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Abstract 
Features of a specialized vehicle caterpillar mover are considered. A dynamic model of caterpillar transverse oscillations as  a system 

with distributed parameters is proposed. The differential equation in partial derivatives is obtained and its connection in the form of a 
decomposition by normal oscillation types is found. The analysis of frequencies and the type of caterpillar oscillations has been made. 
Inertial loads have been found. The mathematical model of forced oscillations of a caterpillar under the influence of random loads is 
developed and the mathematical modelling is executed. An analysis of the vibration movements and vibration velocities of the intersec-
tions of the caterpillar is carried out. The mathematical modeling of the caterpillar oscillations caused by stochastic discrete loads was 
carried out. A model of random discrete loads has been developed, calculations of the realization of random loads are performed. It was 
established that the transverse discrete loads occur in points of mass concentration on the caterpillar surface. 
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1. Introduction 

Specialized vehicles are used in terrestrial robotic workstations. 
They are equipped with manipulators or special devices. Modern 
terrestrial workstations have a low movement speed up to 20 ... 30 
km\h. It reduces their effectiveness. Increasing the speed leads to 
intensive dynamic loads in a special vehicle chain (caterpillar) 
mover in particular. Reducing dynamic loads could be achieved by 
improving the caterpillar mover according to the results of special 
studies. Therefore, work in this direction is relevant. 

The problem in general is the development of highly efficient 
special vehicles with a chain (caterpillar) mover. The problem is 
related to important scientific and practical tasks of great im-
portance for the state security of Ukraine.  
Recent studies and publications outline the results of the develop-
ment and research of terrestrial robotic workstations for special 
purpose [1]. It is noted that robotic systems have small dimensions 
(1..2m) and include a chassis and a working module, for example, 

a manipulator [2]. Mechanisms with parallel kinematic structures 
are often used as a manipulator [3]. These mechanisms have low 
materials consumption and broad functionality [4]. 
Specialized vehicles use wheel or caterpilar chassis. The latter are 
more effective for use. There are results of researches of geomet-
rical and power parameters of a special vehicle caterpillar mover 
in literary sources [5, 6]. Characteristics of the flotation ability, 
controllability and performance properties of the vehicles of this 
type are described [7, 8]. There are results of studying dynamic 

processes in caterpillar mover dynamic processes in literary 
sources [9].  
The peculiarities of dynamics of drives, characteristics of transi-
tional processes [10] in caterpillar movers are established. Dynam-

ic properties of the caterpillar are investigated through numerical 
calculation by the finite element method [11]. The disadvantage of 
these studies is the specification of the calculations and, accord-
ingly, the insignificant degree of the simulation results generaliza-

tion. 
It could be achieved by applying combined methods that include 
analytical models of the system in distributed parameters and nu-
merical methods. Similar approaches to the research of dynamic 
processes in caterpillar movers under condition of their parameters 
distribution have not been found in literary sources. Previously 
undecided parts of the general problem include the study of the 
peculiarities of dynamic processes in the chain (caterpillar) mov-

ers in specialized vehicles using analytical models of caterpillars 
as systems with distributed parameters. 
The purpose of the research described in this article is to establish 
the peculiarities of the dynamic processes caused by the distribu-
tion of parameters of a specialized vehicle chain (caterpillar) mov-
er. The task of the research is the definition of the laws of the 
fundamental and forced oscillation processes in the caterpillar 
mover under condition of its parameters distribution along the 

length and random discrete caterpillar load. 

2. Description of Main Research Materi-

al.Calculation of Parameters of Fundamental 

Transverse Oscillations of a Caterpillar as a 

System with Distributed Parameters 

Specialized vehicles are designed to work with non-secure objects 
and are operated remotely. They have a caterpillar mover chassis 
and a manipulator working module (Fig. 1). 

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: General view (a) and schematic diagram of (b) a specialized vehi-

cle caterpillar mover. 

 
The caterpillar chains are made in the shape of circular chains that 
move by means of driving transmissions. Separate links of the 
caterpillar chain 1 are hingedly connected to each other and have 
sufficient flexibility for smooth enveloping driving 2 and driven 

by 3 reels of the caterpillar mover (Fig. 2). 

 
Fig. 2 The main components of a specialized vehicle caterpillar mover. 

 
The caterpillar mover of the vehicle has one or more rollers 4 

which press the lower part of the caterpillar 5 to the roadway. The 
upper part of the caterpillar 6 is held up by elastic forces in a ten-
sion. In some cases, additional support rollers are used. 
In specialized vehicles different types of a caterpillar mover with 
different numbers and shape of chain links are used. Usually, the 
number of links is 30 ... 40, and the driving rail has 12 ... 16 teeth 
that come in contact with the holes of the caterpillar. 
To define the peculiarities of stochastic dynamic processes in a 

caterpillar mover its mathematical model as a system with distrib-
uted parameters is designed [12]. Let’s consider the top of the 
caterpillar. Transverse oscillations arise in it as a result of dynamic 
loads. Their calculation is carried out under condition of the dis-
tribution of parameters (mass) of the caterpillar in length (Fig. 3). 

 
Fig. 3: Occurrence of transverse oscillations of a specialized vehicle cater-

pillar (a) and movement of the elementary section of the caterpillar with its 

transverse oscillations (b). 

 

Determination of transverse oscillations of a caterpillar mover is 
carried out in Euler variables. Moving from full derivatives over 
time to local derivatives we get: 
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where V - speed of the caterpillar movement; y - is the transverse 
movement of the caterpillar at the point A with the coordinate x, t-
time. 
Let’s consider the movement of the elementary section of the cat-
erpillar dx- length (Fig. 3b). The inclination angle of the elemen-
tary section of the caterpillars relatively to the axis x will be de-
termined through the derivative of the center line of the caterpillar. 

For the beginning of an elementary section dx in length we have: 
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The equilibrium equation of the elementary section of the caterpil-
lar is determined in the projections of forces on the axis in: 
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where F is the tension strength of the caterpillar; m - linear mass 
of the caterpillar. 
After substituting value of derivative into equilibrium equation (1) 
and conversions we obtain the equation of transverse oscillations 
of the caterpillar: 
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The solution of the equation is found by well-known methods of 
the quantum theory [12]. To determine the transverse dynamic 
movements of the caterpillar, the schedule of general movement 
using normal shapes of oscillations is used. In this case, the solu-

tion of equality (2) is: 
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where L - length of the upper part of the caterpillar; ωk - frequen-

cy of fundamental oscillations in k-shape;  k1c , k2c - constants 

that are determined by the initial conditions. 
Fundamental frequency of oscillations of the caterpillar are deter-
mined by the formula: 
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Fundamental oscillation frequencies ωk depend linearly on the 
shape of the oscillations k. The coefficient of linear frequency 
dependence on the number shape is determined by the effort of the 
tension of the caterpillar F and its velocity V. When the force F 

increases, the frequency of the variations corresponding to differ-
ent forms increases (Fig. 4). 

 
а   b 

Fig. 4: Dependence of the frequencies of the fundamental values of the 

caterpillar on different shapes of the tension of the caterpillar (a) and the 

linear speed of the caterpillar (b). 

 
It follows from the analysis of the graphs that an increase in ten-
sion raises the fundamental frequencies of the transverse vibra-
tions of the caterpillar. When reducing the tension of the frequen-

cy of oscillations  directs to zero and reaches a critical level. Re-
ducing the frequency of oscillations also occurs when increasing 
the speed of the caterpillar (Fig. 4b). After exceeding some value 
of the velocity Vm, the frequency of oscillations goes to zero and 
becomes critical. It is necessary to increase the tension in the up-
per part of the caterpillar and to reduce the speed of its movement 
in order to increase the frequency of its fundamental oscillations. 
The dependence (3) which determines the transverse movement of 

the caterpillar includes constant integration which is determined 
from the initial conditions. Initial conditions may have different 
character. To establish the laws of the transverse movement of the 
caterpillar, the initial conditions are given in the shape of an array 
of constants c1k and c2k. The constants c1k correspond to the 
deviation of the caterpillar from the zero line at time t = 0. The 
constants c2k determine the initial (at t = 0) speeds of the cross-
ings of the caterpillar. The method of successive approximations is 
a selection of constants that gives a characteristic initial movement 

of the caterpillar and its velocity. In this case, for the determina-
tion of constants, the proposed exponential dependences on the 
shape of the oscillation number are modulated by trigonometric 
functions. The dependencies are selected in such a way that at t = 
0 the speed of the crossings of the caterpillar is close to zero, and 
the movement is maximal. Correspondingly, the constants are 
calculated according to the formulas: 
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where mk - the highest oscillations type number. 

Using the formulas (5) we find kinematic initial conditions for the 
oscillations of the caterpillar by means of its initial transverse 
movements  and the initial speed of the transverse movements  of 

the caterpillar: 
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The shape of the middle line of the caterpillar at different times is 

determined according to the initial conditions (6) in formula (3) 
(Fig. 5a). 

 
Fig. 5: Changes in the shape of the caterpillar in time due to its oscillations 

as a system with distributed parameters (a) and acceleration of the cross-

ings of the caterpillar for transverse oscillations (b). 

 
The defined transverse movements of the caterpillar served as the 
basis for finding the speeds u (x, t) of the crossings of the caterpil-
lar and their acceleration a (x, t). Speed and acceleration are found 
by differentiation of dependence (3). Relatively: 
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The calculated accelerations of the intersections of the caterpillar 

represent wavy curves similar to the movements (Fig. 5b). 
The total transverse inertial load on the caterpillar is determined 
by the value of the accelerations distributed along the length. The 
total inertial force is found by calculating the integral: 
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The calculation by this formula establishes a time-varying law of 

the change in the total inertial load on the vertical part of the cat-
erpillar (Fig. 6). 

 
Fig. 6: The inertial load depends on the time that operates on the upper 

part of the caterpillar at its fundamental oscillation. 

 

The inertial load is changed over time and forms a vertical and 

dynamic effect 2/F on each reel of the caterpillar (see Fig. 3a). 
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3. Mathematical Model of Forced Oscillations 

of a Caterpillar Mover 

The forced oscillations of the caterpillar arise as a result of the 
effect of the external dynamic disturbances on the drive of the 
mover. Disturbances are caused by the appearance of a dynamic 
time of the tension in the caterpillar. As a result of changing the 
dynamic tension in the caterpillar, there are no periodic transverse 
inertial loads that cause the occurrence of transverse oscillations. 
It was established that transverse discrete loads operate in places 
of mass concentration on the caterpillar surface and are caused by 

difference of masses located on different sides from the center line 
L0 of a flexible caterpillar. Let's consider the causes of transverse 
discrete loads. When dynamically changing the longitudinal force 
F, the section with thickening acquires the acceleration ах(t) and 
the inertial forces F1 and F2 are influenced on the masses m1 and 
m2 located on each side of the caterpillar (Fig. 7). 

 
Fig. 7: Scheme of transverse discrete loads on the caterpillar area with 

thickening (teeth). 

 
Inertia forces F1, F2 on both sides of the caterpillar are different 

and depend on the masses m1 and m2. To estimate the value of the 
forces of inertia, we define them as 
F1=m1a, F2=m2a. 
Due to the difference in the forces of inertia there is a torque 
Mz=yc(F1-F2), 
where ус – is the distance between the centers of mass m1 and m2. 
The action of the torque leads to the curvature of the elastic line of 
the caterpillar La. At the same time, the tensile forces Fm1 and 

Fm2 are inclined at acute angles to the center line L0 and are essen-
tially different. Thus, when changing the tension of a caterpillar, 
there is a transverse force Fy acting in the direction of the axis у. 

In the case of changing a discrete tensile force    taFtF  , the 

transverse force acting on the caterpillars next to the tooth will 

also have a discrete origin ( yc - constant). These loads arise on 

each caterpillar tooth. Accordingly, a packet of stochastic discrete 
loads acts in the transverse direction in the case of dynamic 
changes in a vehicle's caterpillar tension (Fig. 8a). 

 
Fig. 8: A scheme of discrete loads on a caterpillar (a) and a block- diagram 

of a dynamic caterpillar system under the action of discrete loading (b). 

 
Initial conditions for oscillations of the caterpillar in speed are 
formed as a result to the effect of transverse discrete forces, Ac-
cordingly, the acquired constant speed: 
с2к≠0, k=1, 2,… 
with constants с1к=0. 

Constants are accepted as proportional multipliers with a single 
discrete function: 
с2к=суFа. 
In this case, the solution of equation (3) will look like: 
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Movement of the caterpillar according to formula (7) is a conse-
quence of an action on the input parameter system in the form of a 
longitudinal discrete load of the caterpillar with a single discrete 
function. In this case, the block-diagram of the dynamic caterpillar 
system corresponds to the finding of the discrete characteristic of 
the system W (Fig. 8b). The block contains a transmission func-
tion of the system W (x, s), which gives the ratio of the Laplace 
images of the output parameter in the form of movement intersec-
tion of the caterpillar which is located at a distance x from the 

origin to the Laplace image of the input parameter in the form of 
dynamic tension of the caterpillar. 
According to a block-diagram the transmitting function will corre-
spond to the Laplace transformation of dependence (7). This trans-
formation is found in tables [13] and consists of: 
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Let's introduce the designation: 
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At the same time, a transmitting function is found in the form of 
an infinite sum from the formula (8): 
 




 


1
22 1

)(
k k

k

ST

K
sW

. 

 
The structural diagram corresponding to this transmitting function 
includes an infinite number of parallel-connected conservative 
links [14] (Fig. 9a). 

 
Fig. 9: Structural diagram of the caterpillar dynamic system through paral-

lel-connected conservative units (a) and given the structural scheme of the 

dynamic caterpillar system through the parallel-connected oscillation links 

(b). 

 
This structure corresponds to a physically unrealistic system be-

cause it does not take into account energy losses. 
The caterpillar is a massive flexible thread. The energy losses in 
the dynamic caterpillar system are negligible. It is proposed to 
take into account the losses by the introduction of equivalent pa-
rameters of fading during the replacement of conservative links in 
the structural scheme into the oscillation links. In this case, the 
structural scheme of the dynamic system will correspond to an 
infinite number of parallel- connected oscillation links with corre-

sponding fading parameters ξk (Fig. 9b). At 0k this struc-

tural scheme will correspond to the connection of conservative 
links (see fig. 9a). 
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Fading parameters are mainly dependent on dissipative processes 
in the caterpillar material which are insignificant. They could be 
specified by constant ξk = const in the first approximation and 
refined as a result of a numerical experiment. A mathematical 
model in the Simulink system has been developed according to the 
structural scheme. The first seven types of oscillations are taken 
into account (Fig. 10). 
Each block of the model is presented as an oscillation link. Ac-

cordingly, a mathematical model is formed in the shape of parallel 
connected oscillation links. There has been applied a test task 
when the input parameter of the model is adopted as a step change 
in stretching load in the caterpillar. 

 
Fig.10: Mathematical model of forced processes in a caterpillar mover that 

determines the oscillation of the caterpillar as a system with distributed 

parameters under condition of the first 7 types of fundamental oscillations. 

 
We have the time dependence of the transverse movements of a 
separate intersection of the caterpillar (average in length of the 
intersection) and its speed at the output of the model. These pa-

rameters are registered with Scope dz and Scope z blocks. 
Assuming the fact that the parameters of fading of blocks equals 
zero ξ1 = ξ2 = ... = 0 in the mathematical model, we obtain a 
mathematical model corresponding to the structural scheme shown 
in Fig. 9a. This model is used to test its performance and compli-
ance with analytical dependence (3). Confirmation of the results of 
simulation and the previous calculations are shown in Fig. 5. In 
order to take into account the energy dissipation values of the 

fading parameters ξ1 = ξ2 = ... = 0,1 are introduced into the blocks 
of the mathematical model. It is accepted that they are close to 
different types of oscillations. 
Finally, transition processes of transverse oscillations of the mid-
dle intersection of the caterpillar are calculated under condition of 
the energy loss. The transition function is a smooth fading process 
(Fig. 11a). 

 
Fig. 11: Results of mathematical modelling of transverse movements of 

the middle intersection of the caterpillar (a) and its speed (b) under the 

influence of the step change of the tension force. 

 

The transition process is smoothly fading and is generally close to 
the fading sinusoidal process. On the calculated speed curve (Fig. 
11b), nonlinear components could be traced which are especially 
pronounced in the first period of the oscillation process. They are 
caused by the influence of higher types of the oscillations of the 
caterpillar as a system with distributed parameters. These compo-
nents are important for calculating the high-frequency oscillation 
processes occurring under random loads of the caterpillar. 

The developed mathematical model is used for modeling of trans-
verse oscillations of a caterpillar under different modes of vehicle 
movement. The modeling of the wheelbase of a caterpillar during 
acceleration of the vehicle was carried out. The linear law of 
changing the force in the caterpillar at acceleration is adopted. 
Dynamic movements of caterpillar intersection are calculated 
according to this model. They have the appearance of a fading 
oscillation process close to that shown in Fig. 11a. 

4. Mathematical Modeling of Oscillation Pro-

cesses in a Caterpillar Mover under the Action 

of Random Loads 

Discrete loads influence on a caterpillar caused by the interaction 
of the reel projections with the holes in the caterpillar during a 
specialized vehicle movement. Interaction of projections with 
holes has a periodic nature but the effort for interaction is chang-

ing randomly due to different sizes and location of coupling ele-
ments. Thus, the caterpillar is influenced by the longitudinal peri-
odic discrete load which is consistent with the constant effort of 
the caterpillar tension. The mathematical modeling of the caterpil-
lar oscillations caused by stochastic discrete loads was carried out 
[15]. A model of random discrete loads has been developed (Fig. 
12a) and the calculations of the implementation of the random 
loads have been performed for this purpose (Fig. 12b). 

 
a 

 
b 

Fig. 12: Mathematical model (a) of random discrete loads in a caterpillar 

mover and calculated implementation of discrete loads (b). 

 
This model is combined with the model of caterpillar dynamics 
(see Fig. 10). In this case, the transverse movement of the middle 
intersection of the caterpillar and the speed of its movement under 
the influence of discrete loads are determined. Transverse move-
ments under the influence of discrete loads have the form of poly-

harmonic processes (Fig. 13a). 
The results of mathematical modeling indicate that the effect of 
discrete loads causes the transverse oscillations of the caterpillar, 
which tracks the oscillations in the first and second main forms. 
The oscillation process has quasi-stationary character with small 
random variations of the amplitude values. Maxima and minima of 
co-livings of significant amplitude  are observed. 
The occurrence of high-frequency changes in speed were found as 

the result of the simulation (Fig. 13b). 
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Fig.13: Results of mathematical modeling of transverse vibrations of a 

caterpillar under the action of a random longitudinal discrete load: a – 

movement of the caterpillar intersection; b - the speed of the intersection 

movements. 

Random discrete loads caused by the interaction of the teeth of the 
driving reel with the caterpillar are the main random loads compo-
nents. Additional components are random loads in drives and 
loads caused by the interaction of a caterpillar with a roadway. 
They operate in the field of low and medium frequencies. For their 
simulation it is assumed that random loads have a uniform fre-

quency spectrum. Accordingly, they are described by a random 
process as a "white" noise operating in a limited range of frequen-
cies. The process is generated by a special input block of the mod-
el in mathematical modeling. Fadeless transverse movements of 
the caterpillar occur under the influence of broadband low fre-
quency random loads (Fig. 14a). 

    
Fig. 14: Results of mathematical modeling of dynamic movements of the 

caterpillar under the influence of broadband low- frequency random longi-

tudinal loading (a) and the corresponding values of vibration velocity of 

the intersection of a caterpillar (b). 

 
The oscillations of the caterpillar intersection have the appearance 
of a polyharmonic process which tracks the first (basic) type of 
oscillation. The components corresponding to the second type of 

oscillations are also traced on the curve of caterpillar movements. 
They are more pronounced in the random process of changing the 
velocity of transverse oscillations of the caterpillar (Fig. 14b). 
Oscillations corresponding to those of higher than the second 
numbers could not be traced on the realizations of random move-
ments and the vibration velocities shown in Fig. 14. This is due to 
the lack of high-frequency components of random input loads. 
There are high-frequency random loads in the drives of the cater-

pillar and also in the nodes of the specialized vehicle dynamic 
system. Their simulation has been carried out with the help of the 
above mentioned model with the appropriate adjustment of the 
input block parameters [15]. At the same time random high-
frequency input parameter as a longitudinal loading of the cater-
pillar was fed to the input of the dynamic system. He looked like a 
high-frequency broadband random process (Fig. 15). 

 
Fig. 15: Broadband random process with essential high-frequency compo-

nents which was fed to the input of a mathematical model of the system. 

 
Transverse movements of the caterpillar intersections, on which 
the first, second and higher types of oscillations could be traced, 
are under the action of a load with high-frequency components 

(Fig. 16a). 

      
Fig. 16: Results of mathematical modeling of transverse movements of the 

caterpillar intersection(a)  and its velocity (b) under the action of longitu-

dinal broadband random load with high frequency components. 

 
High frequency loads generate vibration movements and vibration 
velocities, which are close to the values of forced oscillations by 

amplitude values under the influence of low-frequency loads. 
Frequency spectrum of vibration movements and especially vibra-
tion velocities acquires essential high-frequency components. The 
components of the corresponding types of oscillation up to the 
seventh one inclusively are traced in the time dependencies of the 
vibration velocity (Fig. 16b). It causes significant high-frequency 
oscillations of the caterpillar which reduces its durability. It fol-
lows that the occurrence of high-frequency components is an un-

desirable phenomenon. 
It is necessary to implement constructive measures or use damping 
devices to reduce the negative effects of high frequency oscillation 
of the caterpillar. 

5. Conclusions 

1. The distribution of parameters (mass) along the length of the 

specialized vehicle caterpillar causes its own oscillations of the 
caterpillar as a heavy flexible thread occurring with frequencies 
corresponding to the first (up to seventh inclusively) types of os-
cillation. The frequencies are increased with increasing tension in 
the caterpillar and decreases with increasing speed of the special-
ized vehicle and the patterns of oscillation of the caterpillar corre-
spond to sinusoidal dependencies. 
2. Dynamic discrete changes of the longitudinal load in the cater-

pillar cause the dynamic transverse loads situated in the areas of 
the teeth location of the caterpillar resulting in intense forced 
transverse oscillations of the caterpillar. 
3. Discrete longitudinal loads in caterpillar mover occur randomly. 
In this case, there are transverse oscillations of the caterpillar in 
which harmonics are traced corresponding to fundamental oscilla-
tion frequencies. Components on the first and second patterns 
within low-frequency disturbances in oscillations are identified, 

while higher-frequency perturbations show higher patterns of 
oscillations up to the seventh pattern inclusively. 
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4. Increasing the speed of the specialized vehicle results in intense 
oscillation processes in the caterpillar mover. It is recommended 
to install inertial dampers in the teeth of the caterpillar and design 
measures to reduce the dynamic loads in order to reduce the inten-
sity of oscillations. 
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