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Abstract 
 

Orthogonal frequency division multiplexing (OFDM) based massive multiple-input multiple-output (MIMO) downlink systems face the 

issues of high peak-to-average power ratio (PAPR) and multiuser interference (MUI) which significantly affect their performance. The 

solution lies in finding an OFDM-modulated signal that possesses a low PAPR and also enables MUI cancellation. In this paper, a com-

parative analysis has been performed based on a Bayesian PAPR reduction algorithm. This method models the problem into a hierar-

chical truncated Gaussian mixture prior (TGM) model which makes use of the redundant degrees of freedom of the transmission array. 

This leads to a low PAPR signal as most of the samples are concentrated on the boundaries. A variational expectation-maximization (EM) 

tactic is incorporated to obtain an estimate of the hyperparameters. This is followed by the implementation of the generalized approxi-

mate message passing (GAMP) algorithm to reduce the complexity of computation. MATLAB simulations show a significant improve-

ment in PAPR reduction and MUI cancellation with this Bayesian approach leading to better power efficiency and system performance. 

 
Keywords: Bayesian Learning; EM; GAMP; Massive MIMO; MUI; OFDM; PAPR; TGM. 

 

1. Introduction 

Massive MIMO has received a lot of attention in the field of wire-

less communication. It is a promising technology that can success-

fully meet the growing demands for higher throughput and im-

proved quality of service (QoS) [1]. It makes use of multiple an-

tennas at the transmitter and the receiver to improve the system 

performance under the condition that the number of transmit an-

tennas at the base station (BS) is larger than the number of receive 

antennas. It aims to achieve a high spectral efficiency and link 

reliability. 

However, the MIMO systems suffer from frequency selective 

fading. OFDM is a type of multicarrier modulation (MCM) tech-

nique that is used for combating the frequency-selective fading 

over dispersive channels. But, OFDM suffers from several issues 

such as high PAPR, which demands the use of expensive and 

power inefficient linear electronic components at the transmitter. 

Instead of making use of such high-resolution digital-to-analog 

converter (DAC) and linear power amplifier (LPA), one can opt 

for a precoding based PAPR reduction strategy at the transmitter 

to enable an inexpensive and power efficient solution [2]. Thus, 

with its potential to improve the energy efficiency and cost by 

enabling the use of inexpensive, low power components, it is ex-

pected that massive MIMO will bring radical changes to future 

wireless communication systems. 

Many PAPR reduction techniques have been developed for single-

input single-output (SISO) systems, the most efficient ones being 

clipping and filtering (CF), selected mapping (SLM) and partial 

transmission sequence (PTS) [3]. However, the extension of these 

schemes to multiuser MIMO systems is very complicated. The 

situation further worsens when the number of antennas is in-

creased as the complexity of the signal processing at the receiver 

side is compounded with greater user distribution [4]. Therefore, it 

becomes absolutely necessary to formulate some methods to re-

duce the PAPR of OFDM-based massive MIMO systems. 

A novel Bayesian approach was proposed for OFDM-based down-

link massive MIMO systems in [5]. The MUI cancelation was 

designed as an underdetermined linear inverse problem that pre-

sents multiple solutions. To enable a low PAPR solution, a hierar-

chical truncated Gaussian mixture prior model (TGM) was used 

and assigned to the solution. This led to a quasi-constant magni-

tude solution which ensures that maximum entries lie on the trun-

cated boundaries, ensuring a low PAPR. A variational expecta-

tion-maximization (EM) algorithm was developed to calculate the 

estimates of the hyperparameters associated with the TGM prior. 

Finally, a generalized approximate message passing (GAMP) 

technique was embedded to reduce the complexity of the algo-

rithm [6]. 

In this paper, a comparative study has been carried out based on 

the EM-TGM-GAMP algorithm and the Zero-Forcing (ZF) pre-

coding and the Maximum Ratio Combining (MRC) techniques. 

The paper is organized as follows: Section 2 reviews the related 

works, Section 3 describes the massive MIMO system modelling, 

Section 4 discusses the PAPR reduction technique, Section 5 de-

scribes the Bayesian modelling, Section 6 covers the theory of 

Bayesian inference, Section 7 discusses the mathematical model-

ling of the likelihood approximation, Section 8 gives a detailed 

explanation of the variational EM-GAMP framework, Section 9 

covers the results of the simulations and Section 10 concludes the 

paper. 

2. Related works 

A low-complexity SLM based PAPR reduction scheme was pro-

posed in [8]. However, this is only applicable to space frequency 

block coded (SFBC) MIMO-OFDM systems as it is primarily 
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based on the linear property of SFBC. Also there is a trade-off 

between the number of sub-blocks and the PAPR. So, with the 

proposed scheme, although a large number of signal sets can be 

computed with only a few IFFTs, it may not achieve a significant 

PAPR reduction [9]. A PTS based scheme was proposed to re-

solve the high PAPR problem of OFDM systems in [10]. Alt-

hough it has a low computational complexity, it fails to achieve 

any significant improvement in PAPR reduction. [11] deals with 

the issue of additional side information (SI) added due to SLM 

which reduces data throughput. Although it produces similar per-

formance as the standard SLM method, it can only be applied to a 

flat fading channel. [12] discusses a hybrid SLM and PTS based 

PAPR reduction technique. SLM is applied first to choose the 

dataset with the least PAPR which is then fed to PTS to further 

reduce it. However this method involves intensive computation 

which reduces its efficiency. [13] makes use of a Bayesian ap-

proach to mitigate PAPR by utilizing the redundant degrees of 

freedom (DOF) of the transmit array. It achieves significant im-

provement in PAPR reduction as compared to the existing 

schemes, but suffers from a poor convergence rate. A joint PAPR 

reduction and MUI cancellation was proposed in [15] which also 

uses a Bayesian approach. It applies a Bernoulli Gaussian prior 

and seeks a minimum mean square error (MMSE) solution. Alt-

hough it achieves a significant MUI cancellation, it fails to 

achieve a low PAPR. Recently, a linear constrained l


 optimiza-

tion based PAPR reduction method was developed for massive 

MIMO systems to achieve joint MUI cancelation and PAPR re-

duction [16]. However, it made use of a regularization parameter 

to strike a balance between the MUI cancellation and PAPR re-

duction. Another recent work was based on approximate message 

passing (AMP) based Bayesian inference [17]. This is very similar 

to the EM-TGM-GAMP algorithm, but the prior distributions are 

quite different, which does not lead to a quasi-constant magnitude 

solution. 

3. System model 

Here, an OFDM-based downlink massive MIMO system has been 

modelled with the BS having M  transmit antennas and serving 

K  independent single-antenna users (where, K M ). The total 

number of OFDM transmit signals is set equal to the number of 

transmit antennas M , which is split into two sets   and c , with 

the tones in the first set being used for data transmission and the 

tones in its complementary set utilized as the guard band (unused 

tones). Hence, for each tone n , the corresponding 1K   vector 

n
v  comprises of the symbols for K  users. The data vector is nor-

malized to satisfy 2[|| || ] 1nE v = . For each tone, nv  is set as 

1
0

n K
v


=  so that no signal transmission occurs from the guard 

band. 

To remove MUI, it is necessary to perform precoding at the BS. 

The signal vector 
n

v  on the thn  tone is linearly precoded as (1) 

where 1n Ms C   is the precoded vector that contains symbols 

transmitted on the thn  sub-carrier through the M  antennas re-

spectively, and 
n M K

A C


  represents the precoding matrix for the 
thn  OFDM tone. 

 

n n n
s A v=                                                                                        (1) 

 

Here, we compare the Bayesian approach with the classical ZF 

and MRC techniques. While ZF aims to achieve complete MUI 

cancellation, MRC attempts to strike a balance between noise 

reduction and MUI cancellation. The ZF precoding matrix is rep-

resented as (2) where 
n K M

P C


  denotes the MIMO channel matrix 

associated with the thn  tone. After precoding, all precoded vectors 

are reordered based on the M  antenna positions for OFDM mod-

ulation as 
1 1

[ ....... ] [ ....... ]T

M M
s s  =  where 

1n M
C


  represents the 

frequency-domain signal transmitted from the thn  antenna. This is 

followed by the inverse discrete Fourier transform (IDFT) to ob-

tain the time-domain signals ˆ
n

 . A cyclic prefix (CP) is then add-

ed to eliminate the intersymbol interference (ISI). Finally, these 

samples are converted to analog signals and transmitted via the 

frequency selective channel. 

 
1( )H H

n n n nA P P P −=                                                                          (2) 

 

At the receiver, the CPs removed and DFT is performed to obtain 

the frequency-domain signals. The received vector consists of K  

user signals and can be denoted by (3) where 
1n K

y C


  denotes the 

receive vector associated with the thn  tone and n  is the receiver 

noise that has independent and identically distributed (i.i.d) circu-

larly symmetric complex Gaussian entries with zero mean and 

variance 
o

N . 

 

n n n n
y P s = +                                                                                  (3) 

 

When the ZF scheme is used, the received signal simplifies to (4) 

signifying that MUI is completely eliminated. However, for the 

MRC scheme, the matrix is given by (5) and the received signal is 

denoted by (6). 

 

n n n
y v = +                                                                                     (4) 

 

2|| ||

H

n
n

n

P
A

P
=                                                                                   (5) 

 

2|| ||

H

n n
n n n

n

P P
y s

P
= +                                                                        (6) 

4. PAPR reduction 

In OFDM, the phases of the sub-carriers are independent of each 

other leading to either constructive or destructive interference. To 

limit the signal distortion and out-of-band radiation, DACs and 

LPAs are required at the transmission side to deal with the large 

peaks generated in the OFDM signal. This results in an expensive 

and power-inefficient remedy. 

PAPR is defined as the ratio of the peak power to the average 

power of the signal. For the thn  transmit antenna, it is given by (7). 

When the number of transmit antennas is significantly greater than 

the number of users, multiple precoding matrices are available 

leading to a set of precoded signals 
1

[ ....... ]T T T

N
s s s=  which can 

achieve complete MUI elimination. The objective now is to select 

a suitable candidate s  from this set corresponding to a low PAPR 

solution [19]. Thus, instead of designing a precoding matrix, a 

signal s  can be searched for which can lead to joint PAPR reduc-

tion and MUI cancelation. 

 
2

2

2

ˆ2 || ||

ˆ|| ||

n

n

N a
PAPR

a

=                                                                         (7) 

 

For MUI cancellation, the precoded vectors 
n

s  must satisfy (8) 

and (9). 

 

n n n
v P s= , n                                                                               (8) 

 

1
0

M n
s


= , cn                                                                               (9) 

 

This can now be modelled as an underdetermined linear inverse 

problem given by (10) where 
1MK

v C


  represents the combined 
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form of all vectors denoted by nv  and 10M   and P  represents a 

block diagonal matrix with its diagonal blocks equal to nP  n   

and 


  cn  . The re-ordering operation is now equivalent to a 

linear transformation a Tw=  where 
1

[ ....... ]T T

M
a a a=  and T  is a 

permutation matrix for assigning each precoded vector to the M  

antennas. With ˆ ( )m ma IDFT a= , we now have (11) where 

M N
F I F=   denotes the Kronecker product and 

1
ˆ ˆ ˆ[ ....... ]T T

M
a a a= . 

Given a symbol vector v , the objective is to search for a signal â  

having a low PAPR. This is a form of the minimax problem, 

which aims to minimize the maximum PAPR among all antennas. 

To simplify this issue, a constrained optimization ˆmin || ||a


 is 

used subject to (11). This can be further simplified to a real-valued 

problem as min || ||x


 subject to (12). Thus, by minimizing the 

largest magnitude of entries, one can reduce PAPR of every 

transmit antenna [16]. 

 

v Ps=                                                                                         (10) 

 

ˆTv PT Fa=                                                                                   (11) 

 

y Ax=                                                                                        (12) 

 

Where 

 

ˆ{ }

ˆ{ }

v
y

v

 
=  

 
, 

{ } { }

{ } { }

T T

T T

PT F PT F
A

PT F PT F

 − 
=  

  
 and 

ˆ{ }

ˆ{ }

a
x

a

 
=  

 
 

5. Bayesian model 

The system is modelled as (13), where   denotes the noise vector 

which is assumed to comprise of i.i.d. Gaussian random variables 

with zero-mean and unknown variance 1 − . Here   is considered 

to be unknown as the Bayesian framework allows for the determi-

nation of the model parameters. 

 

y Ax = +                                                                                   (13) 

 

To facilitate PAPR reduction, a quasi-constant magnitude solution 

is required for the underdetermined linear system. Although a 

constant magnitude signal can lead to minimum PAPR, it is not a 

practically feasible scenario. Thus, we seek a signal with maxi-

mum entries located on the boundary points of an interval [ v v−     

with the remaining entries bounded within the interval to meet the 

MUI cancelation constraint. 

A hierarchical truncated Gaussian mixture (TGM) prior is required 
to achieve this quasi-constant magnitude solution for a signal x . 

The coefficients of x are assumed to be independent of each other 

and are assigned to a TGM distribution as (14) [ix v v  −     

where the first component is characterized by a TGM distribution 

with mean v  and variance 1

1i
 −  and the second component is char-

acterized by the same with mean v  and variance 1

2i
 − . [0, 1]     

denotes the mixing coefficient, 
1i

  and 
2i

  are the normalization 

constants given by (15) and (16) while 
1

  and 
2

  are the precision 

parameters [20]. 

 
1 1

1 2

1 2

( ; , ) ( ; , )
( ) (1 )i i i i

i

i i

x v x v
p x

 
 

 

− − 
= + −                                    (14) 

 

1 1

1
( 2 )

2
i i

v  = − −                                                                     (15) 

2 2

1
(2 )

2
i i

v  = −                                                                       (16) 

Bayesian inference involves computation of the logarithm of the 

prior, which is a cumbersome process. So, a binary latent variable 

i
  is introduced such that 1

i
 =  signifies that the first component 

is selected and 0i =  implies the second component. The equiva-

lent prior is given by (17) [
i

x v v  −     and the distribution of 
i

  

is written as (18). 

 
1 1

(1 )1 1

1 2

1 1

( ; , ) ( ; , )
( | , , ; ) ( ) ( )i ii i i i

i i i i

i i

x v x v
p x v

  
  

 

− −

− 
=                    (17) 

 
(1 )

, ) ( ) (1 )i i

i
p

     −
( = −                                                               (18) 

6. Bayesian inference 

We make use of variational EM strategy for the Bayesian infer-

ence. Here, we are dealing with a probabilistic model that com-

prises of observed data y , hidden variables z  and unknown 

deterministic parameters   as shown in Fig 1. 
1 2

{ , , , }x    =  are 

considered to be hidden variables, whereas the noise variance   

and the boundary parameter v  are treated as unknown determinis-

tic parameters { , }v = . The marginal probability of the observed 

data can be denoted by (19) where the two terms can be further 

expressed as (20) and (21), where ( )q z  is the probability density 

function and ( || )KL q p  is the Kullback-Leibler divergence be-

tween ( | ; )p z y   and ( )q z  [21]. 

 

ln ( ; ) ( , ) ( || )p y F q KL q p = +                                                     (19) 

 

( , ; )
( , ) ( ) ln( )

( )

p y z
F q q z dz

q z


 =                                                     (20) 

 

( | ; )
( || ) ( ) ln( )

( )

p z y
KL q p q z dz

q z


= −                                              (21) 

 

 
Fig. 1: Priors of Low PAPR Signal where Squares Denote the Model 

Parameters and Circles Represent the Hidden Variables. 

7. Likelihood approximation with GAMP 

GAMP is a very-low-complexity Bayesian iterative technique. 

The EM-GAMP algorithm is implemented in a dual loop tech-

nique where the outer loop (EM) calculates the Q -function using 

( )q x  and then maximizes the same function to update the model 

parameters 1 , 
2

  and k . The inner loop (GAMP) makes use of 

the newly estimated parameters to obtain a new approximation of 

( )q x  [7]. Instead of computing ( )q x  in the variational EM 

framework, GAMP is used to calculate the approximate likelihood 
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function ( | ; )p y x   which does not involve any of the model 

parameters as shown in Fig 2. Also instead of implementing the 

inner loop in an iterative way, only a single iteration is used to 

approximate the likelihood function [22]. 

 

 
Fig. 2: Variational EM-GAMP Framework. 

 

The GAMP algorithm is used to compute the approximation of the 

joint likelihood function ( | ; )p y x   as a product of approximate 

marginal likelihoods as given by (22) where ˆ( | , )r

i i i
x r   is the 

approximate marginal likelihood [6]. To compute 
î

r  and r

i
 , an 

estimate of the posterior ( )q x  and   are required. GAMP uses 

these to approximate the likelihood function ( | ; )p y x  . With this 

approximation, the variational EM gives a new estimate of the 

posterior distribution ( )q x , the deterministic variables   and v  

as well as the posterior distributions of the other hidden variables 

1
( )q  , 

2
( )q   and ( )q k  [23]. 

 

1

ˆ ˆ( | ; ) ( | ; ) ( | , )
I

r

i i i
i

p y x p y x x r  
=

                                          (22) 

 
Algorithm 1: GAMP-Based Likelihood Approximation 

Input: 

• mean and variance of ˆ
i

x , where 
( )

ˆ
ii i q x

x x=    

• mean and variance of x

i
 , where 

( )i

x V

i i q x
x =    

• initialize ˆ 0
j

s =  

where, 1,.......,i I= , 1,.......,j J= , ˆ
ix  & x

i
  are the posteriors of ( )

i
q x  

and 
(.)

. V

q
   denotes the variance with respect to (.)q  and inverse noise 

variance  . 

Output: 

• approximate likelihoods 
ˆ( | ; )r

i i ix r 
 and 

ˆ( | ; )u

j j ju u 
, where 

1,.......,i I=
 and

1,.......,j J=
 

Step-1: For each value of j : 

• 

2 2p

j ji i
i

A = 
 

• 

2ˆ ˆˆ p

j ji i j j
i

p A x s= + 
 

Step-2: For each value of j : 

• 
ˆ( | ; ; )

ˆ p
j j j j

j j p u y p
u u


=    

• 
ˆ( | ; ; )p

j j j j

u V

j j p u y p
u


 =    

• 
ˆˆ

ˆ j j

j p

j

u p
s

−
=


 

• 
1

(1 )

u

js

j p p

j j


 = −

 
 

Step-3: For each value of i : 

• 2 1( )r s

i ji j

j

A − =   

• ˆ ˆ ˆr

i i i ji j

j

r x A s= +    

8. Variational EM-GAMP framework 

8.1. Expectation (E) step: 

This involves updations of the hidden variables. The posterior of 

z  is approximated as (23). 

1 2 1 2
( , , , | ; , ) ( ) ( ) ( ) ( )p x k y v q x q q q k    =                                    (23) 

 

The updations of ( )q x , 1( )q  , 
2

( )q   and ( )q k  are represented 

by (24), (25), (26) and (27) respectively [24]. 

 

1 21 2 ( ) ( ) ( )
ln ( ) ln ( , , , , ; , )

q q q k
q x p y x k v

 
  =                                       (24) 

 

21 1 2 ( ) ( ) ( )
ln ( ) ln ( , , , , ; , )

q x q q k
q p y x k v


   =                                       (25) 

 

12 1 2 ( ) ( ) ( )
ln ( ) ln ( , , , , ; , )

q x q q k
q p y x k v


   =                                       (26) 

 

1 21 2 ( ) ( ) ( )ln ( ) ln ( , , , , ; , ) q x q qq k p y x k v    =                                         

(27) 

 

When 
i

x  is close to the boundary point v , the posterior mean of 

the precision parameter 1i  increases which results in the prior 

pushing the entry 
i

x  closer to the boundary point v . This feed-

back mechanism ensures that most of the entries are eventually 

located on the boundary points. 

8.2. Maximization (M) step: 

This step updates the deterministic parameters. The deterministic 

parameters are estimated by maximizing the Q -function as denot-

ed by (28). 

 
max

( )
( , ) ln ( , ; )NEW OLD

q z
Q p y z


   =   =                                              (28) 

 

The inverse of the noise variance is updated by maximizing the Q

-function with respect to   as given by (29). 

 

1

2

1

( )

t

J

j j
j

J

y u
 +

=

=
 − 

                                                                       (29) 

 

The boundary parameter is updated by maximizing the Q -

function with respect to v  as shown in (30) and (31), where ( )ˆ tx  

is the estimate of the signal after t  iterations and 
1

[ ....... ]T

I
  = . 

 
1t tv v v+ = +                                                                                  (30) 

 

( )

2

2

ˆ( )

|| ||

t Ty Ax A
v

A





−
 = , where 

( )

( )

0

0

ˆ
ˆ1,

{ t
i

t
i

i

if x
if x






      
 −    

=                            (31) 

 

However, this optimization is a complex process. So, a heuristic 

approach is adopted to compute an approximate value of v  such 

that the mismatch 2

2
ˆ|| ||y Ax−  can be minimized. Here, x̂  repre-

sents the estimated signal which is computed as the mean of the 

posterior distribution ( )q x . The fundamental principle is based on 

the fact that since most of the entries are concentrated on the 

boundary points, increasing the boundary v  by a very small value 

v  will also cause the signal to expand accordingly leading to a 

lower mismatch [25]. 

 
Algorithm 2: EM-TGM-GAMP 

Initialization: 

• 
(0) 310 =

 

• 

(0) || ||

|| ||

y
v

A





=

 

• 
( ) 0q x =

 

• 1
( ) 1q  =

 

• 2
( ) 1q  =
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• 

1
( )

2
q k =

 

• 
var( ( )) 1q x =

 

• 0t =  
Repeat the following steps until 

max
t t : 

• Calculate the approximate distributions 
( )ˆ( | ; )tp y x 

 and 
( )ˆ( | ; )t

j
p u y 

 on the basis of 
( )q x

, 
( )t

, 
var( ( ))q x

 and 
( )var( )t

 with the aid of Algorithm 1. 

• Using the approximate likelihood 
( )ˆ( | ; )tp y x 

, update the poste-

riors of the hidden variables 
( )q x

, 1( )q 
, 2

( )q 
 and 

( )q k
. 

• Compute the new estimate of 
1t +

 and 
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• Increase the value of t  as 1t t= +  

9. Results 

The performance metrics include a measure of the MUI the com-

plementary cumulative distribution function (CCDF), which is 

used to evaluate the PAPR reduction performance. The CCDF 

computes the probability that the PAPR of the estimated signal 

exceeds a given threshold and is given as (32). 

 

0 0
( ) Pr( )CCDF PAPR PAPR PAPR=                                             (32) 

 

The MUI is computed as denoted by (33). 

 
2

2

n n n
n

n
n

v P s
MUI

v









−
=


                                                                 (33) 

 

MATLAB simulations have been carried out to compare the per-

formance of the Bayesian PAPR reduction and MUI cancellation 

approach with the ZF and MRC techniques. The method has been 

referred to as the EM-TGM-GAMP algorithm. Our simulations 

have been carried out for a massive MIMO system which has 256 

antennas at the BS and serves 64 single-antenna users. A BPSK 

signal constellation has been considered. 

The real part of the time-domain signal as estimated by the EM-

TGM-GAMP scheme (the complex part shows similar response) 

has been depicted in Fig. 3. It can be clearly observed that the 

solution has most of its entries on the boundary points, which is 

the basic principle behind using the TGM mixture prior model. 

Such a solution has a low PAPR as it almost behaves like a con-

stant modulus signal. As far as the ZF and MRC schemes are con-

cerned, the solutions have several high peaks and show a large 

deviation. 

The number of trials has been restricted to 100 in our simulations. 

To choose the number of iterations, the convergence rate of the 

algorithm is computed with respect to the PAPR reduction and 

MUI cancellation. It can be observed in Fig. 4 that the algorithm 

converges at around 300 iterations, the value which has been used 

for all the simulations. 

 

 

 

 

 

 
(A) 

 
(B) 

 
Fig. 3: Time Domain OFDM Signal: (A) ZF vs. EM-TGM-GAMP (B) 
MRC vs. EM-TGM-GAMP 

 
(A) 

 
 

(B) 

 
Fig. 4: Convergence Rate For Number of Iterations: (A) PAPR (in Db) (B) 
MUI (in Db) [Suitable Value = 300]. 
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The convergence rate was also calculated for the number of 

transmit antennas in order to determine a suitable value of N  by 

fixing the number of single antenna users as 64K = . It is seen 

from Fig. 5 that the algorithm converges when around 256 anten-
nas are used which satisfies our model assumption K M . 

 
(A) 

 
 

(B) 

 
Fig. 5: Convergence Rate for Number of Antennas: (A) PAPR (in Db) (B) 

MUI (in Db) [Suitable Value = 256]. 

 

The PAPR reduction and MUI cancellation are also investigated 

when the number of users is increased. It can be clearly seen from 

Fig. 6 that an increase in the number of users hinders the perfor-

mance of the system. 

 
(A) 

 
 

 

 

 

 

 

 

(B) 

 
Fig. 6: (A) PAPR (in Db) (B) MUI (in Db) For Variable Number of Users 
(K) Served by K*4 Antennas. 

 

Fig. 7 compares the performance of the Bayesian methodology 

with the ZF and MRC schemes for varying number of transmit 

antennas N  serving / 4N  users. The PAPR values (in dB) have 

been tabulated in Table 1 and the MUI values (in dB) have been 

enlisted in Table 2. It can be clearly seen that the Bayesian algo-

rithm gives the lowest PAPR. As far as the MUI is concerned, ZF 

achieves complete MUI cancellation, but MRC fails in that aspect. 

Thus, the EM-TGM-GAMP scheme shows a substantial reduction 

in MUI, thereby ensuring a joint MUI cancellation and PAPR 

reduction attribute. 

 
(A) 

 
 

(B) 

 
Fig. 7: Comparison of (A) PAPR (in Db) (B) MUI (in Db) Reduction for 

Different Schemes for A Variable Number of Antennas (N) Serving N/4 
Users 

 
Table 1: PAPR (In Db) For Different Schemes with 300 Iterations for A 

Variable Number of Antennas (N) Serving N/4 Users 

No. of Antenna 64 256 1024 

ZF 6.1584932 9.4655246 11.547964 
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MRC 8.8977103 12.439619 15.988378 

EM-TGM-GAMP 1.1915911 1.1818215 1.1887495 

 
Table 2: MUI (In Db) For Different Schemes with 300 Iterations for A 
Variable Number of Antennas (N) Serving N/4 Users 

No. of Antenna 64 256 1024 

ZF -299.39531 -296.46173 -290.93918 

MRC -4.9440519 -3.5302091 -2.0260346 
EM-TGM-GAMP -82.275613 -94.367416 -90.974505 

 
(A) 

 
 

(B) 

 
Fig. 8: Comparison of (A) PAPR (In Db) (B) MUI (In Db) Reduction for 

Different Schemes with 300 Iterations for 256 Antennas Serving 64 Users. 

 

The PAPR and MUI values (in dB) obtained by using the Bayesi-

an method for a simulation involving 256 transmit antennas serv-

ing 64 single-antenna users with 300 iterations have been tabulat-

ed in Table 3. The same has also been plotted in Fig. 8. Fig. 9 

presents a CCDF plot of the three schemes under consideration. 

We can clearly see that the Bayesian approach reduces the PAPR 

by around 5 dB as compared to ZF and MRC. 

 
Table 3: PAPR & MUI for Different Schemes with 300 Iterations for 256 

Antennas Serving 64 Users 

Scheme PAPR (in dB) MUI (in dB) 

EM-TGM-GAMP 1.1818215 -94.3674157 

ZF 6.1584932 -299.395307 
MRC 8.8977103 -4.94405194 

 
Fig. 9: CCDF Plot for Comparison of Reduction of PAPR by EM-TGM-

GAMP, ZF and MRC Schemes 

10. Conclusion 

This paper presents a solution to the problem of high PAPR in an 

OFDM-based downlink massive MIMO system with a Bayesian 

inference-based joint PAPR reduction and MUI cancelation tech-

nique. The system is modelled as a hierarchical TGM prior model 

to facilitate the choice of a low PAPR signal. A variational EM 

algorithm is embedded to calculate the estimates of the hyperpa-

rameters of the prior. Finally, the GAMP technique is combined 

with the EM framework to improve the convergence rate. A com-

parative study has been performed with the popular existing 

schemes such as ZF and MRC. Simulation results show that the 

Bayesian scheme achieves a significant reduction in PAPR and 

even ends up performing improved MUI cancelation. It also shows 

a fast convergence rate, which makes it a suitable candidate for 

real-time systems. 
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