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Abstract 
 

Recommenders are being used in many applications and circumstances to make ease of social life by generating categorized and person-

alized recommendations to the individuals. These categories may be chosen by the users to get recommendations for movies, songs, 

products and various services etc. One of the challenges of a recommender system is to generate recommendations in real time to many 

people by analyzing huge amount of data. In this paper, authors considered traditional recommender and hybrid recommender techniques 

to generate recommendations. Traditional recommender systems include similarity measure, matrix factorization, co-clustering and 

slope-one approach, where as the second type of recommender system consists of the role of hybridization techniques and contextual 

parameters with traditional recommenders. Here, authors worked on movie lens dataset with above mentioned recommender systems and 

observed that SVD approach has less RMSE and MAE values comparing with other models. 
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1. Introduction 

Recommendation systems are the type of information retrieval 

mechanisms used to predict user‟s interest in a given context on an 

item. Recommendation system found its applications in NEWS 

personalization, product/item recommendations, in E-commerce 

websites, Songs and movie recommendation in online streaming 

websites and friend recommendation in social networking sites. 

The process of making recommendations is two steps: 1) Learning 

the data: also known as model building step or offline step and 2) 

Generating predictions: also known as execution or online step. In 

many cases, Recommendations should be real time, so offline step 

should be able to scale up a massive amount of data and help to 

generate real-time recommendations.  

The challenge of recommendation systems is to mainly understand 

the user's requirement and recommend items which are related to a 

user‟s interest which he may not know but like it when recom-

mended.  

Recommendation system uses many parameters to generate rec-

ommendations [1]:  

 

 
Fig. 1.1: Recommendation Process. 

 

1) The history of recommender systems ranges from Google 

Page rank system, Pandora music streaming website [4], 

CDnow [2], to Amazon.com [3]. These websites use rec-

ommendation engines to provide valid recommendations in 

real time. Recommender systems are of two types. 1) Non-

personalized recommenders & 2) Personalized recommend-

ers. Non-personalized recommenders never consider user‟s 

interest into account to provide recommendations. These 

types of recommenders are highly beneficial. For example, 

in a NEWS recommender system, even if a user is not inter-

ested in politics, it is essential to recommend a major politi-

cal news like new president-elect of the country to all users. 

On the other hand, Personalized recommenders customise 

recommendations according to user‟s taste. Personalized 

recommender systems are of three types.  

1) Content-based, 

2) Collaborative based and 

3) Hybrid approach. 

This paper is organized as follows. The next section describes 

non-personalised recommender system.  

Section 2 gives a brief overview of content based personalized 

recommendation. Section 3 is about collaborative filtering tech-

niques. Section 4 presents hybrid recommender system. Section 5 

provides the metrics for evaluating a recommender system. Sec-

tion 6 presents the survey results of traditional recommendation 

systems. The final section provides concluding remarks and future 

research directions. 

2. Non-personalized recommender system and 

content-based systems 

2.1. Non-personalized recommender 
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Non-personalized recommender system gives common recom-

mendations to all users. The simple formula used by earlier non-

personalized recommender systems like Zagat is [5] 

 

Score= (Mean (ratings)) *10 

 

The rating values are between 1 to 5 and mean multiplied by ten to 

make it non-decimal. 

Some non-personalized recommender systems like conda nast[5] 

used the formula to calculate rating prediction Ru as: 

 

   
∑       

∑      
      

 

Where ∑      is Number of people with good ratings (say 4 and 5 

out of 5-star ratings) for the item i. And I is the total number of 

ratings for that item. 

Non-personalized recommenders are used to provide new movie 

review. For example, the average rating of a new movie in blogs 

has nothing to do with a user‟s interest.  

In cases of fewer ratings, mean can be misleading. So, the mean 

ratings are modified by, 
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Where, is the sum of user ratings for item i, n is the total number 

of ratings, k is a strength of evidence required to overcome global 

mean and µ is the average rating of item i. The advantages of non-

personalized recommender system is less time complexity, less 

space complexity and can generate recommendations for even new 

users. And, the drawback of non-personalized recommender is it 

never consider the user‟s interest.  

2.2. Content-based recommendations 

Utility matrix is considered as input to make recommendations 

this matrix has rows as users and columns as items. The intersec-

tion is the vector of ratings given by a user on an item. 

The main agenda of a content-based filtering is to find similar 

items to items the user is looking for [6]. Content-based recom-

menders found their applications in digital documents, online 

articles and NEWS portals.  

Steps in content-based recommenders: 

1) Initially, products are represented in the form of attributes 

or descriptors. For example, books can be described by 

Genre (Science fiction, Comedy, Drama), Author‟s Name, 

words used in the book. 

2) Represent the values for each descriptor by a vector in a 

multidimensional vector space. 

3) In the same way, a user profile is created for each user 

based on his purchase history, explicit ratings, and reviews.  

4) Now the user has same attributes like the genre (List of 

movies they prefer), Author‟s name (List of books they 

bought of an Author).  

5) Now map each user to a movie similar to his taste. 

The similarity between two items are represented by,  

 

         
   

|| || || ||
 

∑        

√∑   
  

   √∑   
  

   

  

 

Where Ai and Bi are components of vectors A and B respectively. 

Music genome project by Pandora [4] has successfully imple-

mented content-based filtering for recommending music to its 

users. 

Some of the pros of content-based recommenders are 1) It cannot 

recommend items to users with unique tastes. 2) It can also rec-

ommend new and less popular items 3) It has a valid proof for 

recommending an item to the user. Content-based recommenders 

also have some disadvantages 1) It is a difficult task for discover-

ing descriptors for every item. 2) In some cases, over specializa-

tion may lead to decidedly less or no similar items and 3) Cold 

start problem: User profiles are generated by aggregating item 

profiles that user has rated. But for a new user, the user profile is 

empty. So, no perfect item is recommended. 

 

 
Fig. 2.1: Content-Based Recommendations. 

3. Collaborative filtering 

Collaborative filtering predicts the preference of a user on an item 

based on the taste of another user [7]. The criteria here is to find a 

set of users similar to a user u and recommend the items consumed 

or preferred by these users to the user u. 

 

 
Fig. 3.1: Collaborative Filtering. 

 

The first approach for collaborative filtering is baseline approach. 

Some users tend to be strict rates and some as lose raters. This is 

the case with items as well as movies. So, observed deviation of 

users and items along with µ provide better recommendations 

compared to simple average. The rating prediction  ̂   in baseline 

approach is, 

 

 ̂            

 

Where is the average ratings of all available ratings in the system, 

is observed deviation of user x and    is observed deviation of 

item i.Baseline approach is a relatively simple approach. This 

approach is mostly used when no much information is available 

about user and items. 
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Collaborative filtering can be done by using two methods 1) 

Memory-based methods and 2) Model-based methods. 
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3.1. Memory-based methods 

Memory-based collaborative filtering techniques find similarity 

between user/items using neighborhood methods [8]. The similari-

ty is typically calculated by Pearson correlation, cosine similarity 

measures, and Jaccard coefficients. Here, the similarity between 

users/items is computed offline. There are two types of collabora-

tive filtering techniques, user-user collaborative filtering, and 

item-item collaborative filtering.  

3.1.1. User-user collaborative filtering [7] 

The basic idea of user-user collaborative filtering is, let us consid-

er a user x, find a group of users whose likes and dislikes are simi-

lar to defined user x. For example, x likes the same movies, the 

group of users like and x dislike the movies the group doesn't like. 

These group of users is called neighborhood of x. After finding the 

neighbor of x, find the set of items/movies which are not 

bought/seen by user x but are liked by neighborhood users. Then, 

recommend those items to user x.  

Consider a user item utility matrix where Ui is the user, Mi is 

items, and ri is rating vectors ri.  

 
Table 3.1: User-Item Utility Matrix 

 
 

In order to find the similarity between users, similarity measures 

like Jaccard similarity, cosine similarity or Pearson similarity are 

used. 

Jaccard similarity [8]: 

 

         
|     |

|     |
  

 

Where, |     | are set of movies watched by both a and b in 

common and |     | is a total number of movies watched by a 

and b. Here, the rating given by the user to a movie is not consid-

ered important so, by using the above formula, user u1 and u3 are 

considered identical which is not true. 

1) Cosine Similarity: 

To incubate rating factor into consideration, cosine similarity is 

very useful. The similarity is represented as the dot product of two 

vectors and dividing it by the product of Euclidian norms. 

 

Sim (A, B)=      ⃗  ⃗⃗ =
 ⃗⃗   ⃗⃗

|| ⃗⃗||  || ⃗⃗||
=

∑                

√∑     
 

     √∑     
 

    

 

 

Where rai, is the rating of the user a on item i and rbi is the rating of 

user b on item i. 

2) Pearson similarity: 

In practice, some users are easy raters and some rates are strict 

raters. In order to consider the deviation, center cosine similarity 

or Pearson correlation is used. The Pearson correlation between 

two users a & b is: 

 

Sim (A, B)=
∑ (      ̅ )       ̅        

√∑        ̅  
 

      
 √∑        ̅  

 
      

 

 

Where,  ̅  is average ratings of all items consumed by the user a 

and is average ratings of all items consumed by user b. 

To predict a user‟s interest or rating over an item i is given by: 

     
∑          

∑       
  

 

Where Sab is the similarity between user a and b and ra,i is rating 

prediction of the user a on item i.  

3.1.2. Item-item collaborative filtering 

In case of user-user collaborative filtering, the similarity between 

users is calculated. But in many cases, the number of users are 

more than the number of items. So, instead of starting out with the 

user, it is a better choice to pick an item i and finds out items simi-

lar to an item i, then we are going to estimate the rating for an item 

I based on the rating of other similar items [9]. The similarity can 

be measured by using same formula jacquard, cosine, and Pearson 

correlation. 

The rating prediction formula for item-item collaborative filtering 

is: 

 

    
∑                

∑            
  

 

Where Sij is the similarity between item I and j, rxj is the rating of 

user x on item j, and N(i;x) is set of items rated by x similar to i. 

The most complex step of above collaborative filtering is to calcu-

late similarity. The updated utility matrix should be scanned every 

time to calculate the similarity. Consider |U| be the size of utility 

matrix, the time complexity for finding k most similar user/items 

is given as 0 (|U|). It is impractical to scan utility matrix every 

time to calculate similarity and generating prediction in real time. 

One solution is to precompute similarity measures once in a day or 

two. But still, if we use naïve bays theorem, the time complexity 

turned out to be O (n*(|U|). Where n= number of users/items. 

Some solutions for the above-mentioned problem is to; 1) Find out 

the nearest items/users in a regular manner. 2) Use clustering to 

pre-group items into groups and restricting the search space to a 

cluster. 3) Dimensionality reduction techniques can also be used to 

reduce the search space.  

Memory-based Collaborative filtering works for almost any types 

of filtering like books, movies and products without the need of 

feature selection. But, it also suffers from some drawbacks like; 1) 

Cold start problem: We need to have enough of users to calculate 

the similarity. 2) Sparsity: There may be millions of users and 

millions of items and most of the users have not rated most of the 

items. Therefore, the user-item matrix is very sparse. 3) First rater 

problem: Suppose there is a new item in the catalog, we cannot 

find similar users or items because nobody has rated it. 4) Popular-

ity bias problem: In many cases, collaborative filtering tends to 

recommend common items which are not positive surprise. This 

effect is referred to Harry Porter‟s effect [10]. 

3.2. Model-based Collaborative filtering 

In contrast to the memory-based algorithms, model-based algo-

rithms try to model the users based on their past ratings and use 

these models to predict the ratings on unseen items. Some of the 

techniques based on collaborative filtering are SVD, SVD++, 

Matrix factorization using gradient descent, Probabilistic matrix 

factorization, Co-Clustering, Slope one approach. 

3.2.1. Singular value decomposition 

In user-user collaborative filtering techniques and item-item col-

laborative filtering techniques, the similarity measure is used to 

derive computations. These methods usually overfit the data. SVD 

is a model based collaborative filtering techniques that work on 

features rather than user and item directly.  

Singular value decomposition [11] is a method for dimensionality 

reduction technique where user item utility matrix is decomposed 

into three parts. 

Consider a user-Item utility matrix „A‟ of size m×n. This matrix is 

decomposed into three components 
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SVD (A) = U×S×VT 

 

Here, A is a user-item matrix of size m×n, U is a user-feature or-

thogonal matrix of size m×k, VT is a feature-item orthogonal ma-

trix of size k×n and S is a diagonal feature matrix of size k×k.  

 

[
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The elements in diagonal matrix S is determined in a way that 

s1>s2>s3…Sn. The elements which are less than „r‟ are dropped 

and the corresponding columns and rows are also discarded to 

keep only Uk and Vk
T.  

 

Now, Ak= Uk × Sk × Vk
T 

 

Ak is an approximation of A and is measured in terms of Frobeni-

us norm [12] (||A-Ak||) which is outside scope of the paper. Ak 

produces better results than A because Ak has less noise compared 

to A.  

The rating prediction rij for customer i on product j is, 

SVD assumes that the utility matrix has all entries. But the utility 

matrix has a lot of missing values. So, the factors derived from 

SVD is not accountable. 

3.2.2. Matrix factorization model using gradient descent ap-

proach 

In SVD, the original matrix is decomposed using linear algebra. It 

is noticed that this decomposition involves large computations that 

slow the system. In Matrix factorization [13], missing values are 

ignored, and best k-rank approximation for the available ratings is 

found. 
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Given a matrix R, it is approximated into two matrices Q and PT 

respectively. 

 

R Q.PT 

 

Here, Q is an items-factor matrix. These columns are less than the 

number of users. Similarly, matrix P is a factor-user matrix. Every 

row of Q and every column of P is a three-dimensional representa-

tion of both user and item. 

Stochastic gradient descent approach can be used to decompose R. 

In this method; guesswork is done to decompose original matrix 

and compute the error by performing rating prediction on the de-

composed matrix and compare with original ratings. If the error is 

large, then update the predicted value and iterate the comparison 

until convergence. 

 

The rating prediction of user x on item i is given by  

 

 ̂   ∑   

 

   
  

 

Where qi is ith row in matrix Q and px is column x of matrix pT.  

 

But to provide more accuracy, it is desirable to combine  ̂   with 

baseline estimate as discussed in section. 

 

 ̂                
   

 

Gradient descent approach has some advantages against SVD 1) it 

is very fast as compared to SVD. 2) It ignores missing values and 

works with available data. The drawback of gradient descent ap-

proach is, If the data is skewed and is very sparse, Matrix factori-

zation fails to give correct predictions. 

3.3.3. Probabilistic matrix factorization models 

The basic idea for probabilistic matrix factorization [14] is the 

assumption of data generated using random process. We make an 

assumption about the process to generate the data and learn about 

parameters that would generate same data as that of available.  

For example, In the case of non-personalized recommenders, it is 

assumed that the probability of a person u to buy a product i is 

expressed as,  

 

   |   
                     

                                  
  

 

But in the case of the personalized recommender, it is needed to 

predict the probability of a particular user buying a particular item. 

It can be done using probabilistic latent semantic analysis.  

Here, p (i|u) is the probability of a user u buying an item i.  

P(z|u): The probability of user picking a random factor z. for ex-

ample, what is the probability that user decides to watch an ani-

mated movie? 

P(i|z): The probability of a user buying item I after selecting fea-

ture z. Suppose a user decides to watch an animated movie, what 

is the probability that item I is chosen by the user? 

Here p(i|z) and p(z|u) are stochastic matrices unlike orthogonal 

like in the case of SVD. Means, it includes probability distribution 

instead of linear algebraic vector spaces. This kind of probability 

distributions can be derived using expectation maximization algo-

rithm.  

The rating prediction of user u on item i is given by 

Here, it is assumed the ratings are normally distributed with a 

mean determined by the dot product of user  

The disadvantage of Probabilistic matrix factorization models is; it 

is very slow to decompose.  

3.3.4. Co-Clustering based collaborative filtering 

Recommender system based on SVD and similarity measure pro-

vide useful recommendations. But, these techniques have high 

time and space complexity. These methods also work best in a 

static environment. In reality, most recommender systems need to 

provide recommendations in real or near real time. The basic idea 

is items & the users are allotted to clusters and co-clusters. In co-

clustering, the neighborhood of users & items are obtained, and 

predictions are generated using mean ratings of co-clusters. The 

approximation of user-item rating matrix is obtained using biases 

of individual user and item along with co-clustering average [19]. 

The original user-item utility matrix is decomposed using the co-

clustering approach which includes the user-item biases. 

Let A be the original user-item utility matrix, the rating prediction 

of user i on item j is given below by [20]. 

 

   ̂     
    (  

    
  )     

    
     

 

Where g is set of users, h is set of items, and   
 , is the average 

rating of a user,   
  is average ratings of an item,   

   is the aver-

age rating of item cluster,   
   is average ratings of user cluster, 

and    
    is the average of corresponding co-cluster. 

3.3.5. Slope one approach 

The principle of popularity differential is used in slope one ap-

proach [21]. Means, consider a user U1 who has rated item i and j. 

And consider a user U2 who has rated item i but not j. Now the 

rating prediction Ruj of user U2 on item j is given as,  
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Ruj=Rating of user U2 on item i + (Difference between ratings of 

user U1 on item i and j) 

In this approach, users who have rated some items as of target 

users and items the target user also rated are considered for gener-

ating recommendations. rui is the rating of user u on item i and ruj 

is the rating of user u on item j. The average deviation dev(i,j) is 

computed by, 

 

         
 

|   |
∑         

      

 

The rating prediction of user u on item i is given by  

where Ri(u) is the set of relevant items, i.e. the set of items j rated 

by u that also have at least one common user with i. dev(i,j) is 

defined as the average difference between the ratings of i and 

those of j. 

4. Context-based recommender systems 

In a traditional recommender system, user item utility matrix is 

used as input for generating recommendations. But, in a contextu-

al recommender system, user‟s information, item information and 

contextual information are used to provide recommendations. 

Contextual recommender takes contextual information like loca-

tion, time, purchase purpose to provide more precise recommenda-

tions [16]. The context can be divided into four types. They are: 

1) physical context: It includes entities like time, location, temper-

ature, light, and weather as contextual parameters. 2) social con-

text: It represents the influence of other people along with the user 

and whether the user is in a group or alone. 3) interaction media 

context: This context deals with the device used by the user (Lap-

top, smartphone, public kiosks) to access the system, the recom-

mendations may be music, video, text. 4) modal context: It deals 

with mood and state of the user in present situation. 

Contextual information can be used with traditional recommend-

ers in three ways. 

1) Pre-filtering: In this approach, the user-item utility matrix is 

filtered based on contextual information. This filtered matrix is 

then used by any traditional method for generating recommenda-

tions. 2) Post-filtering approach: In this approach, the recommen-

dations are generated by using any conventional recommendation 

systems. These recommendations are filtered using available con-

textual information. 3) Integrated approach: In this method, the 

contextual information is combined with traditional recommenda-

tion modeling approach to generate recommendations. 

Context-aware recommendation systems are found in many appli-

cations. N Hariri at all [17] used this approach in music recom-

mendations. Soha A.El-Moemen Mohamed at all [18] used this 

approach for recommending places or locations based on mood 

and weather.  

 
Table 4.1: Typical Parameters to Consider in A Contextual Recommender 

System. 

User Movie Time Location Companion Rating 

U1 Titanic Weekend Home Friend 4 

U2 Titanic Weekday Home Friend 5 

U3 Titanic Weekday Cinema Sister 4 
U1 Titanic Weekday Home Sister ? 

 

Contextual information is used in three ways [4]. 1) contextual 

matching: where only those profiles are considered which match 

with current profiles. For example, while considering context 

<time = weekday, location=home, companion = sister> only pro-

files matching this profile are considered. 2) Contextual relaxa-

tion: Here subset of matching profiles is considered. For example, 

out of 3 contexts < time = weekday, location=home, companion = 

sister> if either 1 <time, location or companion> or 2 <time or 

location, time or companion, companion or location >same rele-

vant contests are considered. 3) context weighing: here all contex-

tual information is considered, but every context is given weight. 

The primary challenge of contextual recommenders is to deter-

mine potential contextual parameters from available entities in a 

particular situation. For example, there may be many parameters 

like time, location, temperature, device used to access the system. 

Selecting the best parameters for generating recommendations is 

important. The second challenge is cold start problem, considering 

contextual information further reduces the search space. 

5. Hybrid recommenders 

Different algorithms have their strengths and weakness. For ex-

ample, collaborative filtering works well when there are lots of 

users & items. Content-based filters often work without much 

user-item interaction data. In practice, hybrid techniques are used 

to take advantages of different recommender systems to produce 

better recommendations. We can hybridize recommender systems 

using following methods [15]. 

5.1. Combined item score 

Combined item score takes the linear blends of multiple recom-

mender algorithms. 

 

                                  
 

Where   is Blending weights or weight of a recommender system 

and b is baseline offset. In General, b is the number of rating by 

the user or number of ratings for an item. Above equation can be 

extended by replacing .This can be written as, 

 

                                        
 

Where,         is a function which defines the characteristics be-

tween users and items. The above equation is called feature vector 

linear stacking. 

5.2. Combined item ranks 

Here, each recommender gives its output score to a set of items. 

These scores are aggregated to compute the overall score of items. 

For instance, consider below table,  

 
Table: 5.1: Example of Combined Item Ranks 

Recommender algorithm X‟s 
rank to items 

Recommender algorithm Y‟s 
rank to items 

A- Rank 1 B-Rank 1 

B- Rank 2 C-Rank 3 

C-Rank 3 D-Rank 3 
D-Rank 4 A-Rank 4 

 

here, X ranks item B as 2 and Y ranks item B as 1, So, the overall 

rank of B is 1 or 2. Similarly, X ranks item A as 1 and Y Ranks A 

as 4. So, the overall rating of A may be 2 or 3 and so on. 

5.3. Switching hybrid recommender system 

A system uses different recommenders in different situations. For 

example, in case of insufficient ratings, the recommendations 

would be generated by using content-based filtering. In case of 

sufficient ratings by users for items, collaborative filtering will be 

used. Similarly, if no user is logged into an e-commerce site, pop-

ularity based recommender system may be used to generate rec-

ommendations since no information about the user is not availa-

ble. And, when the user is logged in, collaborative filtering may be 

used to generate recommendations. 

5.4. Mixed recommenders 

At a given instance, the recommendations are generated by using 

different algorithms. For example, for generating X=x1+x2+x3 

recommendations, x1 recommendations are generated by using 
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content-based recommender, x2 recommendations are generated 

by using collaborative filtering and x3 recommendations are gen-

erated by using popularity-based recommenders.  

5.5. Feature combination recommender system 

Here, the recommendation logic of one recommender system is 

used instead of using the whole recommender by using the con-

cept of pseudo-users. For example, in case of books, we have a 

pseudo user for different books. If user u likes a book B1 written 

by Author A, then there will be a pseudo user who likes all books 

written by author A and does not like any other books. This pseu-

do-user is considered as a similar user to user u. If author A writes 

any other book B2, the system do not need some people to rate 

book B2 to generate commendations. Instead, the pseudo-user will 

be automatically updated that he likes all books written by author 

A. Since pseudo-user is a user similar to user u, Book B2 will also 

be recommended to user u.  

5.6. Cascade recommender systems 

A recommender system generates a set of recommendations. The-

se recommendations are refined by another recommendation sys-

tem to produce better recommendations. 

Hybrid recommender systems have some drawbacks. First, these 

algorithms should be neatly tuned. Otherwise, they may lead to 

errors or bad recommendations. Another drawback is computa-

tional cost and time complexity that need to be balanced to pro-

duce real-time recommendations 

6. Experimental results 

This paper explores evaluation of eight recommendation system 

algorithms. These algorithms are applied on movie lens 100k da-

taset. This dataset is taken from grouplens research group [22]. 

The dataset has 100,000 rating from 1 to 5 from 943 users on 1682 

movies. Root mean square (RMSE) and mean absolute er-

ror(MAE) are used to evaluate these eight recommender system 

algorithms [23].  

 

     √
 

| |
∑   ̂            

 
  

 

User is the test set, u is the user, i is the item, is the original rating 

given by user u on item i. and is the rating prediction of user u on 

item i by the recommender system. 

 

     
 

| |
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The alternative measure of evaluating recommender system is 

Mean absolute error and is given below as, 

The RMSE and MAE of eight recommender systems are as fol-

lows. This experiment is performed in offline mode. And, it is 

observed that SVD outperformed among all eight recommender 

systems.  

 

 

7. Conclusion and future scope 

In this paper, we compared some traditional recommender systems 

and observed that SVD outperformed among all algorithms. It is 

noticed that techniques above need large computations and are 

challenging to implement in online mode. In most cases, recom-

mender systems also suffer from cold start problem. It has been 

observed that user's taste changes rapidly. Scaling according to the 

need of the user and yet having stabilized recommender system is 

always an order of the day. Techniques from fuzzy neural net-

works and artificial intelligence can be used to have such recom-

mender systems.  
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