

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.5) (2018) 242-247

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Survey on Techniques Adopted in the Prioritization of Test

Cases for Regression Testing

John Bruce. E
1
*, T. Sasi Prabha

2

1 Research Scholar, Faculty of Computing, Sathyabama Institute of Science and Technology

2 Pro Vice-Chancellor, Faculty of Computing, Sathyabama Institute of Science and Technology
 *Corresponding author E-mail:johnbruce@sathyabama.ac.in

Abstract

 Regression testing is testing the software with the intention to confirm that changes made on part of a module do not necessitate other parts

of the module. Test case prioritization helps to reduce regression testing cost by ordering the test cases in such a way that it produces

optimized results. Code Coverage and Fault detection being the factors behind the prioritization is dealt with techniques like Heuristic

method, Meta Heuristic methods and Data mining techniques. The effectiveness of the techniques applied can be evaluated with the metrics

like Average Percentage of Fault Detection (APFD) , Average Percentage Block Coverage (APBC), Average Percentage Decision Coverage

(APDC) etc . In this paper,, a detailed survey on the various techniques adopted for the prioritization of test cases are presented.

Keywords: Code Coverage ; Greedy ; Machine Learning; Meta Heuristic ; Prioritization, etc.

1. Introduction

Regression testing accounts for 80% of the maintenance cost and

thus optimizing regression testing is one of the objectives of testing

team. It has been proved that prioritizing test cases based on the

coverage criterion can achieve earlier fault detection by reducing the

cost of testing. Test cases are assigned weights based on their ability

to cover most part of the program to be tested. The test cases which

cover most number of modified lines can be assigned with the

highest priority and is executed first and the one with the least

coverage of modified lines can be assigned with the least priority

and is executed last for effective earlier fault detection. Prioritizing

test cases based on Code Coverage and ignoring fault detection

could produce some vague results. Taken a Program P and a Test

Suite T, let PT be the set of permutations of T ; a function f from PT

to the real numbers can be stated as follows :

Find T’ € PT such that for all T” where (T” € PT) (T” ≠ T’) [f (T”) ≥

f(T)], where PT represents the set of possible prioritization of T and

f is a function that applied to such ordering yields an fitness value

for that ordering.

A super statement is formally defined as a set of statements that are

executed by the same test cases in T. For any statement si and sj, if

there exists a test case in T that executes one but only one of these

two statements, the two statements must belong to different super

statements.

Based on the concept of super statements, the statements of P may

be divided into several sets of statements, each of which is a super

statement. In order to validate the test cases, it is required to define the

objective in a quantitative manner.

2. Motivation

Program testing can be a very effective way to show the presence of

bugs, but it is hopelessly inadequate for showing their absence”

[Dijkstra, 1972]. Most beta testers are “techies” who have higher

tolerance of bugs and they do not report usability problems.

Customers look for more reliable systems and organizations must

perform cost/benefit analysis in order to determine how much to

spend on testing. Software testing team save their test cases or test

suites they have written for reusability and coverage. This type of re-

use of test cases leads to regression testing. Test case prioritization

techniques aim at defining an order of test cases that favor the

achievement of a goal during test execution, such as revealing

failures with minimum execution time. A number of techniques have

been proposed in the literature such as the test case selection, test

suite reduction and test case prioritization. The test case selection

problem deals with selecting a subset of the test cases according to a

specific criterion, whereas test suite reduction techniques deals with

on selecting a cost effective subset of the test cases which covers its

subsequent subsets..

Test case prioritization techniques, on the other hand address the

problem of defining an execution order of the test cases according to

a given testing goal, particularly, detecting failures as early as

possible.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 243

3. Literature Survey

Alessandro Marchetto et al (2015), has dealt deals with ordering of

test cases using IR Traceability recovery that maximize the number

of discovered faults that are both technical and business critical[3].

Dan Hao et al (2016) has conducted an empirical study on ten non-

trivial object projects by representing as Integer Linear

Programming (ILP) and it has been proved that Optimal coverage

outperforms the additional coverage[5]. Automated test generation

tool with high level petri nets to capture high level control and data

requirements for functional testing has been devised by Dianxiang

Xu (2015). Comparison of fault-detection capability, Time

performance and scalability for different coverage are done[7].

It is also proved Latent Latent Semantic Analysis(LSI) outperforms

Vector Space Model (VSM). Javier Tuya et al (2016) has revised a

reduction algorithm which optimizes the query using cost and

distance and executes the SQL query by splitting into various

components [10]. Given a query q and a document Model V, the

Lijun Mei et al (2015) has proposed refinement-oriented level-

exploration strategy and a multilevel coverage method which locates

a rule whose left hand side matches the query q by following the

strategy for subsumption relation [12]. The experimental results have

shown the model instance achieving a higher fault detection rate

than a subsumed technique, which validates that the proposed

hierarchy and have the potential to improve the cost-effectiveness of

test case prioritization techniques.

 Per Erik et al (2017) has developed a called SuiteBuilder which

collects raw Test Suites and Assign Priorities . Since the alphabetical

ordering of test cases has shown failures in the past, selection of test

cases is done by selecting a subset of test cases given knowledge of

the changes to the software [15].

Predicting the software components having more vulnerability using

machine learning algorithms has been done by Riccardo Scandariato

(2014). Identifying certain features as predictors, the authors using

term frequencies have predicted whether a file is vulnerable or not

using Naïve Bayes and Random Forest prediction methods. Java

applications from f-droid.org were tested and experimental results

have shown Naïve Bayes showing better performance than random

forest[16].

A test case which has the highest coverage of not-yet-covered

entities is called as a tie. Lexicographical ordering, which deals with

ordering of lexicons following alphabetical order is proposed for

breaking ties. A surrogate key is used which statistically or

heuristically correlates with the faults, expecting that maximizing the

surrogate will lead to maximizing the rate of fault detection [17]. Yi

Bian et al (2017) have proved that the search space is reduced by

combining knowledge of the application domain with a biological

theory called Ant Colony optimization. The complexity of the

problem and the availability of huge number of test cases is a

challenge to find the relations between test cases [20].

Tingting Ma et al (2010) proposes a test case prioritization method

based on requirement correlations based on the requirements given

by users and developers. By readjusting prioritization of fault-related

requirements, it can further optimize the order of test cases.

Prioritization of test cases using artificial intelligence techniques like

Simulated Annealing, Genetic Algorithm Swarm optimization, Ant

colony optimization, Bee colony optimization has shown better

performance than Greedy method [1] [4][6][11][21]. From the

available literature, no evidence has been existing to prove whether

there is a high correlation between coverage and fault detection.

4. Techniques Used

Optimization problems can be divided into two major categories as

exact and approximate. Exact algorithms give exact solution

whereas approximate algorithm may or may not give exact solution.

The Taxonomy of Prioritization of test cases using different

optimization problems is shown in Fig.1.

Algorithms are classified as Local and Global Search algorithms.

Local search algorithms search the neighborhood of candidate

solutions. Some examples of local search algorithms are simulated

annealing, tabu search, iterated local search and variable

neighborhood For example, a hill climbing search starts with a

random solution and its neighbours are evaluated based on its

defined fitness objective function. The search can easily get stuck in

local optima, which can be overcome by restarting the search with

new random values. Contrary to local search algorithms, global

search algorithms try to overcome local optima in order to find more

globally optimal solutions. With evolutionary testing, one of the

most commonly applied global search algorithms is a Genetic

Algorithm (GA).

A Memetic Algorithm (MA) is a hybrid form of global and local

search, such that the individuals of a population in a global search

algorithm have the opportunity for local improvement in terms of

local and the global search. Test case selection techniques focus on

covering the changed code between versions of the software under

test.

Iterative and Greedy based Techniques are categorized by :

(a) Total Technique (TT) , which prioritizes test cases by

maximizing the total number of covered entities.

(b) Additional Technique (AT), chooses the test case that covers the

highest number of yet-cover entities

Greedy based algorithms may produce sub optimal results because

they may get struck with local minima where as Meta-heuristic and

evolutionary search algorithms aim to avoid such problems. They

have been used for strategy advancement. Greedy algorithm may not

give the optimal solution always. Given the test case in Tab 1, there

are only two possible orderings:

Option 1 : 3 2 1 4or 3 2 4 1 based on the priority assigned

https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Riccardo+Scandariato
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Riccardo+Scandariato

244 International Journal of Engineering & Technology

Optimization

 Exact Approximate

Heuristic

Meta Heuristic Data Mining

 Search Algorithms Population based Trajectory Based Classification

 Greedy Algorithms GeneticAlgorithm Simulated Annealing Clustering

 Branch and Bound Tabu Search Feature Selection

 Integer Linear Ant Colony Optimization Feature Reduction

Programming

 Particle Swarm Optimization

 Harmony Search

 Artificial Bee Colony Optimization

Memetic Algorithm

 Fig. 1 Taxonomy of Prioritization of Test Cases using different Optimization Problems

Table 1 : Eg for local minima

 T1 T2 T3 T4 T5 T6 T7

1.

✓ ✓ ✓

2.

✓ ✓ ✓ ✓ ✓

3.

✓ ✓ ✓ ✓ ✓ ✓ ✓

4.

 ✓ ✓ ✓

Meta heuristic is a general algorithmic framework for addressing

intractable problems. They are inspired by processes occurring in

nature. Meta-heuristic algorithms are used to solve such problems

which suffer at Local Minima and NP-Hard. A metaheuristic is

formally defined as an iterative generation process which guides a

subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space, learning strategies are

used to structure information in order to find efficiently near-optimal

solutions (Osman and Laporte 1996). Metaheuristics are strategies

that “guide” the search process. The goal is explore the search space

in order to find the (near) optimal solutions. They cannot always

produce optimal solutions, but they do have the potential to produce

good solutions in short amount of time.

Genetic algorithm: In genetic algorithm, the initial population

needs to be generated with the fitness function defined between 0

and 1 and it can provide significant reduction in the number of test

cases. The higher amount of Fitness function, the more probability is

the test frequency. GA and Search algorithm Tabu search divides

the test cases into two groups: Short term and long term. The most

frequently used test cases are in short term list where as all test cases

will be kept in long term list. The long term test cases have more

effects for error detection. The two lists are used for the creation of

new test cases. These test cases can help in finding error in less time

complexity and hence this method is considered as one of the best

method.

Firefly is the next method used to find test cases. The radical idea is

generated from luminescent relation of fireflies. The firefly pays

International Journal of Engineering & Technology 245

attention to luminosity of the other fireflies. Optimal solution can be

obtained by Adjacency and Confusion matrix . In comparsion with

ACO algorithm, this algorithm has better coverage.

Particle Swarm Optimization (PSO) optimizes a given problem by

iteratively trying to improve a candidate solution against a measure

of quality according to few simple formulae. Formally, let f: ℝn →

ℝ be the cost function which must be minimized. The function takes

inputs in the form of a vector of real numbers and produces a real

number as output which indicates the objective function. . The

objective is to find a global solution a for which f(a) ≤ f(b) for all b

in the search-space. This method does not guarantee that optimal

solution is ever reached. Optimizations problems which are Np-Hard

like Travelling Sales Person and Job sequencing with deadlines can

be solved by PSO method with minimum execution time.

Ant Colony optimization (ACO) is a probabilistic technique used

for solving problems which can be reduced to finding optimal paths

through graphs. . The inspiring source of Ant Colony Optimization

is the foraging behavior of real ant colonies. ACO algorithms are

used for automatic test case generation. ACO algorithms may belong

to different classes of approximation algorithms and these

algorithms are better than Simulated Annealing and Genetic

algorithm for Coverage capability, Convergence speed and stability.

Artificial Bee Colony (ABC) is based on the intelligent behavior of

Bees. The Bee Colony has three categories of Bees as employed

bees, onlookers and scouts. The employed bees search food around

the food source in their memory and they convey information about

these food sources to the onlooker bees.

Memetic algorithms (MA) is a form of evolutionary or any

population-based approach with separate individual learning or local

improvement procedures for problem search

Cuckoo Search (CS) is an optimization algorithm which was

inspired by the obligate brood parasitism of some cuckoo species by

laying their eggs in the nests of other host birds (of other species). It

has both local and global search ability. The major advantage of CS

is global optimization capability.

Harmony Search (HS) is a population based meta heuristic

algorithm inspired from the musical process of searching for a

perfect state of harmony. The pitch of each musical instrument

determines the aesthetic quality, just as the fitness function value

which determines the quality of decision variable. It is used to solve

NP-hard optimization problems. This method is versatile to combine

with other meta heuristic algorithms to produce Hybrid Meta

Heuristics which can be applied in various applications.

Several relevant tasks in Data Mining such as clustering,

classification, feature selection and data reduction are formulated as

optimization problems, in which feature selection and feature

reduction are used for test case selection. Table 2 lists the survey on

prioritization.

5. Evaluation Metrics

The order in which the test cases are executed affects the Rate of

Code coverage and Rate of Fault Detection. Heuristics are required

to estimate the ability of a test case to reveal faults as shown in

equations (1-3).

1. Average percent of faults detected (APFD)

Given T being the test tuple, g the number of faults in

program under test, n the number of test cases, reveal(i, T) =

position of the first test in T that exposes fault i

 (1)

2. Total statement coverage and Decision Coverage:

Test cases are prioritized by number of statements covered.

The statement covers only the true conditions

 (2)

 (3)

3. Total Fault-Exposing-Potential (FEP) are one in which

the test cases are prioritized by FEP.

APFD T P
reveal i T

ng n

i

g

(,)
(,)

  


1
1

2

1

|)(mutants|

|by killed)(mutants|
),(

j

ij

ji
s

ts
stFEP 

 j jii stFEPtFEP),()(

246 International Journal of Engineering & Technology

Table 2 : Survey on techniques used for prioritization

Factors for Techniques Author Data sets Results

prioritization

Coverage based 1.Generalized AT using Sepehr Eghbali and Java programs like Reduced time complexity

technique Lexicographical Ordering for Ladan Tahvildari [17] Ant, Galileo, Jmeter, and increased the rate of
 breaking ties Toppas, Nano, XML fault detection

 2. Reducing a database with a set of Javier Tuya et al [10] Helpdesk, Compiere, Maintenance operations can

 SQL queries TPC-H be done
 3. Memetic Algorithm Gordon Fraser et al 12,000 Java Classes

 [9]

 4. Reduction of test cases Ahmad A. Saifan [2] Java Source “Cinema” Naïve Bayes is better than
 CBR and J48

Additional Coverage 1.Test case prioritization is Dan Hao et al [5] Datasets from Reduced time complexity

Based Technique represented as an Integer Linear Software- and increased the rate of
 Programming Infrastructure fault detection

 Repository (SIR)

 2. Genetic Algorithm and Ant Yi Bian [20] Flex, space, bash, v8 Reduced time complexity
 Colony Optimization

 3. Greedy algorithm Lijun Mei et al [13] Hotel Booking process Test case prioritization

Code Coverage 1.An IR based traceability recovery Alessandro Marchetto 21 Java applications Earlier detection of faults

 et al [3]

 2. Genetic Algorithm Zheng Li et al [21] Print_tokens, Genetic Algorithm is better
 print_tokens2, than Greedy algorithm

 schedule, schedule2,

 space and sed
Reach ability Coverage 1.Automatic Test Case generation Dianxiang Xu et al [7] Executable functions are

 automated

Fault Exposing potential 1.Predicts which component Riccardo Scandariato d-droid.org Random Forest is better than
 contains vulnerability et al [16] Naïve Bayes

 2. Multi Objective Particle Swarm Erum Ashraf et al [8] Web Applications Optimizes Fault Coverage

 Optimization and execution
 3. Test Case Prioritization by Lei Xiaoet al [12] DCS (V1.0) and DCS Clustering by DB index

 exposing faults (V2.0) produces better performance

 than K-Means clustering

Path Coverage 1.Artificial Bee Colony Soma Sekara Baba Triangle classification Improved time and space

 optimization Lam et al [18] problem complexity

6. Conclusion:

From the available literature, it is evident that Greedy algorithm runs

in O (m n) time complexity, where as Additional Greedy algorithm

takes O(m n2), 2-Optimal algorithm takes O(m n3) and Hill Climbing

method runs in O(n2) . It is proved that additional Fault Exposing

Potential is more suitable than all other prioritization techniques that

are based on coverage but with a marginal gain in APFD. Evaluation

Metrics are discussed. Artificial Bee Colony optimization offers

advantages over Tabu Search, GeneticAlgorithm and Ant Colony

Optimization and recent studies have shown CS is more efficient

than PSO and GA. Heuristics can be applied for the prioritization of

test cases. All the heuristics outperform the untreated or orderly

prioritized test suites.

References

[1] AdiSrikanth, Nandakishore J. Kulkarni, K. Venkat Naveen,

PuneetSingh, and Praveen Ranjan Srivastava(2011), ”Test Case

Optimization Using Artificial Bee Colony Algorithm”, ACC 2011,
Part III, CCIS 192, Pp. 570–579.

[2] Ahmad A. Saifan (2016), “Test Case Reduction Using Data Mining

Classifier Techniques”, Journal of Software, 11(7), Pp. 656 -663
[3] Alessandro Marchetto, Md. Mahfuzul Islam, Waseem Asghar, Angelo

Susi,Giuseppe Scanniello (2015), “A Multi-Objective Technique to

Prioritize Test Cases”, IEEE Transactions on Software Engineering,
42(10), Pp. 918 – 940

[4] Chengying Mao, YuXinxin, Chen Jifu, Chen Jinfu (2012)"Generating

Test Data for Structural Testing Based on Ant Colony Optimization

"12th International Conference on Quality Software, Xi'an, Shaanxi,

pp. 98 – 101.

[5] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao
Xie (2016), “To Be Optimal or Not in Test-Case Prioritization “, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 22(5), Pp.490-

503
[6] Deepak Rai and Kirti Tyagi (2014), “Regression Test Case

Optimization Using Honey Bee Mating Optimization Algorithm with

Fuzzy Rule Base”, World Applied Sciences Journal, 31(4), Pp. 654-
662

[7] Dianxiang Xu, Weifeng Xu, Michael Kent, Lijo Thomas, and

Linzhang Wang(2015),” An Automated Test Generation Technique
for Software Quality Assurance” , IEEE TRANSACTIONS ON

RELIABILITY, 64(1), Pp. 247-268

[8] Erum Ashraf , Tamim Ahmed Khan, Khurrum Mahmood, Shaftab
Ahmed (2017), “Value based PSO Test Case Prioritization

Algorithm”, International Journal of Advanced Computer Science and

Applications, 8(1), Pp. 389-394
[9] Gordon Fraser, Andrea Arcuri, Phil Mcminn (2014), “A memetic

algorithm for hole test suite generation”, The Journal of System and

Software Elsevier
[10] Javier Tuya, Member Claudio de la Riva, Marýa Jose Suarez-Cabal,

and Raquel Blanco (2016), “Coverage-Aware Test Database

Reduction”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 42(10),Pp. 941-959

[11] Jun Wang, Yan Zhuang, Chen Jianyun (2011) "Test Case

Prioritization Technique based on Genetic Algorithm", International
Conference on Internet Computing and Information Services, Hong

Kong , pp. 173 – 175.

[12] Lei Xiao, Huaikou Miao, Weiwei Zhuang, Shaojun Chen (2017), “ An
empirical study on clustering approach combining fault prediction for

test case prioritization”, 16th International Conference on Computer

and Information Science (ICIS), 978-1-5090-5507-4/17, Pp. 815-820

International Journal of Engineering & Technology 247

[13] Lijun Mei, Yan Cai, Changjiang Ji, Bo Jiang, W.K. Chan, Zhenyu

Zhang, T.H. Tse (2015), “A Subsumption Hierarchy of Test Case

Prioritization for Composite Services “, IEEE TRANSACTIONS ON

SERVICES COMPUTING, 8(5), Pp.658-673
[14] Marwah Alian,Dima Suleiman, Adnan Shaout(2016), “Test Case

Reduction Techniques- Survey”, International Journal of Advanced

Computer Science and Applications, 7(5), Pp. 264-275.
[15] Per Erik Strandberg, Wasif Afzal, Thomas J. Ostrand, Elaine J.

Weyuker, and Daniel Sundmark(2017), “Automated System-Level

Regression Test Prioritization in a Nutshell “, IEEE Software,Pp. 30-
37

[16] Riccardo Scandariato , James Walden , Aram Hovsepyan , Wouter

Joosen(2014), “Predicting Vulnerable Software Components via Text
Mining” , IEEE Transactions on Software Engineering, 40(10), pp:

993-1006

[17] Sepehr Eghbali and Ladan Tahvildari (2016), “Test Case Prioritization
Using Lexicographical Ordering”,IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 42(12), Pp. 1178-1195

[18] Soma Sekhara Baba Lam, ML Hari Prasada Raju, Uday Kiran M.,
Swarj Ch, Praveen Ranajin Srivatsav (2012), “Automated Generation

of Independent Paths and Test Suite Optimization using Artificial Bee

Colony, Proceedia Engineering, Elsevier 30, 191
[19] Tingting Ma , Hongwei Zeng , Xiaolin Wang(2016), “Test case

prioritization based on requirement correlations”, 17th IEEE/ACIS

International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),

10.1109/SNPD.2016.7515934

[20] Yi Bian, Zheng Li, Ruilian Zhao, Dunwei Gong (2017), “Epistasis
Based ACO for Regression Test Case Prioritization”, IEEE

Transactions on Emerging Topics in Computational Intelligence, 1(3),

Pp.213-223
[21] Zheng Li, Mark Harman, and Robert M. Hierons(2007), “Search

Algorithms for Regression Test Case Prioritization”, IEEE

Transactions on Software Engineering, Vol. 33(4)

https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Riccardo+Scandariato
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=James+Walden
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Aram+Hovsepyan
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Wouter+Joosen
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Wouter+Joosen
https://www.computer.org/csdl/trans/ts/2014/10/06860243-abs.html
https://www.computer.org/csdl/trans/ts/2014/10/06860243-abs.html
https://www.computer.org/csdl/trans/ts/2014/10/06860243-abs.html

