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Abstract 
 

An artificial neuron using superconducting devices, so-called rf SQUID, working at the quantum-mechanical domain is studied. It is shown 

that quantum rf SQUID regarded as flux qubit can act as an artificial neuron with sigmoid function generated by coherent quantum-

mechanical transitions between wells in double well potential representing rf SQUID. 
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1. Introduction 

Artificial Intelligence has emerged as a practical technology, with 

successful applications in many fields like pattern recognition, es-

pecially when the underlying data relationship is unknown. An ar-

tificial neural network (ANN) inspired by biological nervous net-

works is a key technology to support artificial intelligence [1]. 

Basic building block of ANN is an artificial neuron with three sim-

ple sets of rules: multiplication, summation and activation. The typ-

ical ANN consists of huge number of interconnected such artificial 

neurons, which are stacked sequentially in rows that are known as 

layers as shown in Fig. 1 (a). An artificial neuron receives signals 

from other neurons through synapses located on the dendrites of the 

neuron and combines them and applies a nonlinear operation to the 

combined signal, in order to judge whether to activate the neuron 

for signaling the neurons in the subsequent layer. Therefore, the ac-

tivation function is a heart of the artificial neuron.  

So far, several activation functions suitable for each task have been 

considered. Among them, sigmoid or logistic functions are most ef-

fective for ANN on which the error backpropagation learning algo-

rism is implemented [2] because of their simple mathematical han-

dling, especially their differentiation.  

The hardware implementation of sigmoid functions has been ini-

tially investigated using semiconductor integrated circuits. Later, 

superconducting circuits are considered to be an alternative candi-

date to overcome difficulties in semiconductors such as large power 

dissipation. In fact,  

ANN using superconducting circuits with their ultra-high-speed op-

eration, ultra-low-power consumption and scalability enabled by 

nanotechnology has successfully been implemented in various 

ways [4]-[10]. However, the physical basis for generating the sig-

moid function was not sufficient. In our previous paper [11], we 

clarified the physical basis for sigmoid function generation and ap-

plied it to artificial neurons based on superconducting quantum in-

terference devices (SQUIDs).  

Recent advances in nanotechnology have led the system size to na-

noscale, where devices that have been operating on the principle of 

classical mechanics have to be dealt with quantum-mechanically.  

 
(A) 

 
 

(B) 

 
Fig. 1: Schematic Diagrams of (A) A Typical Three-Layered Feed-Forward 

Artificial Neural Network and (B) an Artificial Neuron. 

 

In this paper, we reconsider the generation mechanism of the sig-

moid function required for artificial neurons based on the principle 
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of quantum mechanics and analyze SQUID-based artificial neurons 

which operate in quantum-mechanical domain.  

2. Classical squid-based artificial neurons 

Here we briefly review classical artificial neurons based on a radio 

frequency (rf) SQUID discussed in the previous paper [11] for the 

preparation to develop into neurons operating in quantum mechan-

ical domain below.  

a) Physical origin of sigmoid function generation 

We showed that the physical origin of the sigmoid function gener-

ation was the transition processes between two states in double well 

potential. The probability of finding a particle in one of the two 

wells, p, in thermal equilibrium is derived from the rate equation on 

the transition between two states in the double well potential as 

shown in Fig. 2 as follows;  

 

p =
1

1+e−∆E kT⁄                                                                                 (1) 

 

Where ∆E is the energy difference between two states. K and T are 

the Boltzmann constant and temperature, respectively. This is the 

sigmoid function required for artificial neurons.  

 

 
Fig. 2: Schematic Diagram of Double Well Potential. 

 

b) Classical SQUID-based artificial neurons 

Based on the two-state transition scheme for generating the sigmoid 

function to artificial neurons, we analyzed an rf SQUID as a super-

conducting artificial neuron, which consists of a superconducting 

loop with the inductance L interrupted by a Josephson junction as 

shown in Fig. 3 (a).  

 The potential energy of rf-SQUID is given by 

 

E = EL(Φ̂ − Φ̂ex)
2

+ EJ{1 − cos(2πΦ̂)}                                   (2) 

 

where Φ̂ and Φ̂ex are magnetic flux through the superconducting 

ring and an externally applied magnetic flux normalized by the 

quantum unit of magnetic flux Φ0 = h/2e  with h  and e  being 

Planck’s constant and an elementary electric charge, respectively. 

The first term is magnetic energy accumulated in the loop with EL-
= Φ0

2 2L⁄ . The second term expresses Josephson coupling energy 

given by EJ = ℏIC0/2e with IC0  being the Josephson critical cur-

rent. Fig. 3 (b) shows the potential profile as a function of Φ̂ with 

different applied magnetic flux values Φ̂ex. The lowest two minima 

form a double well potential required to generate the sigmoid func-

tion.  

 

The energy difference ∆E in (1) is given as 

 

∆E(Φ̂ex) ≅ EL [
4π2α

1+2π2α
Φ̂ex + const. ]                                         (3) 

 

Where α＝EJ EL⁄ . Therefore, the RF SQUID generates a sigmoid 

function, where the external magnetic field as the integrated signal 

is an input determining the activity. 

 
Fig. 2: Schematic Diagram of (A) an Rf SQUID Comprising of A Super-
conducting Loop Interrupted by A Josephson Junction and (B) Its Potential 

Profile as A Function of Magnetic Flux Threading the Rf-SQUID Loop with 

Φ̂Ex = 0 (Solid Line) and with Φ̂Ex = 0.5 (Dotted Line). 

3. Quantum squid-based artificial neurons 

a) Quantum rf SQUID 

Now let us consider a superconducting artificial neuron working at 

the quantum-mechanical domain, i.e., EJ ≤ Ec  where Ec =

4 e2 2C⁄ . A conventional rf SQUID (EJ > Ec) can be described by 

a classical particle moving in the potential in (2). Here, the junction 

capacitance C corresponds to the mass of the particle. Therefore, 

when the Josephson junctions are reduced by nanotechnology, the 

junction capacitance, equivalently the mass, becomes smaller, and 

as a result, the junctions behave quantum-mechanically. In the case 

of EJ ≤ Ec, the rf SQUID behaves like a quantum-mechanical par-

ticle. As is well-known, mechanical variables are replaced by the 

corresponding operators in quantum mechanics, and commutation 

relations hold between conjugate operators, i.e., [θ, n] =
i or [Φ, Q] = iℏ where Q and n are the electric charge at the junc-

tion and the number of Cooper pair difference across the junction, 

respectively.  

In the case that the barrier between wells in the potential (2) is much 

smaller than the Josephson coupling energy, the rf SQUID potential 

(2) can be approximated by the biased double well potential as 

 

E = EL(Φ̂ − Φ̂ex)
2

+ EJ{1 − cos(2πΦ̂)}                                   (4) 

 

Where ϕ=Φ ̂-0.5 and f=Φ ̂_ex-0.5. As a further approximation, the 

whole Hilbert space of the full Hamiltonian can be mapped on to 

the subspace spanned by two levels. The resulting Hamiltonian is 

expressed as  

 

𝐻 = −
1

2
(𝜖𝜎𝑧 + 𝛥𝜎𝑥)                                                                   (5) 

 

where ϵ=E_L-E_R is the energy difference between energy levels 

in each well as shown in Fig. 2 and Δ stands for tunneling splitting. 

This Hamiltonian is nothing but qubit Hamiltonian that is a building 

block of quantum computer in quantum information science.  

 

b) Sigmoid function in quantum rf SQUID 

Now let us consider the sigmoid function required for artificial neu-

rons in quantum rf SQUID. In the classical situation, the sigmoid 

function was originated from the two-state transition processes be-

tween states in double well potential. In quantum mechanical situ-

ations as well, the origin is assumed to be same as in the classical 

one. The probability of finding a particle in the left well of double 

well potential, 𝑝𝐿, is given by the coefficient of the left state |𝐿⟩ of 

the antibonding state |𝐴⟩ 
 

|𝐴⟩ = √𝑝𝐿|𝐿⟩ − √𝑝𝑅|𝑅⟩                                                              (6) 

 

obtained by diagonalizing the qubit Hamiltonian (5) using unitary 

transformation 
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�̃� = 𝐷(𝛽 2⁄ )𝐻𝐷(𝛽 2⁄ )†                                                              (7) 

 

And  

 

𝐷(𝛽 2⁄ ) = 𝑒𝑥𝑝 [−𝑖
𝛽

2
𝜎𝑦]                                                              (8) 

 

with 𝛽 = 𝑡𝑎𝑛−1(𝛥 𝜖⁄ ). The energy spectrum of this diagonalized 

Hamiltonian is thus represented as  

 

𝐸𝐵,𝐴 = ∓
1

2
√𝜖2 + 𝛥2                                                                    (9) 

 

As shown in Fig. 2. Here, 𝐵(𝐴) stands for bonding (antibonding). 

The bonding state is expressed as 

 

|𝐴⟩ = 𝐷(𝛽 2⁄ )†|𝐿⟩ = 𝑐𝑜𝑠(𝛽 2⁄ ) |𝐿⟩ − 𝑠𝑖𝑛(𝛽 2⁄ ) |𝑅⟩                (10) 

 

As a result, the desired probability is 

 

𝑝𝐿 = 𝑐𝑜𝑠2(𝛽 2⁄ ) =
1

2
[1 +

𝜖

√𝜖2+𝛥2
] .                                           (11) 

 

This can be approximated as 

 

𝑝𝐿 ≅
1

1+𝑒−𝜖 2𝛥⁄                                                                               (12) 

 

Within the second order of𝝐 ∆⁄ . Therefore, quantum rf SQUID also 

serves as an artificial neuron with the sigmoid function.  

 So far, we have discussed the sigmoid function generation of rf 

SQUID operating in the quantum mechanical domain based on co-

herent quantum transition. In the case of incoherent quantum tran-

sition, the probability in (11) is reduced to  

 

𝑝𝐿 ≅
1

1+𝑒−𝜖 2𝛥⁄ ≈ 1 − 𝑒−𝜖 2𝛥⁄                                                        (13) 

 

This has been already observed in early stage of qubit experiment 

[12].  

4. Conclusion 

We have presented an artificial neuron using rf SQUID working at 

the quantum-mechanical domain, i.e., quantum rf SQUID. We have 

showed that quantum rf SQUID serves as an artificial neuron with 

the sigmoid function based on the model of the coherent quantum 

transition between quantum states in double well potential. Quan-

tum rf SQUID is nothing but flux qubit that is a building block of 

quantum computer. Therefore, it might be applicable to artificial 

neural networks in quantum-mechanical domain, so-called quan-

tum neural networks.  
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