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Abstract 
 

Background/Objectives: In this paper, we present a method for describing a set of variables of an inelastic constitutive equation based 

on state space method (SSM) and neural network (NN). The advantage of this method is that it can identify the appropriate parameters. 

Methods/Statistical analysis: Two NNs based on SSM are proposed. One outputs the ratio of inelastic strain for the internal parameters 

of the material, and the other is the following state of the inelastic strain ratio and material internal variable. Both NNs were trained and 

successfully collected using input and output data generated by Chaboche 's model. 

Findings: As a result, previous NNs have demonstrated their validity as a powerful material model. However, the training data for the 

proposed NN can’t be easily obtained from actual experimental data. Previous neural networks can reproduce the original stress-strain 

curves. The NNs also produced untrained curves to demonstrate interpolation capabilities. It was also found that the NNs can be 

estimated to be close to training data. The author defines the implicit constitutive model and proposes the implicit viscous constitutive 

model using NNs. In modeling, inelastic behavior is generalized in state space representation, and the state space form is constructed by 

NNs using an input-output data sets. The proposed model was first created from the pseudo-experimental data generated by one of the 

commonly used configuration models and has been found to be a good replacement for the model. The actual experimental data was then 

tested, and the proposed model showed the accuracy of its superiority over all existing specified models because the amount of model 

errors was negligible.  

Improvements/Applications: The comparison between the NN constitutive laws   with the Chaboche’s model indicates that the NN 

constitutive law generated curves with less model errors than the experimental data, thereby indicating the superiority of the neural 

constitutive law to explicit constitutive laws as a material model. 
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1. Introduction 

Problems using explicit constitutive equations are difficult to 

determine the inaccuracies and appropriate parameters of the 

model itself. The former problem overcomes the same parameter 

approach mentioned in the Refs.[1,2]. Also, we need to introduce 

a model that is replaced by a more complex explicit model or an 

implicit constitutive equation. 

In the multilayer Ns, we proposed a material modeling by couples 

as described in the Ref. [3]. Yamamoto’s model[4] is not as strong 

as the other two models. Both models describe the results of the 

neuro-based model created with the help of Ramberg-Osgood 

model. Nevertheless, it does not mean that other methods are best 

suited. One of the drawbacks of Ghaboussi's model [5] is that path 

dependence is achieved by taking only the past three points. 

Needless to say, even if the number increases, the size of the input 

space increases, the number of past points must be increased to 

account for the hysteresis characteristic of the data. Miyazaki's 

architecture [6] is rather a linear imitation of Ghaboussi's model. 

Therefore, to illustrate path dependency, the architecture used two 

components in duplicate internal variable and last three points. 

Another serious problem is that both common models use △σ and 

ΔY increments as inputs and are very sensitive to the experimental 

data. This can produce unstable NNs, especially if the 

measurement is not suitable for the error. A common NN 

configuration model is presented with a state space method that 

can describe all dynamic systems. 

What is to be asked before the capability of the parameter 

identification technique to be discussed is required is "Is there 

sufficient experimental data to uniquely determine all 

parameters?" An experimental design suitable for parameter 

identification of the material model by Chaboche has been 

considered first and will be described in the next section. In 

addition to the results, we selected the actual experiment data 

needed to identify the parameters in the benchmark project and 

confirmed the parameters of the Chaboche model. The same 

parameter identification problem has been addressed by two other 

existing technologies for comparison. Accordingly, the author 

defines an implicit configuration model, unlike all existing 

configuration models, and then use the state space method (SSM) 

based NN to propose a new implicit point viscosity model. 

2. State Space Method 

The concept of a state space comes from state variable method 

that describes a differential equation. In this method, the dynamic 

system is described by a set of differential equations in the first 
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sequence in a variable called "state", where the solution can be 

visualized as a trajectory through space. This method is especially 

suitable for performing calculations with a computer. 

While the use of state-space approaches is called the modern 

control theory [7-9], the use of transfer function-based methods 

such as source trajectories and frequency response has been 

referred to as classic control design. The benefits of state space 

design are particularly evident when an engineer designs a 

controller for a system with one or more control inputs or one or 

more sensed outputs.  

For instance, newton's law of moving under force F in one-

dimensional x for a single mass, M is 

   ̈                                                                                            (1) 

If one state variable is defined as   ̇ and the other state variable 

is defined as    ̇ , this equation can be written as 

 ̇                                                                                             (2) 

 ̇   
 

 
                                                                                          (3) 

Thislinear differential equationcan be simplified using matrix 

notation. It is possible to mark a state as a column vectorx, a 

coefficient for the state equation as a square matrix A, and an 

input coefficientsfor column matrix Bas a matrix: 
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or 

 ̇                                                                                       (5) 

where B is the input matrix and A is the system matrix. 

In conclusion, previous work by the dynamics community has 

demonstrated that multi-layer NNs can emulate a system where 

the structure is unknown, but the input-output data can be 

obtained. Two major NN structures have been intensively used 

[10,11], although much work has not been done so far. 

Case I Output  ̇ from xk and uk,  

Case II Output xk+1 from xk and uk,  

And they are illustrated in figure 1. Clearly Case II is more 

complex than Case I due to the additional integration terminology. 

Figure 2 and figure 3 show the training of the NN from the input 

and output data of the system. 

 
Figure 1: Schematic diagram of state space method 

  
(a) Case I 

  
(b) Case II 

Figure 2: Block diagrams of training NN 

  
(a) Case I 

  
(b) Case II 

Figure 3: Neural network architectures 

If it can describe material behavior in the form of a state space, we 

can apply NNs to mimic behavior and use the network as a 

material model. Te next section will suggest a general state space 

formulation of material behavior. 

3. State Space Representation of Material 

Behavior 

In previous paper, we have seen some famous inelastic 

constitutive equations. When creating a general equation, the first 

feature we see is that all models consist of equations of plastic 

deformation and material internal variables. Then the equation is 

given most commonly with the ratio of inelastic strain and 

material internal variables. This makes it possible to construct a 
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state space representation of inelastic constructive laws in a 

general way. The control inputs of known dynamic systems for all 

t are generally independent of the state variables. 

 
Figure 4: Block diagrams for simulation 

According to the previous section, we can offer two NNs of case I 

and case II. The proposed NN structure and the block diagram 

illustrating the induction of stress are shown in figure 3 and figure 

4, respectively, and this figure is illustrated in Fig. 5 as a block 

diagram for network training. The advantage of NN architecture 

for other networks is obviously the following points. 

(a) Simplicity: Compared with Miyazaki’s model [6], which 

uses two NNs independently, only one NN is used. The input layer 

consists of the internal variables, the strain and stress of the 

newest information. 

(b) Generality: Depending on the material selected, all kinds 

of internal variables can be used if the material have a state space 

representation. 

 

 
(a) Case I 

 

 
(b) Case II 

Figure 5: Block diagrams of training NNs 

4. Numerical Examples 

This section uses computer-generated pseudo-experimental data to 

investigate the performance of the proposed NNs. For example, 

the NN is determined to use two internal variables, namely back 

stress Y, and the isotropic hardening parameter R (called yield 

stress, which begins to increase at the yield surface), to be used in 

Chaboche models. Thus, the network consists of four inputs and 

three outputs. 

The model used to generate the virtual experiment data is also the 

model of Chaboche. Because the same internal variables are used, 

you can check your network performance directly to find out 

about each model equation. Table 1 lists the material parameters 

used to generate training data was 500, and Table 2 shows that the 

test was taken periodically in the first five cycles of the inverse 

loading test at a constant strain rate. Each verification data was 

represented by two training data. 

Table 1: Material parameters for generating training and validation data  

H n K d h R0 D 

6,000 4 60 0.5 400 60 200 

Table 2: Reverse cycle load test parameter 

εmax(%) |ε|s-1 # of validation sets # of training sets 

0.03 8.0 x10-3 490 500 

4.1. Case I 

The errors in the training and validation sets are shown in figure 6. 

Obviously, the error is approaching to zero. This means that the 

NN is learning the law of material. 

 
Figure 6: Error of training set and validation set (Case I) 

 

As shown in figure 7 and figure 8, the NN curves with ±0.072% 

were far from the correct curve. It can be clearly seen that the NN 

curve in the first cycle deviates from the Chaboche curve after a 

0.036% strain. NN training was not experienced. There are 

significant errors in the stress and strain curves. 

The ability of the NN was also investigated at different strain rates 

of 0.8%, and figures 9 and 10 show the results. In figures 9 and 

10, we can easily see that the NN curve exhibits very inelastic 

behavior. NNs no longer represent material behavior. 

 
Figure 7: Exact stress-strain curve generated by NN (Max. strain range: 

0.072%) 
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Figure 8: Exact stress curve generated by NN (Max. strain range: 0.072%) 

 

 
Figure 9: Exact stress-strain curve generated by NN (Max. strain range: 

0.036%) 

 

 
Figure 10: Exact stress curve generated by NN (Max. strain range: 

0.036%) 

4.2. Case II 

The validation and training data depicted in figure 11 was used for 

training, but the results of the trained network are not very good. 

Therefore, the network was trained with the training data obtained 

from all computer simulations during the material tensile 

behavior. Error propagation of training and verification is set up 

until 60,000 training sessions shown in figure 12. You can see that 

the NN can learn the curve. However, figure 12 shows that the NN 

curve deviates significantly from the correct curve. The reason for 

the deviation can be easily explained in the curve of back stress 

and the inelastic strain of figure 13, where the deviation from the 

correct curve increases over time. 

 
Figure 11: Stress-stain plots produced by training data and the curves 

produced by NN 

 
Figure 12: Errors of training and validation data (Case II, Max. strain 

range: 0.036%) 

 

 
Figure 13: Exact inelastic strain curve generated by NN (Case II, Max. 

strain range: 0.036%) 

5. Conclusion 

Two neural networks are proposed, a material model based on 

state space methods. One outputs the inelastic strain rate with 

respect to the internal parameters of the material, and the other 

shows the next state of the inelastic strain and the internal variable 

of the materials. Both neural networks were trained and 

successfully converged using input and output data generated by 

Chaboche's model. Previous neural networks can reproduce the 

original stress-strain curves. 

Techniques have been developed to decompose experimental data 

into learning data on the constitutive laws of neural networks. The 

neural network construction law is composed of the same 

experimental data as that used for the most suitable Chaboche 

curve. Comparing the Chaboche’s model with the NN constitutive 

law, the neural net constitutive law shows that the neural 

constitutive law expresses superiority to the explicit constitutive 

law as a material model by creating curves with less model errors 

than experimental data. Nevertheless, the training data for the 

proposed neural network can’t be easily obtained from actual 

experimental data. The next version refers to a strategy for 

extracting training data from an experiment. 
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