we have.  
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The corresponding stream function is 
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We can find that  
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The non-dimensional expressions for the average pressure 

rise pΔ , 
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4. Result and Discussion 

In prescribe to discuss the pumping characteristics of the expres-

sion (24) is not integral analytically therefore numerical integra-

tion is used to calculated the integrals using Mathematica and the 

results are presented graphically. Our objective to see the salient 

features of various physical parameters e.g., non-uniform parame-

ter ,k phase difference ,  variable viscosity   and amplitudes 

(a and b) on pressure rise .pΔ   
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Fig. 2: The pressure rise versus flow rate for  0.5; 0.4;a b   

/ 2  and ..10  
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Fig. 3. The pressure rise versus flow rate  for 0.5; 0.4;a b   
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Fig. 4. The pressure rise versus flow rate for  0.6; 0.7;a b   

0.1;k   and ./ 2   
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Fig. 5. The pressure rise versus flow rate for 0.4; 0.1;b k   
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Fig. 6. The effect of a on velocity profiles 0.3; 0.2;b k       

1.8;  / 3; 0.2,     at 30.x  and ..t 20  
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Fig. 7. The effect of Θ  on velocity profiles at  0.2; 0.3;a b   

0.2; / 3; 0.3,k      30.x   and ..t 20  
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Fig. 8. The effect of k  on velocity profiles at 
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Fig. 9. The effect of   on velocity profiles at  0.6; 0.4;a b   
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Fig. 10: Plot showing streamlines for four different parameter b  

values 0b  (panel (a)), 1.0b  (panel (b)), 2.0b  (panel (c)) and 

.3.0b  (panel (d)). The other parameters chosen are 

,.a 30 ,.m 20 ,/ 2  ,.51Θ ,.10 ..t 30  
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Fig. 11. Plot showing streamlines for four different parameter k  

values 0k  (panel (a)), 10.k   (panel (b)), 20.k   (panel (c)) 

and ..k 30  (panel (d)). The other parameters chosen are 

,.a 20 ,.b 30 ,/ 3  ,.20 ,.71Θ ..t 30  
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 (d) 

Fig. 12. Plot showing streamlines for four different parameter   

values 0  (panel (a)), 010.  (panel (b)), 10.  (panel (c)) 

and 20.  (panel (d)). The other parameters chosen are 

,.a 30 ,.b 20 ,/ 6  ,.k 250 ,.41Θ ..t 30  

 

The average pressure rise 
pΔ versus time-averaged mean flow 

rate Θ  is plotted, in Figs. (2-5), which show a linear relation be-

tween them.  There are four types of regions regarding pumping. 

The graph is secured so that the upper right hand quadrant (I) de-

notes the region of peristaltic pumping where 0Θ and 0pΔ . 

Quadrant (II), where 0pΔ and 0Θ , are designated as aug-

mented flow. Quadrant (IV) such that 0pΔ and 0Θ is called 

retrograde or backward pumping and for 0pΔ is a free pumping 

region. Fig.2 presents the variation of 
pΔ versus Θ  for different 

value of non-uniform parameter .k  It is observed that the average 

pressure rise decreases with increase of .k  Fig.3 shows the effects 

of   on the average pressure rise .pΔ  It is clear that an increase 

in  results in a decrease of the peristaltic pumping rate, free 

pumping  0pΔ  and the adverse pressure rise  0pΔ .  In 

Fig.4, it is seen that the maximum pressure rise happens at zero 

time-averaged flow rate for different values of viscosity parameter 

.  In addition, the average pressure rise increases by increasing 

viscosity parameter 
 
also average pressure rise increases as 

time-averaged flow rate decreases. Fig.5, have been plotted to see 

the influence of average pressure rise ,pΔ against time-averaged 

mean flow rate for different values of amplitude of lower wall a. It 

is depicted that average pressure rise increases by increasing am-

plitude of lower wall a. 

Figs. 6–9 are prepared for the velocity field versus y. It is noticed 

from Fig.6 that the velocity profile is parabolic nature and it in-

creases with an increase in dimensionless amplitude of lower wall 

a. Fig. 7 displays the effects of mean flow rate  Θ   on the axial 

velocity distribution. It is found that the axial velocity increases as 

Θ  increases.  The effect of the non - uniform parameter k on u is 

illustrated in Fig. 8. It is exposed that the axial velocity u  in-

creases in near the tapered microchannel walls while the reverse 

situation is observed in the hub part of the trapped channel. The 

velocity distribution for increasing values of α is shown in Fig. 9. 

One of the important findings of the present study is that the max-

imum velocity does not occur in the middle of the tapered micro-

channel, but moves towards the upper wall with the increase in the 

variable viscosity difference between the walls.  

The establishment of an internally circulating bolus of fluid by 

closed streamlines is called trapping and this trapped bolus is 

forced in front along with the peristaltic wave. The results of 

,k,a and Θ  on trapping can be seen through Figs 10-12. The 

effect of amplitude of upper wall b on trapping is studied through 

Fig. 10. It is seen that the size of the trapping bolus increases by 

increasing b. The streamlines for different values k are shown in 

Fig.11. It is evident from the figure that the size of the trapped 

bolus increases with an increase in k. To see the effects of viscosi-

ty parameter , Fig. 12 is plotted. It is observed that when we 

increase , the size of trapped bolus increases in the amplitude of 

upper part of the channel and reverse situation happens in ampli-

tude of lower wall. 

5. Concluding Remarks  

We have theoretically analyzed the problem of peristaltic transport 

of a viscoelastic fluid in the tapered microchannel with variable 

viscosity. The governing two dimensional equations have been 

modeled and then simplified using long wavelength and low – 

Reynolds number approximations. Closed form expression of 

stream function, axial velocity and pressure gradient are devel-

oped. The results are discussed through graphs. We conclude the 

following observations: 

 The free pumping flux for a fluid with variable viscosity is 

greater as equated to fluid with constant viscosity. Further-
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more, peristalsis has to work versus a greater pressure for a 

fluid with constant viscosity when compared with that fluid 

of variable viscosity. 

 It is found that the pressure rise increases as the variable 

viscosity parameter and amplitude of lower wall parameter 

increases and it decreases as the non-uniform parameter and 

phase difference.  

 It is interesting to note that the fluid axial velocity profile 

increases as its viscosity increases. This can be assigned to 

the fact that the fluid has becomes lighter and then flow 

quicker. 

 It is concluded that when we increase , the size of trapped 

bolus decreases in the amplitude of lower part of the channel 

but it is reversed situation happens in amplitude of upper wall. 
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