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Abstract

The prediction of streamflow helps to identify the disasters and sources of water resources. Different ways to predict the streamflow, among
the conceptual models have been gained more popularity due to explanation of processes and visualization in water resources systems. Any
model may not obtain the acceptable performance at initial setup and it has to go through calibration or optimization (either manual or
auto-calibration). Moreover, the calibration procedure is more concern of computational time for complex conceptual models like Soil and
Water Assessment Tool (SWAT). Where, meta models are the alternative approach to restrict the computationally intensive optimization
problems because it is cheaper models to enhance the performance and shows the relationship between input-output response. Our results
showed that 1) meta models mimics the original simulation models with effective and efficient outputs and 2) it verified and satisfied the
performance of SWAT model with less computational time. This study helps to planning and designing of hydrological models with effective
computational time.
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1. Introduction

Hydrological simulation models have been evolved and implemented
in different perspectives from last few decades based on distinctions
from the rational methods to the conceptual models [1]; their mani-
fold uses on different applications like land use changes [2], climate
changes [3], rainfall-runoff modeling [4] and flood prediction [5]. In
hydrological modelling, the greater number of parameters present
in conceptually or empirically based functions and it effects in com-
plexity and computational burden of calibration [6], [7]. But, the
advances in computer technology has been made easier to predict
the accurate streamflow in hydrological modelling by using the
auto-calibration techniques [8], [9]. Due to the development of
technology, the model can be processes from short time intervals to
forecast long-time intervals based on the observed data [10]. For
accurate and reliable streamflow predictions can enhance the proper
water resources allocation and management usually it accesses based
on historical data for effective decision making.
For obtaining accurate and reliable forecasts, two steps of charac-
teristic approaches are developed [11]; among the first approach
is based on dynamic forecasting models (hydrological model) for
developing the watershed and second approach is statistical fore-
casting for calibration or optimization (Meta modelling). Dynamic
forecasting model constitutes the water balance components for
prediction of streamflow based on combination of both watershed
characteristics and weather variables like precipitation and temper-
ature etc. While statistical forecasting model, represents the initial
catchment conditions and targets the optimization to enhance the per-
formance of a conceptual model. Conceptual hydrological models
have been following the dynamic forecasting approach which de-

rives the monthly streamflow with daily or sub-daily basis of weather
variables and physically relates whole parameters in the catchment.
Different hydrological models are available in rainfall-runoff mod-
elling like MIKE-SHE, SWAT, TOP-MODEL etc., Among, SWAT
has increased worldwide acknowledgment as an interdisciplinary
watershed modelling tool and is as of now being utilized in near 100
nations. It has been widely used to explore water asset and non-point
source contamination issues for a scope of scales and ecological
conditions over the globe [12], [13] and it contains enormous num-
ber of parameters which is used to describe the water movement in
the watershed system. However, the greater number of parameters,
interval of parameters and their interactions can cause complication
and complexity of calibration and validation [14]. These models rep-
resent the simplified physical process within the hydrological system
and visualize the flow path which is based on empirical equations.
Where, meta models obtain the solutions without any physical pro-
cess of hydrological system and vitally focus on the model outputs
and its optimization [15].
Recently, the meta models have gained lot of prominence in the
field of simulation and optimization of complex systems such as
hydrological modelling [16]–[18], aerodynamics [19], geology [20],
metallurgy [21], electro-magnetics [22], electronics [23], and eco-
nomics [24]. The general principle of the meta model is to develop a
meta-simulator using a pseudo-function between original model pa-
rameters and its outputs through the design of experiments (DOE’s).
Different studies are focused on meta modelling optimization in
the field of water resources using artificial neural networks, support
vector machines and Gaussian process [11], [16], [18]. Among, the
artificial intelligence is highly capable to handle the predictions that
have widely adopted in the field of hydrological modelling [25].
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Radial basis artificial neural networks are gaining more popular-
ity because radial basis functions use as activation functions and
learning process is much faster. These studies targeted on the compu-
tationally intensive optimization problems. In this study, we aim to
show computational efficient with accurate analysis for hydrological
modelling and comparisons of manual and auto-calibration tools.
This study will help understand the performance of SWAT model
with meta model and eventually aid the regional state water boards
in planning, designing and managing the hydrologic systems.
This paper is constructed like Section 2 explains the framework and
methods involved in study. Section 3 shows the study area and data
sets information. Section 4 presents the procedures and results and
Section 5 provides the conclusions.

2. Methodology Framework

The following steps explain about methodology are:
1. Build the SWAT model with the help of topographical and meteo-
rological data.
2. Select influential parameters and objective function of SWAT
model to construct the meta modelling for optimization.
3. Generate the specified number of parameters sets and obtain the
objective function for each set using SWAT simulator.
4. Fit the meta model based on the available samples and terminate
the model by maximum number of iterations or objective function
convergence.
5. Finally verify the model by using validation dataset without any
training.

Methods used in this study are:
• Simulator – SWAT model
• Selection of influential parameters – filter through sensitivity analy-
sis.
• Objective function – Nash Sutcliffe Efficiency (NSE).
• Generation of parameter sets – Latin Hypercube sampling.
• Meta model – Radial Basis Function Neural Networks (RBFNN).
• Termination Criteria – K-fold Cross-Validation.
• Verification performance metrics - Nash Sutcliffe Efficiency (NSE)
and Percent Bias (PBIAS).
For in detail explanation of each method are explained below and
flow chart of the methodology is shown in Fig. 1:

2.1. SWAT model

The SWAT model is a quasi – distributed, continuous – time, water-
shed scale simulation model to predict the effect of water quantity
and quality on land management practices [26]. According to to-
pographical features, SWAT delineates a watershed into sub-basins
with the basis of flow accumulation and stream networks. With
the influence of different land-use, soils and slopes within the sub-
basins, further split into Hydrologic Response Units (HRUs), where
HRU’s analysis provides the various reports of water, sediment, nu-
trient, plant growth and agricultural management. All the hydrologic
process is incentive by water balance and HRU is a topographical
component to compute the processes. These processes are classified
into two types: Land and in-stream phase, where land phase is to-
tally checks and simulates the model from each HRU of streamflow,
sediments, pesticides and nutrients but stream phase routes the catch-
ment from each sub-basin throughout the flow path and network.
In SWAT, weather inputs are taking consideration into daily based,
where all HRU’s get same weather data with respective sub-basins.
SWAT integrates a set of physical and empirical based equations
to simulate and predict the hydrological as well as water quality
processes [27]. Basically, SWAT performs with the help of water
balance equation. Therefore, soil water content at a specific time

Figure 1: Flow chart of SWAT parameters optimization using meta models.

‘m’ on every sub-basin can be tracked based on the water balance
equation:

SWCm = SWCo +
m

∑
n=1

(PCPn−SURn−EATn−BAFn−DPWn) (1)

Where, SWC is soil water content, subscripts like O is initial values,
PCP is precipitation depth, SUR is surface runoff, EAT is evapotran-
spiration, BAF is baseflow to the stream and DPW is exiting depth
of water in root zone to vadose zone.

2.2. Orthogonal Latin Hypercube Sampling (OALH)

The parameter sets are generated using the Orthogonal Array Based
Latin Hypercube (OALH) sampling. These points are used to run the
hydrological simulation model and objective function to show input-
output relationship. Generally, this step requires the prior knowledge
of parameters and particularly in parameter space of lower and upper
intervals for stratified sampling. Latin Hypercube Sampling (LHS) is
a stratified sampling approach but lack of uniformity. [28] proposed
the OA based LHS shows the substantial improvement over the
standard LHS. This can help in identification and effective cover of
sampling for model development.

2.3. Radial Basis Function Neural Network (RBFNN)

RBFNN contain three layers like input, hidden and output lay-
ers which is basis on the feed-forward network. Let x be the n-
dimensional input vector and the RBFNN hidden layer to be:

Rk = φ(||x−Ck||) = exp(
||x−Ck||

2b2 (2)

where,Ck and b are the center and width, k is hidden layer neuron, k
= 1,2,...,n and n is the number of hidden units. φ(.) is a radial basis
function and ‖ x−Ck ‖ is the normal of x−Ck.
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Figure 2: Map showing location of Peachtree Creek watershed, Atlanta in USA.

The outputs of the jth neuron with respective the RBFNN output
layer as:

y j(x) =
n

∑
k=1

w jkRk(x)− γ j (3)

Here, y j(x) is the jth output variable, w jk is weights from the kth
hidden layer neuron to the jth output neuron and γ j is the threshold
of the jth output neuron [29].

2.4. Performance Metrics

1. Nash-Sutcliffe efficiency (NSE): NSE is one of the best normal-
ized static factor which determines the relative noise to the observed
data variance [30]. NSE shows how well the plot is representing for
observed and simulated data which optimally fits 1:1 line.

NSE = 1− ∑
n
t=1(Y

OBS
i −Y SIM

i )2

∑
n
t=1(Y

OBS
i −Y MEAN

i )2
(4)

Where, Y OBS
i is observed variables of ith time, Y SIM

i is predicted
value of i th time, Y MEAN

i is mean of observed values and n is the
number of values.
It ranges between −∞ and 1.0, where NSE = 1 is perfect model.
Some acceptable performances like 0.75≥ NSE ≥ 1.0 is very good
model, 0.65 ≥ NSE ≥ 0.75 is good model, 0.5 ≥ NSE ≥ 0.65 is
satisfactory and −∞≥ NSE ≥ 0.5 is unsatisfactory [31].

2. Percent bias (PBIAS): PBIAS measures the mean capability of
the model data to be larger or smaller than observed values. The
accurate model simulation having low-magnitude and its perfect fit

is 0. Where, positive values indicate the underestimation of model
error and negative values indicates the overestimation of model error.

PBIAS =
∑

n
t=1(Y

OBS
i −Y SIM

i )∗100

∑
n
t=1(Y

OBS
i

(5)

Where PBIAS expressed in percentages. Some acceptable per-
formances like ≤ ±10% is very good model, ±10% ≤ PBIAS <
±15% is good model, ±15%≤ PBIAS <±25% is satisfactory and
PBIAS≥±25 is unsatisfactory [31].

2.5. K-fold Cross-Validation

It is a technique to evaluate the predictive models by partitioning the
original sample into a training set to train the model, and a test set to
evaluate it. Meta model samples formed in k times, where each time
leave one-fold out applied to samples for training and remaining
one would work for testing. Where, root mean square error (RMSE)
represents the performance of response surface models through cross-
validation. As computational is a major concern, optimum 5-fold
cross-validation schemes are evaluated. The objective function used
in the cross-validation (k-fold) is

Err =
1
k

k

∑
i

RMSEi (6)

RMSE =

√
∑

n
t=1(Yt −Y 1

t )
2

n
(7)

Where, n−number of samples, Yt is observed value and Y 1
t is pre-

dicted value.
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Table 1: Data sources of Peachtree Creek Watershed.

Data
Type Summary

Variable
Time
step

Period
of Study

Streamflow Monthly 2005-2014
Rainfall Daily 2005-2014
Temperature Daily 2005-2014
Wind
speed Daily 2005-2014

Humidity Daily 2005-2014
Solar
radiation Daily 2005-2014

Topographic
Data Resolution Period

of acquisition
Digital
elevation model (DEM)

30
m x 30 m 2006

Land-use
map

30
m x 30 m 2011

Soil
map

1
km x 1 km 1995

3. Case Study

3.1. Site Description

The proposed study area is located in Peachtree Creek Watershed,
Atlanta (Fig. 2). The elevation of the watershed ranges from 165
m to 513 m, with an average of 232 m; the city is located among
the foot hills of the Appalachian Mountains of 320 m from mean
sea level and it is one of the highest elevations in major cities in
USA. The watershed is completely dominated by urban area which
is covered more than 70%. The climate of Atlanta is humid sub-
tropical with mean daily temperature of 26◦C and average annual
precipitation of 1,260 mm, respectively. The local geography effects
from anticyclone which will blow cold air over the warmer Atlantic
Ocean. This city has a type of dramatic variations in microclimate
usually not near water bodies or nearby mountains.

3.2. Datasets Required

Typically, SWAT model essentially requires the datasets like digital
elevation model (DEM) for watershed delineation, landuse and land-
cover (LULC), soil map and slopes for HRU’s distribution. SWAT
needs following variables like precipitation, relative humidity, solar
radiation, wind speed, maximum and minimum temperature can help
to predict the streamflow. Moreover, if any datasets are missing,
SWAT in-cooperates with the default weather generator to fill the
missing values for USA basins. For distinct data sources of study
area provided in Table 1. Where, daily streamflow data obtained
from model outlet (Table 1). For independent evaluation of model,
2005-2014 time-period of streamflow forecast (Table 1).

4. Results and Discussions

First step is identification of sensitive parameters of SWAT model for
optimization and next step is to calibrate the parameters through meta
models. In this research, we used RBFNN to optimize the SWAT
model parameters. For evaluating the meta model’s performance,
we applied model accuracy analysis like k-folds cross-validation.
Where, the model builds with 5-folds, where one-fold would go for
testing the samples and remaining folds would go for training the
samples iteratively. The maximum number of samples taken to train
the SWAT model is 1000. Finally, we optimized or calibrated the

Table 2: Selected influential parameters for optimizing the SWAT model.

Rank SWAT Parameters Rank SWAT Parameters
1 CN2 9 ALPHA BF
2 SOL AWC 10 SURLAG
3 GWQMN 11 SMTMP
4 GW REVAP 12 SFTMP
5 ESCO 13 SMFMN
6 RCHRG DP 14 SMFMX
7 CH K2 15 REVAPMN
8 GW DELAY 16 TIMP

Table 3: Table 3. Statistics of cross-validation score for 200, 500, 700, and
1000 samples. Minimum and maximum error obtained from 1000 and 200
samples respectively.

Cross-Validation
(RMSE) Max Min Standard

Deviation Mean

5-fold
0.96
(200)

0.46
(1000) 0.03 0.52

SWAT model parameters with the following results like sensitivity,
model accuracy, and verification analysis.

4.1. Sensitivity Analysis

Before optimization of a model, identified the most influencing
parameters in model output and it consider as adjustable parameters
for optimization (Table 2). In this study, we used Sobol’s Sensitivity
Analysis and selected 16 parameters which influencing the model
output. In Table 2 represents, CN2 is considered the most effective
sensitive parameter and snow melt parameters have least influence
in the Peachtree Creek watershed. As watershed comprises of major
amount of urban area, hence the management and the ground water
parameters are acting sensitively, while other related parameters
shown insensitive.

4.2. Model Accuracy Analysis

This section explains about the performance of meta model, we used
RBFNN model to optimize SWAT parameters for prediction of the
streamflow. Initial, the SWAT model has setup based on the available
dataset and checked the performance. If the performance failed to
meet the acceptable limits and it must go to calibration. For cali-
bration of SWAT model, we used RBFNN meta model. The meta
model is designed within 1000 samples to enhance the performance.
For controlling the samples, we checked with 200, 500, 700 and
1000 sets respectively. In this study, the model focused on the global
minima of the entire space. SWAT has greater number of parameters,
for manual calibration of each simulation it can take several minutes.
While, meta models are cheaper models which approximate the orig-
inal simulation model with input-output response. In Table 3 shows
the overall meta model score of 200, 500, 700 and 1000 samples, we
focused global minima of the entire space. The default model perfor-
mance of SWAT without any optimization or calibration was around
2.2 RMSE. Once optimized the model, the error drastically reduced
to 0.46 RMSE. It nearly 80% of error minimized from default SWAT
model performance. It clearly showed meta model provided accurate
results comparing with default performance.

4.3. Verification Analysis

In previous section explained about the meta model accuracy and
this section explains about the validation results. The validation
or verification results shows the accuracy of prediction. In Fig. 3,
two performance metrics are taken under consideration for analyze
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Figure 3: Performance metrics for both calibration and validation of optimized SWAT model.

Figure 4: Comparison of calibration and validation performance via scatter plots.

the model. As mentioned above performance ratings in section
2.3, NSE and PBIAS for both calibration and validation achieved
satisfactory limits (Fig. 3). While, PBIAS obtained best results in
calibration and validation. Moreover, the validated model contained
less error and it follows similar trend of observed data. The scatter
plot shows the correlation between observed and predicted values;
it shows how much of predicted data can able to achieve near to
observed data. In Fig. 4, the points of both calibration and validation
spotted near to exact fitted line. Compared to calibration, validation
points little diversified but it provided the acceptable performance.
For analyzing detail flow-wise prediction; Flow duration curves
(FDC) are appropriate choice to check in various sections of flow
concepts, it derives into different levels of flow like high, medium,
and low flows. In Fig. 5, x-axis split into certain classification
like 0 to 20 (high flows), 20 to 75 (medium flows) and 75 to 100
considered as (low flows). The calibration followed similar way of
trend in all sorts of flows, but validation achieved good performance
with over-prediction. Finally, the time series plot illustrates the
hydrograph of whole period of calibration and validation as well as it
captured effectively in the peaks which helps in flood prediction (Fig.
6). Hence, the model verified with accurate results for streamflow
prediction.

4.4. Computational Burden

The entire work done in QSWAT 2012 for developing SWAT mod-
els and Matlab 2015a environment for optimization of parameters
with the system configuration of Core i5 3.2 GHz processor and
8 GB RAM. In this study, it is observed that the RBFNN model
took an average of 20 seconds to train the respective models. The
total simulation time to get the optimal SWAT model including
with parameter sets generation for RBFNN (1000 samples) was 1.5
hours respectively. Similarly, for manual calibration of SWAT can
take 10 minutes to run for one simulation. With the help of meta
model, the optimized model can get accurate results with effective
computational time.

5. Conclusions

In this study, we proposed meta modelling framework for optimiza-
tion of SWAT model parameters and enhanced the streamflow .
RBFNN has taken as a meta model for finding optimal parameter
set with OA-LHD sampling. For selecting adjustable parameters to
optimize the model, we used sensitivity analysis to screen out most
influential parameters. The developed framework was evaluated by
5-fold CV. The CV score obtained for the sets of 200, 500, 700
and 1000 are range between 0.96 to 0.46 nearly. After training, the
model verified through validation results. The performance wise,
the model satisfied all the criterion and reduced nearly 50% of error
from the default values. While computational wise, it showed better
performance over the manual calibration. At an average, the meta
model took 20 sec to optimize the parameters and manual calibration
can take more than 5 minutes for single simulation. It clearly showed
large varaition in computational time between meta model to concep-
tual model. Here, meta model mimics the original simulation model
and explains the input-output relationship. Hence, the prediction of
streamflow captured peaks of hydrogrpah with less bias. This study
helps to understand the auto-calibration of SWAT model using meta
modelling and it provides effective and efficient way to analyze the
streamflow for planning and decision making of watershed.
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