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Abstract 
 

Different fields of study are faced with several optimization problems which can either be discrete, nonlinear, linear, continuous, non-

smooth, or non-convex in nature. The continuously differentiable problems can be handled using several conventional methods such as the 

gradient-based methods, but such methods may not be ideal for the complex problems such as the non-convex or non- differentiable prob-

lems. Despite the existing number of methods for solving complex optimization problems, achieving optimal results is still difficult without 

much computational effort and cost input. The Particle Swarm Optimization (PSO) algorithm is a common optimization algorithm which 

is still suffering from an unbalanced local search (exploitation) and global search (exploration). The Meeting Room Approach (MRA) was 

recently developed as a multi-swarm model which for enhancing the exploration and exploitation in the PSO algorithm. In proposed Multi-

swarm approach, the algorithm starts from a uniformly generated positions, which may start from not good positions. In other words, the 

algorithm may have a slow convergence due to the initial positions. In this paper, a Logistic map was used to initiate a multi-swarm PSO 

to enable it to start from better positions. The performance of the proposed algorithm was evaluated on several numerical optimization 

problems and its convergence was found to be faster compared to the original model. 
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1. Introduction 

Optimization problems are a unique type of problem which seeks 

to either maximize or minimize the mathematical function of sev-

eral variables with respect to some constraints. Most of the real-

world or theoretical optimization problems can be generally mod-

eled in this framework. Mathematical models can be generally rep-

resented as [1–3]:  

 

Max or Min fi(x), (i = 1, 2, 3, … , M)                                            (1) 

 

subject to hj(x) = 0, (j = 1, 2, 3, … , J),                                       (2) 

 

 gk(x)  ≤ 0, (k = 1, 2, 3, … , K)                                                     (3) 

 

Where x = decision variables, fi(x), hj(x) and gk(x) = functions of 

the design vector: 

 

x =  ( x1, x2 , x3, … , xn)T                                                              (4) 

 

Hence, each optimization problem consists of an objective func-

tion fi(x), the variables (xi), and the constraints of the problems.  

All forms of life are accountable to nature, including the stellar, ga-

lactic, and planetary systems. Nature is mainly characterized by its 

ability to ensure its equilibrium through various means (both known 

and unknown). This is simply illustrated by the concept of seeking 

optimum in all aspects of life [4], [5]. There are certain goals which 

must be achieved, as well as certain demands that must be met while 

searching for optimum [6–9]. This process of searching for the op-

timum can be expressed as an optimization problem [10–12]; it can 

be simply put as a process of finding the optimum solution to a 

problem with respect to a performance matrix often referred to as 

an objective function (OF) (problem-specific) in most engineering 

and computing applications [13–15]. 

The past few years witnessed the development of several mathe-

matical methods and the commonest of these methods is the me-

taheuristics which are regarded as an efficient method for achieving 

acceptable solutions to a complex optimization problem in a rea-

sonable computational time using trial and error. The extent of a 

solution is dependent on the nature of the problem at hand but find-

ing the best solution within an appropriate time frame is a major 

aim. There is no guarantee that a given approach or a chosen algo-

rithm will proffer the best solution even though the basic compo-

nents which can make it work may be known. However, the major 

aim is to have a reliable and efficient framework algorithm which 

can provide the best solution at any time. Among the achieved qual-

ity solutions, some are expected to be near optimal even though no 

such assurance for such optimality exists [16]. 

Several metaheuristics were proposed within the last two decades 

and the PSO is one of the popular metaheuristics; it was developed 

as a swarm intelligence technique with inspiration drawn from the 

social flocking and schooling behaviors of birds and fishes [17], 

[18]. For each swarm, there are movements with variable velocities 

to better locations with a better food or experience compared to the 

previously explored locations. The PSO has no explicit selection 

function and this lack is compensated using leaders as guides during 

exploration. Each particle in the swarm is considered as a potential 

solution in the solution space, and a solution update is achieved by 

updating the position of each particle. 
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A new multi-swarm model called Meeting Room Approach (MRA) 

has been proposed for enhancing the exploration and exploitation 

balancing capabilities of the PSO [19–21]. The MRA consists of 

several swarms referred to as ‘clans’ and each clan has a leader 

(representing the best solution in the clan or the local best solution). 

The clan leaders meet periodically to select an overall best leader 

among them (the global best solution). The overall best leader has 

authority over all the other leaders and can control them or lead 

them to the best positions. The balance between exploration and 

exploitation is influenced by the interaction between the overall 

best leader (global best) and the normal leaders (local best). This 

interaction also maintains a suitable population diversity even when 

approaching the global solution; therefore, the risk of being trapped 

at the local sub-optimal is reduced.  

The initial positions of all particles in of Multi-swarm PSO (MPSO) 

are generated by using a uniform distribution equation, which may 

lead to starting from a not good positions, thus, MPSO may have a 

slow convergence. In this paper, MPSO is enhanced by using a cha-

otic map, meaning that, all particles are started from positions gen-

erated by using different randomization technique which enhance 

the searching process of MPSO.  

The remaining parts of this paper are organized as follows: Section 

2 presented the original PSO and the MRA, including the initializa-

tion of MRA, while section 3 presented the explanation of the pro-

posed enhancement to the MRA. Section 4 presented the findings 

of the experimental evaluations while the conclusion of the study 

was presented in section 5. 

2. Particle swarm optimization 

2.1. The standard version 

The PSO is one of the nature-inspired metaheuristics which was de-

veloped based on inspiration drawn from the flocking behavior of 

birds. In the PSO, it is assumed that a flock of birds is distributed 

randomly in an area with just a piece of food (Fig. 1a). The available 

food is represented by the dot on the tree, with an unknown position 

to each bird even though their distance from the food is known. 

Furthermore, a bird that is nearest to the food can signal the other 

birds to fly towards the food. Here, the food is considered as the 

optimal value (Fig. 1b) and each bird is considered as a particle. 

The distance between the food and each bird is a value of the OF. 

Hence, the birds’ flocking process can be defined as a function op-

timization process. Xi in Fig. 1b is the nearest particle to the goal, 

and as such, is considered as the current global optimal particle with 

a distance from goal expressed as Nbesti, representing the global 

optimal value [17], [18]. The PSO is conceptualized on the idea that 

each particle is defined with a position and velocity while searching 

for the global optimum of an NP-hard problem. The position of the 

particles is iteratively updated based on their respective local and 

global optimal positions so far visited. The updated position of each 

particle (e.g., particle i) is defined as: 

 

Xi(t + 1) = Xi(t) + Vi(t + 1)                                                      (1) 

 

where t  = current (temporal) status, t + 1  = post-update status, 

Xi(t+1) = new particles’ velocity. It should be noted that the time 

difference Δt = (t + 1) − 1 is a time unit.  

The velocity of particle i is expressed thus: 

 

Vi(i + t) = ωVi(t) + ciri (Xi
P − Xi(t)) + c2r2 (XG − Xi(t))      (2) 

 

where vi(t) = current particles’ velocity, Xi
P= local best position of 

the particle, XG  = global best position of the particle at the swarm 

level, and ω, c1, and c2 = constants that determines the importance 

of each velocity component, r1 and r2 = random values in the range 

of [0, 1].  

 

 
Fig. 1: Particle Swarm Optimization. 

 

Despite the numerous modifications of the PSO, it is still prone to 

several problems which demand attention. Such problems include: 

its premature convergence (where it ends up searching for the early 

best solutions especially in multimodal functions); its convergence 

speed (gets trapped while exploiting for the global solution despite 

establishes the best solution in the early search stage); the quality 

of its solution is low due to the inherent complexity, discontinuity, 

and multimodality problems; the uncertainty of its solutions due to 

its stochastic nature which makes it difficult to produce different 

solutions in different runs; it has a simple solution update strategy 

which makes it hard to achieve better solutions in complex situa-

tions. 

2.2. Meeting room approach 

The major concept of a multi-swarm is the inter-group interaction 

that exists between groups during a solution search. Numerous 

multi-swarm techniques have been developed, with each idea draw-

ing inspiration from natural processes. This paper presents a novel 

cooperative multi-swarm technique whose inspiration was drawn 

from the human social behavior. It was inspired by the interaction 

between human groups (referred to as ‘Clans’) and their leaders. 

The scheme is made up of several clans and each clan has several 

solutions (as represented by the clan members). In each clan, the 

best member is chosen as the clan leader and this leader controls the 

activities of the members of the clan in terms of where and when to 

move to a better location[19–21].  

The clan leaders meet in each generation to select the overall best 

leader whose positional information will be transmitted to the nor-

mal clan leaders for them to update the positions. This positional 

information dissemination helps to balance the exploration and ex-

ploitation stages of the PSO. Figure 2 depicts the model of the pro-

posed multi-swarm scheme called Meeting Room Approach 

(MRA). In this figure, each clan executes a single PSO search (in-

cluding velocity and positional updating) and generates a new local 

population. After generating the new populations for each clan, the 

leader of each clan delegates the leader (best solution) to the meet-

ing room where the overall best leader is selected. The position of 

the newly selected overall best leader is shared with the ordinary 

leaders to update their positions using the following equations: 

 

𝑤𝐿𝑛 = ( 
𝑤𝐿𝑔− 𝑤𝐿𝑛

𝐼𝑡𝑟
 )  × 𝑟𝑎𝑛𝑑()                                                     (3) 

 

𝑣𝑖
𝐿𝑛(𝑡 + 1) = 𝑤𝐿𝑛  ×  𝑣𝑖

𝐿𝑛
(𝑡) + 𝑟𝑐 (𝑃𝑔

𝐿 − 𝑃𝑛
𝐿(𝑡))                 (4) 

 

𝑥𝑖
𝐿𝑛(𝑡 + 1) =  𝑥𝑖

𝐿𝑛(𝑡) + 𝑣𝑖
𝐿𝑛(𝑡)                                               (5) 

 

Optimal Solution 

𝑋𝑖 

gBest 
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where 𝐿𝑛 = normal leaders, 𝐿𝑔 = overall best leader, 𝑥𝑖

𝐿 = normal 

leaders’ position, 𝑣𝑖
𝐿𝑛 = normal leaders’ velocity, 𝑤𝐿𝑔 and 𝑤𝐿𝑛 = 

best and normal leaders’ inertia weight, respectively.  

A new leader is elected for each swarm after each generation be-

cause of the changes in the positions of the clan members. The ex-

ploration of the PSO is controlled by the new equation of the inertia 

in the meeting room. Figure 3 presents the pseudo-code of the pro-

posed Multi-Swarm Particle Swarm Optimisation (MPSO) algo-

rithm.  

 

 
Fig. 2: The structure of Meeting Room Approach. 

 

The MRA with PSO (MPSO) has shown a superior performance in 

solving several numerical problems. However, the initialization 

step of the MPSO is based on uniform distribution equations which 

may start from inappropriate positions. Thus, the particles may ex-

plore a wrong area in the search space, leading to being trapped in 

local optima. The main contribution of this study is the initialization 

of the particles in each swarm using a well-known chaotic map (lo-

gistic map) to enhance the starting positions of all the particles, as 

well as the convergence of the algorithm.  

3. Chaotic meeting room approach 

The proposed Chaotic Multi-Swarm Particle Swarm Optimization 

(CMPSO) is different from the original version of MPSO in the in-

itialization step while the remaining steps are the same, as given 

below:  

Step 1: Each particle (i.e., the position) is initialized using Logistic 

Map, which is given in the following equation: 

 

𝑋𝑖+1 =  𝜇𝑋𝑖  (1 −  𝑋𝑖)                                                                   (6) 

 

Where 𝑋𝑖= a real value in range 0 and 1, which represents a single 

dimension of any given problem, and 𝜇 = the control parameter – 

or mutation – of logistic map, which is in range 0 and 4.  

Step 2: Calculate the fitness function of each particle in each swam 

based on their generated positions.  

Step 3: For each clan, and for each particle in the clan, update the 

velocity using equation 2; then, update the position using equation 

1. After updating the positions, evaluate the new fitness function for 

them. If the new position is better than the previous one, then, up-

date the𝑝𝐵𝑒𝑠𝑡. 

Step 4: Determine the best particle in each clan as the leader of that 

clan.  

Step 5: Update the controlling parameters of each particle using 

equations 3, 4, and 5.  

Step6: Update the best leader ever.  

It is worth mentioning that all the random values in the proposed 

algorithm are generated using equation 6. The flowchart of the pro-

posed CMPSO is given in Figure 3.  

 

 
Fig. 3: The Flowchart of CMPSO. 

4. Results and discussion 

The results of the benchmarking evaluations commonly used in the 

evolutionary literature are presented in this section [22]. Each test 

function varies in terms of modality (unimodal and multimodal) and 

the number dimensions (fixed and dynamic). In this study, CPSO 

has been examined on the exact same test function used in [19]. 

They are: 

 

1) Sphere Function (Continuous, Separable, Unimodal) 

 

𝑓(𝑥𝑖) =  ∑ 𝑥2𝐷
𝑖=1  𝐷 = 30                                                            (7) 

 

2) Griewank Function (Continuous, Non-Separable, Unimodal) 

 

𝑓(𝑥𝑖) =  ∑
 𝑥𝑖

2

4000

𝐷
𝑖=1 −  ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
) + 1  𝐷 = 30                            (8) 

 

3) Rastrigin Function (Continuous, Separable, Multimodal) 

 

𝑓(𝑥𝑖) =  10𝑑 + ∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖)]𝑑

𝑖=1  𝐷 = 30                  (9) 

 

4) Ackely Function (Continuous, Non-Separable, Multimodal) 

 

𝑓(𝑥) = −20𝑒
−0.02√𝐷−1 ∑ 𝑥1

2𝐷
𝑖=1 − 𝑒𝐷−1 ∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝐷

𝑖=1 + 20 + 𝑒   (10) 

 

The performance of CMPSO was evaluated by comparing with that 

of the original PSO[23], Master-Slave PSO (MCPSO)[24], and the 

original MPSO [19]. The values of the controlling parameters are 

given in Table 1.  

 

PSO 

1 
PSO 

2 

PSO 

3 
PSO N 

Meeting Room  

Initialization 

via Chaotic 

Map 

For each Clan 

For each Parti-

cle 

Update Veloc-

ity  

Update Posi-

tion  

Calculate Fit-

ness 

Re-calculate Fit-

ness 

Determine Best Parti-

cles 

Update the controlling 

parameters of the lead-

ers 

Determine Best 

Leader 

Start 

Stop 
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Table 1: The Values of the Controlling Parameters 

Algorithm Parameter Value 

PSO 

Inertia weight 𝝎 0.9-0.4 

No. of Swarms 1 

𝒄𝟏, 𝒄𝟐  1.42 

Swarm Size 50 

MCPSO 

Inertia weight 𝝎 0.9-0.4 

No. of Swarms 5 

𝒄𝟏, 𝒄𝟐,𝒄𝟑 1.42 

Swarm Size 50 

MPSO 

Inertia weight 𝝎𝑳𝒏 0.8-0.5 

Inertia weight 𝝎𝑳𝒈 0.9-0.7 

𝒄𝟏, 𝒄𝟐  1.42 

No. of Clans  5 

Clan Size 10 

CMPSO 

Inertia weight 𝝎𝑳𝒏 0.8-0.5 

Inertia weight 𝝎𝑳𝒈 0.9-0.7 

𝒄𝟏, 𝒄𝟐  1.42 

No. of Clans  5 

Clan Size 10 

Initial Value 𝑿𝟎 0.11123 

Mutation 𝝁 3.99999856 

 

Table 2 presents the best and mean fitness values of the particles 

after 30 experimental runs over benchmark functions. Evidently, 

the MPSO outperformed the other benchmarking algorithms virtu-

ally in all the cases. A general analysis of the table shows the MPSO 

to contain 5 swarms, with each swarm consisting of 10 particles out 

of which only 5 are interacting in the meeting room. It can, therefore, 

be stated that the MPSO has less computational complexity and per-

formed better when establishing the best solution. The ability of the 

CMPSO to evolve in situations where the algorithms may have 

converged is presented in Figures 4. Figure 4 portrays the compar-

ison between the convergences of the all metaheuristics based on 

Ackely Test function. 

 
Table 2: Results 

Algorithm Test Average Std. Deviation 

PSO 

Sphere 2.5457521 0.01485 

Griewank 0.0884741 0.97485 
Rastrigin 21.695847 0.34871 

Ackely 16.4875218 0.01348 

MCPSO 

Sphere 0.9854126 0.0014784 
Griewank 0.0078414 0.0009874 

Rastrigin 2.0018977 0.0078487 

Ackely 1.9984722 0.0084578 

MPSO 

Sphere 0.0007845 0.0000148 

Griewank 0.0000897 0.0000668 

Rastrigin 0.0004687 0.0000159 
Ackely 0.0002648 0.0000588 

CMPSO 

Sphere 0.0007798 0.0000140 

Griewank 0.0000899 0.0000765 
Rastrigin 0.0004690 0.0000621 

Ackely 0.0002649 0.0000489 

 

From Figure 4, it can be seen that CMPSO is much faster than the 

original version (i.e., MPSO) in the first 50 function evaluation. 

Meaning that, CMPSO has initial positions better than the uni-

formly generated positions. However, there is no much difference 

between MPSO and CMPSO in terms of the optimal solutions and 

standard deviation.  

Although the statistical results presented in Table 2 provide a first 

insight into the performance of the algorithms, a pair-wise statisti-

cal test is typically used for a better comparison. For this purpose, 

by using the results obtained from 30 runs of each algorithm, a Wil-

coxon Signed-Rank Test is performed with a statistical significance 

value (𝛼 = 0.05) The null-hypothesis is “There is no difference be-

tween the median of the solutions produced by algorithm A and the 

median of the solutions produced by algorithm B for the same 

benchmark problem”. In table 3, the statistical analysis of CMPSO 

algorithm compared to the other three algorithms are given. In this 

table, 𝛼  indicates the p-values, while the R column indicates 

whether CMPSO is better than MPSO (+) or it is equal (=).  

 

 
Fig. 4: Convergence Analysis. 

 
Table 3: Statistical Results 

Test Vs. PSO Vs. MCPSO Vs. MPSO 

 𝛼 R 𝛼 R 𝛼 R 

Sphere 0.0004 + 0.0022 + 1 = 
Griewank 0.0027 + 0.0018 + 1 = 

Rastrigin 0.0012 + 0.0005 + 1 = 

Ackely 0.0024 + 0.0003 + 1 = 

 

Figure 5 below shoes a visual comparison between the new en-

hanced version CMPSO algorithm with the original MPSO algo-

rithm. The box plot shows that both algorithms have almost the 

same range, however, CMPSO has a better mean and the distance 

between the max and min values are less than the values of MPSO 

which proofs that CMPSO is more stable than MPSO when solving 

the numerical optimization problems.  

5. Conclusion 

Metaheuristics are faced with several problems and one of such 

problems is striking a balance between their exploration and exploi-

tation capabilities. The Meeting Room Approach (MRA) has been 

proposed for the enhancement of this balance in the Particle Swarm 

Optimization (PSO). However, this study proposed the enhance-

ment of the MRA using a chaotic map where the particles are ini-

tialized based on a chaotic sequence (which is better than the uni-

form distribution). From the benchmarking results, the MRA was 

enhanced in terms of convergence speed when solving several nu-

merical optimization problems. For future studies, the enhanced 

version of MPSO can be applied on different optimization problems 

such as training neural networks, or for selecting the best subset 

features from a known dataset.  

 

 
Fig. 5: Comparasion between CMPSO and MPSO. 
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