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Abstract  
 

A numerical solution for the modified equal width was achieved via cubic trigonometric-B-spline (C. T.-B-spline) method approach 

which is based on finite difference scheme with the help of  weighted scheme. In other words, the finite difference scheme is used to 

discretize the time derivative, while a cubic trigonometric B-spline is used as an interpolation map in the space dimension. The 

performance of the scheme was validated through two examination problems. The performance of the process was validated via using 

2L   and L   error norms and conserved laws. Thus, stability analysis was applied by the von-Neumann method. Finally, the efficiency 

and accuracy of the suggested scheme was determined through comparison with the exact solution for different time and some other 

published numerical methods. 
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1. Introduction 

The modified equal width waves (MEW) equation based upon the 

equal width wave (EW) equation. (Karakoç and Geyikli,2012). 

 

These waves propagate in non-linear media by keeping wave form 

and velocity even after interaction occurs, which was introduced 

as a model equation for describe the non-linear dispersive waves 

has the normalized form: 

2 0t x xxtv v v v                                                          (1) 

with boundary conditions (BCs)       

0 1v(a, t) , v(b, t) [0, ]f f t T  
                               (2)              

     

and an initial condition (IC) 

v(x, t) (x) ,a x bg    (3) 

where  is an arbitrary constant and  is a positive parameter.

(x)g  is a localized disturbance inside the interval [a, b].Few 

analytical solution of the MEW equation known. Thus numerical 

solutions of the MEW equation can be important and comparison 

between analytic solutions can be made. Numerous researchers 

suggested some numerical solutions to solve the MEW 

Equation. (Karakoç and Geyikli2012) used the lumped galerkin 

method based on the cubic b-spline finite element method to solve 

MEW equation. The same (Geyikli and Karakoç, 2011) author 

extend their work to solve the same equation by extending cubic 

B-Spline to Septic B-Spline. (Islam, S. U., Haq, F. I., &Tirmizi, I. 

A 2010) used the quartic B-spline method for numerical solution 

of the MEW equation. (Saka, 2007) solved the MEW equation via 

the quintic B-spline collection method. (Esen and Kutluay, 2008) 

solved the MEW equation by alinearized numerical scheme based 

on finite difference method.  

    The outline of this article is as follows: In section 2, the cubic 

trigonometric B-spline method is explained and numerical 

solution of proposed is discussed. In section 3, the stability of 

proposed method is investigated. In section 4, the results of 

numerical experiments are presented and compared with some 

previous methods. Finally, in section 5, the conclusion of this 

study is given. 

   The objective of this work is to solve one dimensional MEW 

equation accurately, based on the motion of a single solitary wave 

through two problems. As an example to the   application of 

numerical method, this incorporates the finite difference approach 

with cubic trigonometric B-spline. 

2. Materials and Methods 

2.1 Cubic Trigonometric B-Spline-(C.T.B-Spline) 

 

In this part, the cubic trigonometric basis map (C. T. B. F) 

is discussed as below (Ersoy and Dog, 2016; Salih et al., 

2016): 
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where ( )h b a n  and ( )iTB x is a piece-wise cubic 

trigonometric map with various geometric properties like
2C

continuity, non-negativity and partition of unity .The values of

( )iTB x and its derivatives at nodal points are required and these 

derivatives are tabulated in Table 1. 

Table 1: ( )iTB x values and their derivatives. 
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The (C.T.B-Spline) collocation method is also discussed in order 

to solve Eq. (1).The solution domain a x b  was divided 

equally by knots
ix into n subintervals

1[ , ]i ix x 
,

0,1,2,..., 1i n  where
0 1 ... na x x x b     .Our 

approach for MEW equation using (C.T-B-spline) was to seek an 

approximate solution as: 

1

3

( , ) ( ) ( )
n

i i i

i

V x t C t TB x




                                                   (5) 

where (t)iC is  determined for the approximated solutions 

( , )iV x t  to the exact solution (x, t)v  at the point ( , )i nx t  over 

subinterval 1[ , ]i ix x   . In order to get the approximations to the 

solution, the values of ( )iTB x and its derivatives at nodal points 

are required. These derivative were tabulated using approximate 

maps (4) and (5) whereby, the values at the knots of 
n

iV and their 

derivatives up to the second order are: 
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                                (6) 

The approximations for the solutions of the MEW Eq. (1) at 1nt 

th time level can be given as: 

1 2 1 2(v ) (v ) (v v ) (v )
[ ] [ ]

2
0 (7)

n n n nv v v
xx xx x x

t


    



   

where 0,1,2,..n   and t  is the time step. The non-linear 

term in Eq. (7) was approximated using the Taylor series (Islam et 

al.,2010): 
2 1 1 2 1 1 2

(v ) v ( ) 2 2(v ) v (8)
n n n n n n n n n

v v v v vx x x x

   
  

 
Eq.(8) with nodal values v  and derivatives via (6) leads to the 

following difference equation with variable ,i 3,...,n 1iC   

. It was also noted that the system becomes a Crank-Nicolson 

scheme when
1

2
  . 
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when (9) is simplified  the system consists of ( 1)N  linear 

equation in ( 3)N   unknown 3 1[C ,...,C ]n n n

j NC    at the 

time level 1it t  , via applying Eq.(5) to obtain the unique 

solution  on the boundary conditions (3) as follows:  

1 3 2 2 1 1
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From Eqs.(9-10) the system consists 3 3N N     in the 

following form:  
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Initial state 

The initial vector
0C  was computed from the initial conditions. 

The approximate solution
1n

iV 
 at a particular time can be 

calculated repeatedly through the recurrence relation.
0C can be 

obtained from the initial condition and boundary values of the 

derivatives of the initial condition as follows : 

0

0

0

( ) '(x ) 0

(x ) 0,1,..., (11)

( ) '(x )

i x i

i i

i x i

V g i

V g i N
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  


 


   

Thus, the system of equations in (11) can be represented as a 

matrix of order 3 3N N   , of the form: 

0

( 3) ( 3) 1 3 1 3N N N NA F d      
 

where 
0 0 0 0

3 2 1[C ,C ,...,C ]T

nF     ,

' '

0 0 1 1[ (x ), (x ), (x ),..., (x ), (x ), (x )]T

n n nd g g g g g g

 

3. Stability Analysis 

In this section the stability analysis of the proposed scheme was 

investigated using the Von Neumann method and assume that the 

quantity
2v in the non-linear term 

2

xv v  in Eq. (1) is constant 

  (Sajjadian, 2012). As a result, the linearized form of the 

proposed method after simplifications as follows: 
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Simplifying Eq.(12) gives us: 
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by substituting 
(im )n n h

jC e  with  1i    in (13) , 

Eq.(13)  can be re-written as follows 

X iY

X iY





   

where 

1 5 2 6X (4p 4 p )cos( ) (2p 2 p )h       and 

4(2 p )sin( h)Y   . 

The modulus, | | 1  , which means that the  linearized scheme is 

unconditionally stable. 

4. Results and Discussion 

 

In this part, two examples are given and    and    error norms 

were calculated by 

max i i
i

L v V   and
2

2

n

i i

i

L h v V
 

  
 


 
The conservation laws were applied to Eq.(1) as follows [Evans 

and Raslan,2005]: 

,
312 2v(x,t)dx, v(x,t) dx, [v(x,t) v(x, t) ]dx1 2 3 3

b b b
I I I

a a a
     

Where 1 2 3, I , II correspond to the mass, momentum and energy, 

respectively. 

 

4.1 Problem.1 
 

The modified equal width equation problem (Karakoç and 

Geyikli, 2012) were considered with 3  and 1  , 

 
23 0t x xxtv v v v           0 80x   

The exact solitary wave solution of MEW equation is

0(x, t) Asech(k(x ct x ))v     where c is the wave 

velocity,

2

6

A
c


  and

1
k


 . with initial condition

0(x,0) Asech(k(x x ))v   and boundary conditions

(0, t) 0,v(80, t) 0v   . 

The (C.T.B-Spline) method was used to compute the numerical 

solutions of this problem. For the purpose of comparison, the 

numerical results obtained in this paper were found to be more 

accurate in comparison to (Esen and Kutluay ,2008) (see Table 2). 

    and    errors at different time levels and 1 2,I I  and  3I
 

with A=0.25, 0 30x  , 0.2t  and 0.1x   are also 

shown .It is important to point out that to make our method more 

accurate, we used smaller time steps. It can clearly be seen that the 

suggested method achieves remarkable reduction in errors for the 

smaller time step (see Table 3) with 0.05t  ..

Table 2: Comparison error norms and invariants for single wave at 0.2t  . 

 Proposed Method Esen&Kutluay   

t 
2L

 
L  1I  2I

 3I
 

4

2 10L 
 

410L   
1I  2I

 3I
 

0 3.03E-17 2.77E-17 0.78539 0.12500 0.11111 0.00012 0.000106 0.785397 0.166473 0.00520 

5 0.008378 0.005696 0.78541 0.125028 0.11113 0.68298 0.610149 0.785397 0.1664731 0.00520 

10 0.016735 0.0114185 0.78462 0.12484 0.11097 1.36286 1.25559 0.78539 0.166473 0.00520 

15 0.02507 0.01713 0.78305 0.12447 0.11063 2.03675 1.91682 0.78539 0.166473 0.00520 

20 0.03340 0.02284 0.78078 0.123918 0.11013 2.70164 2.57637 0.78539 0.166473 0.00520 
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Table 3: Comparison error norms and invariants for single wave at 0.05t   . 

 Proposed Method
 

Esen&Kutluay
 

t 
2L

 
L  1I  2I

 3I
 

4

2 10L 
 

410L   
1I  2I

 3I
 

           

0 3.03E-17 2.77E-17 0.7853981 0.125000 0.111111 0.000121 0.000106 0.78539 0.16661 0.00520 

5 0.008386 0.005619 0.7850957 0.124927 0.111045 0.682986 0.610149 0.78537 0.16660 0.00520 

10 0.016769 0.011277 0.783990 0.124645 0.110794 1.362867 1.255591 0.78534 0.16659 0.00520 

15 0.025154 0.016939 0.782119 0.124170 0.110367 2.036756 1.916829 0.78537 0.16659 0.00520 

20 0.033548 0.022591 0.779544 0.123521 0.109786 2.701647 2.576377 0.78528 0.16658 0.00520 

 
4. 2. Problem 2 

 

 

To verify from our method is superior when compare with earlier 

work (Zaki, 200) we choose the  a=0, b=70  with the parameter 

values for A  are 0.25, 0.5 and 1 with 0.1h  , 0.05t  with 

different times and 0 30x  were chosen. These are shown in  

Table 4 with 1 2,I I  and 3I . The results were compared with the 

previous researcher’s results, and these showed that our method 

was clearly more accurate and efficient. Fig.2shows the space-

time graph approximate solution. There is a high correlation with 

their exact solution at A=0.5 and t=5.  

 
Table 4:. Error norms and invariants for single wave at different A value and different times 

t A L  2L
 1I  

 
2I

 3I
 

0 0.25 0 0 0.785398  0.125000 0.111111 

5  0.005619 0.008386 0.785097  0.124927 0.111045 

10  0.011277 0.016769 0.783990  0.124645 0.110794 

15  0.016939 0.025154 0.782119  0.124170 0.110367 

20  0.022591 0.033548 0.775440  0.123521 0.109786 

20[Saka]
310  

 0.24989 0.29051 0.784954  0.166476 0.005199 

0 0.5 0 0 1.570796  0.499999 0.444444 

5  0.045691 0.066810 1.561564  0.495675 .4405548 

10  0.089453 0.133714 1.532299  0.482077 0.428279 

15  0.130358 0.202115 1.493339  0.466062 0.413736 

20  0.175771 0.272452 1.452608  0.451844 0.400865 

20[Zaki,]
310  

 0.00852 0.01172 1.57078  0.666666 0.083333 

0 1.0 0 0 3.141592  1.999999 1.777778 

5  0.328219 0.517598 2.972905  1.896341 1.682524 

10  0.616162 1.028549 2.768103  1.844196 1.642989 

15  0.810218 1.423740 2.692293  1.878757 1.685219 

20  0.910155 1.678853 2.693549  1.946831 1.753986 

20[Zaki,]
310  

 0.08360 0.14465 3.14165  2.66676 1.33343 

 

 
Fig.2L: .Approximate and exact solution for single solitary wave at A=0.5. 

 

5. Conclusion 

 
In this study, the (C. T.-B-spline) was used to solve the modified 

equal width equation. The performance and accuracy of the 
scheme was achieved by calculating L   and 2L errors at 
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different time levels and 1 2,I I
 
and 3I on the motion of a 

single solitary wave through two problems has been compared 

with existing methods by calculating L and 2L . The comparison 

indicated improved accuracy compared to (C. T.-B-spline) .The 

von Neumann method was used to check the stability analysis of 

the proposed method and it is shown that the solution is 

unconditionally stable. 
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