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Abstract 
 

Plasma gasification is able to produce syngas from several feedstock e.g. sawdust, pellet, plastic and oil but there is lack of knowledge in 

this process through kinetic modelling. To have better understanding this study determines parameters kinetic modelling due to changes 

of temperature and conversion. The method uses the stoichiometry chemical reaction, material balance, energy balance, and numerical 

solution   to calculate parameters of kinetic modelling. The result of simulation gets pre-exponential factor 9.78 to 13.1 for sawdust, pel-

let, and plastic with temperature 1200-1500oC and conversion 99%. Meanwhile oil need a higher temperature 1600oC to achieve similar 

conversion and it indicate a higher pre-exponential factor 67.6 than other feedstock. 
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1. Introduction 

Gasification of biomass is one of thermal treatment to produce 

energy [1] and it is green and renewable technology to produce 

bioenergy and biofuel from biomass. [2,3].  In addition it de-

creased possibility to disposal waste to landfill [4]. The one of 

energy generated by gasification is syngas which come from high 

density polyethylene (HDPE) [5], biomass [6,7].  

Plasma gasification has been developed causes conventional gasi-

fication has limitations due to a lower temperature and dilution 

oxidation media with the chemical product [8]. Experiment plas-

ma gasification has been applied for Municipal Solid Waste 

(MSW) [9–11], Medical Waste (MW), [3,12], and biomass [8]. To 

make better understanding during process modeling of plasma 

gasification also has been conducted such as Gibbs energy mini-

mization [13], Euler-Euler multiphase model [14], Numerical 

modeling [15], an equilibrium plasma gasification model [16].  

There are study of kinetic model in coal gasification and biomass 

gasification but it is not for syngas production of plasma gasifica-

tion of biomass and waste [1,17]. There is lack of knowledge re-

lated kinetic modelling over plasma gasification for biomass and 

waste. The study has two problem statements. Firstly, how pre-

exponential factors in kinetic modeling of plasma gasification for 

biomass and waste are.  Secondly, how pre-exponential factors 

from biomass and waste have effect in temperature and conversion 

are. 

This paper conducted research to determine parameters of kinetic 

modelling and to know influence feedstock in temperature and 

conversion during process. The result is useful to design Plasma 

Gasification Reactor (PGR) of biomass and waste. 

2. Materials and Methods 

Method of research is to develop proposed chemical reaction 

through molar equilibrium in reactant and product over plasma 

gasification and to understand chemical reaction through kinetic 

modelling. From previous experiment the four feedstock (sawdust, 

pellet, plastic, and oil) was used [8]. 

 

2.1 Proposed Chemical Reaction 

 
 (1) use %volume of syngas production, (2) convert flowrate of 

syngas production from slm (standard liter per minute) to m3/min, 

(3) use density and Molecular Weight (Mr) [19] to calculate prod-

uct coefficient in kmol/hr (a,b,c,d, and e). (4) use rule of stoichi-

ometry to calculate reactant coefficient in (x,y,z,p, and q) as 

showed in table 2 and 3. (5) calculate Mr CxHyOz which sum 

atom relative C, H, and O multiply x, y, and s, respectively. 

 

2.2 Kinetic Modelling 

 
Determination of model assumption, (2) Generation of mass bal-

ance and energy balance to have Ordinary Differential Equation 

(ODE), (3) Solving of simultaneously ODE with Runge Kutta in 

Program of MATLAB 2016b. 

 
Table 1: Nomenclature 

Notation Description 

A Pre Exponential Factor,1/min 

C Concentration, kg/min 

Cin Concentration of Input, kg/min 

Cout Concentration of Output, kg/min 

Cp Specific Heat Capacity, kJ/kg.K 

Cph Oxidation of Specific Heat capacity. kJ/kg.K 
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E Activation Energy, kJ/kmol 

LHV Low Heat Value, kJ/kg 

mh Oxidation of Flow rate, kg/min 

Mr Molecular Weight, kg/kmol 

R Gas Constant, 8.314 kJ/kmol.K 

T Temperature of process, K 

Th Oxidation  of Temperature 

X Conversion 

Ρ Density, kg/m3 

a Coefficient of CO product, kmol/h 

b Coefficient of CO2 product, kmol/h 

c Coefficient of H2 product, kmol/h 

d Coefficient of CH4 product, kmol/h 

e Coefficient of O2 product, kmol/h 

x Coefficient of Carbon reactant, kmol/h 

y Coefficient of Hydrogen reactant, kmol/h 

z Coefficient of Oxygen reactant, kmol/h 

p Coefficient of CO2 reactant, kmol/h 

q Coefficient of H2O reactant, kmol/h 

 
Model Assumptions 

 

(1). Reactor uses batch process, so there is no input and output 

during process. 

 

(2). Chemical Reaction follows First Order Chemical Reaction, 

equation 1. 

 

 …(1) 

 

(3). Chemical Reaction Constant follows Arrhenius Equation, 

equation 2. 

 

 
…(2) 

 

(4). Homogen Reaction happen in this process, equation 3. 

 

 …(3) 

 
(5). Unsteady state applies in this chemical reaction so there is 

changes of concentration, conversion or temperature toward time. 

 

Mass Balance 

 

 
 …  (4) 

 
for feedstock reaction, 

 

 

…(5) 

Where, 

 

 …(6) 

 

then, 

 

 
…(7) 

 

Energy Balance 

 

 

…(8) 

 

for exothermic reaction, 

 

 
…(9) 

 

where,  

 

 …(10) 

 

and,  

 

Cph for CO2 and H2O = f(Th) [19] 

 

then,  

 

 
…(11) 

 

Numerical Solution 

 

Fourth Order Runge-Kutta could solve simultaneously ODE [18]. 

It applied for equation 6 and 9 with initial condition t = 0 to 10 

minute with step size 0.1 min, Tin = 1200 oC or 1200 (+273) K, X 

in = 0. 

3. Results and Discussion 

Conversion of syngas production increases significant at first 5 

minutes for all materials. Meanwhile temperature is range between 

1200-1500oC for sawdust, pellet and plastic and it is up to 1600 

oC for oil.  Table 2 shows the proposed chemical reaction over 

plasma gasification. Solving of equation (6) and (9) results table 

parameters of kinetic modelling represented table 3. 

 

All materials use single value of energy activation but they use 

different values of pre-exponential factor. 

 

 
Figure 1: Simulation of Kinetic Modelling 
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Table 2: Proposed Chemical Reaction 

Material Chemical Reaction 

Sawdust C5.51H1.82 + 0.46 CO2  0.85 CO + 0.06 CO2 + 0.84 H2 + 0.03 CH4 

Pellet C4.53H1.54 + 0.38 CO2  0.73 CO + 0.03 CO2 + 0.75 H2 + 0.01 CH4 

Plastic C4.14H1.49O0.38 + 0.35 CO2  0.74 CO + 0.09 CO2 + 0.75 H2 + 0.02 O2 

Oil C2.55H0.48O0.01 + 0.21 H2O  0.17 CO + 0.02 CO2 + 0.40 H2 + 0.02 CH4 + 7.0×10-4 O2 

  

Table 3: Parameters of kinetic modeling  

Notation Sawdust Pellet Plastic Oil 

A 13.1 13.1 9.78 67.6 

E 150.31 150.31 150.31 150.31 

LHV 1.914×10-2 2.312×10-2 2.331×10-2 6.408×10-2 

Mr 7.32 6.06 6.01 3.03 

ρ 448.56 448.56 1762.6 913.14 

Cp 2.310 2.310 1.5254 1.428 

Cin 0.5 0.5 0.19 0.152 

mh 1.433 1.433 5 0.18 

Th 1473 1473 1473 1473 

 LHV, Cin, Th, mh Source:[8] 

 ρ, Cp, R Source: [19] 

 E Source: [20] 

Figure 1 presents simulation of kinetic modelling over plasma 

gasification. It shows that sawdust, pellet and plastic have similar 

range of pre-exponential factor 9.78 to 13.1 to achieve similar 

temperature range 1200-1500oC and conversion 99%. Therefore, 

these results have agreement with previous experimental study [8]. 

Other results for oil as feedstock indicate a higher pre-exponential 

factor 67.6 to have similar conversion with other materials. There 

is possibility that the liquid state such as oil needs higher tempera-

ture to achieve high conversion. 

4. Conclusion  

This research is study of kinetic modelling over plasma gasifica-

tion. The result get pre exponential factor 9.78 to13.1 to achieve 

similar temperature 1200-1500oC and conversion. Meanwhile to 

achieve similar conversion oil used a higher pre-exponential factor 

67.6 causing a higher temperature up to 1600oC. 
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