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Abstract 
 
This paper investigates the effect of mass eccentricity on the earthquake induced torsion in buildings. An analytical solution is proposed, 
which identifies the location of a key structural element for which the torsional response of a structure is minimized for any height wise 
variation of the mass eccentricities. The accuracy of the analytical solution is then verified with parametric numerical modelling on 9-

story buildings with height wise variations of the accidental eccentricities. The numerical modeling results show that the top rotations and 
base torques have an inverted peak, which indicates an optimum location of the key structural element, for which the torsional response of the 
structure is minimized. The location of the key element which minimizes the torsional response of the structure predicted by the analytical 
solution is verified with reasonable accuracy by the numerical modeling results.   
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1. Introduction 

Experimental tests, numerical modeling studies and observations 
from previous earthquakes have revealed that translational - tor-
sional coupling can have a deleterious effect on the structural sta-
bility of buildings ([1],[2],[3],[4],[5],[6]). Current code provisions 
recommend that the effects of earthquake induced torsion should 
be introduced by the following pair of design eccentricities  

 

bee sd  1                                                                              (1a) 

bee sd  2                                                                             (1b) 

where es is the static eccentricity, which is defined as the distance 
between the centre of rigidity (CR) and the centre of mass (CM) 
and the term  ±βb represents the accidental eccentricity, where b is 

the building plan dimension perpendicular to the direction of  
ground motion. The coefficients α and γ are dynamic amplification 
factors, which are specified by individual country codes. In gen-
eral, these factors vary from code to code (for example [7] re-
quires that α=γ=1.0, but in [8], α=1.0 and γ may take values less 
than unity when the static eccentricity is greater than the acci-
dental, whereas the Greek seismic code [9] requires that α=1.5 and 
γ=0.5), while the term of the accidental eccentricity is usually 

taken as a percentage (5%-10%) of the building plan dimension 
perpendicular to the direction of the ground motion b.  
 
From Equation 1(a,b) it follows, that a reduced or even negligible 
static eccentricity, results in lower values of design eccentricities 
and minor torsional effects.. When es=0, the design eccentricities 
of Eq. (1a,b) are reduced to static eccentricities, since the dynamic 
factors α and γ only act as amplifiers of the static eccentricity. In 

cases, where the code provisions are based on Eq. (1a,b), as in for 
example [7], the dynamic effects are not taken into account. For 

this reason it may be more reasonable to apply the dynamic ampli-
fication factor, α, to the accidental eccentricity only, as for exam-
ple in [8] where this factor, denoted as Ax, takes values between 1 
and 3. It should be noted that in all the aforementioned codes, 
β=0.05. Nevertheless, the reason for defining the design eccentri-
cities relative to the centre of rigidity (CR), is that in single-story 

systems with a rigid floor diaphragm, any lateral load passing 
through the CR causes only a translation of the slab and any 
torque applied on the slab causes only a rotation about the CR. 
The CR is therefore usually taken as the reference point to quanti-
fy the torsional effects on structural buildings. Whilst defining the 
CR in one-story systems may be a relatively straight forward pro-
cedure, as the CR is essentially the center of lateral stiffness, its 
definition, in the various floors of a multistory building may not 

be an equally straightforward  task. In [10] the centers of rigidity 
(CRs) were defined as a set of points located at the floor levels, 
such that any distribution of lateral loading passing through the 
CRs, would only cause a translational movement of the floors. It is 
now widely accepted that using the centers of rigidity (CRs) as a 
reference system to assess the torsional response of buildings, 
poses a number of difficulties associated with the fact that the 
centers of rigidity are generally not located on the same vertical 

line and are also load dependent ([11], [12], [13], [14]). 
 
An alternative reference system for implementing the torsional 
code provisions can be determined by locating an optimum to-
sional axis (OTA), for which any in-plane applied lateral load, the 
torsional distortion on the structure is minimized. The optimum 
torsional axis (OTA) may be defined as the axis passing through 
the stiffness centre of an equivalent single story system [15]. The 
stiffness centre of the equivalent single story system defines the 

modal centre of rigidity (m-CR) and its derivation is based on the 
approximate method of the continuous medium, which assumes 
uniform over the height building systems. It was demonstrated 
that for building structures, where the centers of mass of the vari-
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ous floors are located on the same vertical axis, their dynamic 
response is essentially translational, when the mass axis passes 
through the modal centre of rigidity (m-CR) ([16],[17],[18]). The 
modal centre of rigidity (m-CR) may be either defined using the 
approximate method of the continuous medium or using the dis-
crete element approach (stiffness method) [19]. In a recent paper it 
was shown, that when the mass axis coincides with the OTA, this 
results in an essentially translational response, and such a structur-

al configuration may be easily attained by a suitable arrangement 
of the lateral load resisting bents [19]. This paper examines how 
such an arrangement can also be achieved, when the centers of 
floor masses are shifted, in a random spatial way, from their nom-
inal positions, but within the limits of the code [20]. The role of 
mass eccentricities on the torsional response of a building is inves-
tigated though an analytical (mathematical) approach and the ana-
lytical solution is then verified with a case study on 9-story build-

ings where the location of the accidental eccentricities is varied 
throughout the building height.      

2. Analytical Solution  

Assuming a N-story building with orthogonal framing along the 
global x and y directions and rigid floor slabs, which is subjected 

to the lateral load vector 
 
                                                                                                     (2a) 
 
where the load sub-vectors fx, fy and fθ are of N order. The equilib-
rium equation between forces and displacements may be ex-
pressed by the following matrix equation 
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                                                (2b) 

which displays a set of 3N equations for the displacement vectors 
ux and uy, and the rotation vector uθ (all of N order) in an arbitrary 
coordination system Oxyz. For buildings which have lateral load 
resisting elements in two orthogonal directions, the sub-matrices 
of the above stiffness matrix may be expressed as 

 
Kxx=ΣKi 

Kyy=ΣKj 

Kxz=Κzx
T=-ΣyiKi                                                                                                                   (3) 

Kyz=Κzy
T=ΣxjKj 

iijjzz yx KKK
22   

 
where the element sub-matrices Ki and Kj (of NxN order) are the 
stiffness matrices of the i-bent (oriented along the x-direction at a 
distance yi from the x-reference axis) and the j-bent (is oriented 

along the y-direction at a distance xj from y-reference axis) respec-
tively.  
 
Assuming that the structural building is subjected to a translational 

ground excitation along the y-direction, the requirement of a prac-
tically translational response implies that the applied lateral loads 
should be proportional to the first modal vector of the uncoupled 
structure, which is the dominant mode of vibration of a medium 
height building. That is: 
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                                                                 (4a) 

where 
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M is the diagonal mass matrix and m1, m2...mN are the floor mass-
es, numbered from the base upwards, and Φy1 and ωy1 are  the first 
modal shape and frequency of the uncoupled structure. In such a 
case,  the floor components of the lateral load vector fy are applied 
at the centres of mass of the various floors, which are located at a 
distance emx1, emx2,... emxN  from the vertical reference axis respec-

tively. Therefore, since fx=0, the torsional moment vector about 
this axis will be equal to 
 

ymfEf 
                                                                                      (5) 

 
Where Em is the eccentricity mass matrix defined as  
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The displacement vectors ux, uy and uθ, derived from Equations 
(2b), may be expressed as  
 

uKKu xzxxx

1                                                                       (7a) 

 

uKKfKu yzyyyyyy

11                                                               (7b) 

 

)( 1

1

1

1

yyyzyym MΦKKMΦEKu
  

                                               (7c) 

 

yzyyzyxzxxzxzz KKKKKKKK
11  

                                                (8) 

 
The displacement vectors ux, uy and uθ are obtained by super posi-
tioning two loading conditions. The first loading condition is the 
response of the uncoupled structure (i.e. the system in which the 
floors are restrained against rotations) when it is subjected to a 
lateral force vector equal to fy. This loading case provides the first 
term of the second part of Equation (7b). The second loading case 
constitutes a purely torsional moment vector, equal to 

 

1

1

1 yyyzyym MΦKKMΦET


                                                     (9) 

 
and its effect on the response of the uncoupled structure may be 
accounted for as a superposition of the effects of its modal com-
ponents, Tθn (n=1,2,...). This modal expansion of Tθ is obtained as 
follows (Chopra, 2008): 
 

ynnnθ Γ MΦTT  
 (n=1,2,...)                                          (10) 

 
where Φyn is the n-modal shape of the uncoupled structure and the 
corresponding modal participation factor Γn is equal to 
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(11) 
 
If the first modal participation factor is set equal to zero (Γ1=0), 
this implies that the first modal component of Tθ, which represents 
its major contribution on the response of the assumed structure, is 
nullified and therefore the overall torsional effect is minimized.  

The Γ1=0 condition, in combination with Equations (4a) and (9), 
implies that  

 T

fffF yx
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Any structural configuration (any arrangement of the lateral load 
resisting bents) that satisfies the above equation is expected to 
undergo minimum torsional response. Dividing all parts of Equa-
tion (12a) by the first mode generalized mass, the following ex-
pression is obtained 
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An approximate expression of Equation (12b) may be given by 
using the concept of the element frequency of the lateral load re-
sisting elements [15]. For example, for the j-element (bent), its 
element frequency, ωj1, is defined as 
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and represents the first mode frequency of the j-lateral load resist-

ing element, when it is assumed to carry, as a plane frame, the 
mass per floor of the real structure (Φj1 is the first mode vector of 
the particular j-bent). It is worth noting that a lower bound of the 
first modal frequency of the uncoupled structure, ωy1, may be 
evaluated by means of the element frequencies, according to 
Southwell's formula [21]. For example, if the lateral stiffness in 
the y-direction is composed by a number of k-elements, then  
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The equation above is based on Rayleigh's quotients, according to 

which any approximate first mode shape vector may provide a 
reasonable estimate of the first mode frequency. Replacing each 
mode vector Φy1with Φj1, in the second part of Equation (12b) 
equation (12b) may be rewritten as  
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where the fundamental frequency of the uncoupled system, ωy1, 

may alternatively also be obtained from Equation (14).  
 
When all the floor masses are aligned on a vertical (mass) axis, i.e.:  
 
emx1=emx2=...=emxN=emx                                                                 (16a) 
         
which suggests that the eccentricity matrix of Equation (6) is equal 
to  

 

IE mxm e                                                                                   (16b) 

 
where I is the unit matrix, Equation (15) may be expressed as: 
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The last part of equation (17a) defines the optimum torsional axis 
(OTA) [19]. When the OTA coincides with the mass axis, the 
torsional response is minimized. By definition, the coordinates of 
the OTA depend on the structural member frequencies and differ-
ent structural configurations may result in OTA axes that coincide 
with the mass axis. When the mass axis is taken as the reference 
axis, the condition for minimum torsional response requires that 

the arrangement of the various bents should satisfy the following 
equation   
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1  jjx                                                                                   (17b) 

 
In structural engineering practice and due to architectural or func-
tional considerations, the structural design engineer may need to 
relocate the lateral load resisting bents, to obtain a structural con-

figuration, for which the OTA coincides with the mass axis. In 
practice, it is convenient to construct such a system by locating a 
particular element (denoted as key element and assumed to be the 
k-element, when the lateral resistance is provided by a number of 
k bents), in a way that   
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In buildings where the centres of floor masses are not aligned on a 

vertical line, the vertical axis of the reference system may be taken 
as the axis passing through the centre of the total mass of the 
building structure. That is, with respect to the initially assumed 
Oxyz coordination system, the x-coordinate, emx, and the vertical 
reference axis may be defined as   
 

nmxntotmx meMe     n=1,2,...N                                                 (19) 

 
where Mtot is the total mass of the building (=m1+m2+...+mN). The 
new vertical reference axis, defined by Equation (19), has the 
advantage that when the gravity loads are uniformly distributed on 
all the floors and when their centroids are located on the same 
vertical line, the aforementioned axis is the mass axis of the sys-

tem. In such a case, when the code accidental eccentricities are 
neglected, any structural configuration that satisfies Equation (17b) 
defines a system of minimum torsional response. When however, 
the accidental eccentricities are taken into account, the optimum 
location of the k-element may be determined by evaluating the 
first term of Equation (15). A convenient method to evaluate this 
part of Equation (15) is to express the matrix product EmM as : 
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where Mf is a matrix defined as  
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and emxo is the largest, in absolute value, of all floor mass eccentri-
cities, i.e.:  
 

mxnmxo ee  ,      n=1,2...N                                                       (20c) 

 
It is worthwhile noting that none of the Mf elements registers a  
negative value and therefore this matrix may be considered as a 
fictitious mass matrix.  The sum of the fictitious floor masses of 

Mf is equal to the total mass Mtot of the assumed building, since the 
location of the vertical reference axis satisfies Equation (19). Re-
arranging Equation (15), in combination with Equations (20a) and 
(20b), the following is obtained: 
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where, RGM is defined as the ratio of the generalized masses and 
is equal to: 
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Which may be also alternatively expressed as 
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In this equation, the numerator defines the square value of the first 
mode frequency, ωy1, of the uncoupled structure, while the denom-
inator, defined as   
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is a Rayleigh's quotient of the fundamental frequency, ωyf1, of the  
uncoupled system which has the floor masses shown in the main 
diagonal of the matrix of Equation (20b). Therefore, since it is 

easy to evaluate ωyf1 by any structural analysis software, an ap-
proximate equation which provides the required location of the k-
element, xk, is as follows 
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It should be noted that when the maximum mass eccentricity ap-

pears on two floors with opposite algebraic sign, the eccentricity 
term emxo in equations (20a) and (21a) should be taken as that of 
the lower floor. To explain this suggestion [20] let assume here 
that the accidental floor eccentricities of a given structure are 
equal in absolute values, but those in the upper half (assumed for 
example positive) are of opposite algebraic sign of the lower part 
(assumed negative). It may be worth recalling that the sum of the 
fictitious floor masses of Equation (20b) is equal to the total mass 

Mtot. Therefore, when emxo is taken as that of the floors in the up-
per half of its height, this means that the fictitious uncoupled sys-
tem, which specifies ωyf1, has masses (of double value) only in the 
lower half of its height. The value of ωyf1, thus produced, is equal 
to   
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where Φfy1 is the first mode vector of the aforementioned fictitious 
uncoupled system. There is a clear difference between the shape 
functions Φy1 (in Equation (22)) and Φfy1 (in Equation (24). Both 

of them satisfy the displacement boundary conditions at the base 
of the structure, but Φy1 satisfies the force boundary conditions at 
the top of the system, while Φfy1 satisfies the corresponding condi-
tions at the mid height of the system, since there are no masses 
above this point. Therefore, the procedure of approximating the 
quotient RQ of Equation (22), with the frequency of Equation (24) 
may not be reasonable. When emxo is taken as that of the lower 
floors, the corresponding fictitious uncoupled system, which has 

(double) masses only in its top part, provides the first mode fre-
quency ωyf1 by an expression similar to Equation (24), but the 
corresponding mode vector Φfy1 satisfies now the force boundary 
conditions at the top of the system, as the vector Φy1. Therefore, it 
is reasonable to approximate the quotient RQ of Equation (22), by 
the square value of the first modal frequency of the uncoupled 
fictitious system  
 

3. Case study  

The plan view of the three analyzed concrete building models 
T0/B9, T3/B6 and T6/B3 is presented in Fig.1. All three models 
comprise 9-storey mono-symmetrical building systems, with in plan 
and in elevation irregularities. T0/B9 has nine identical orthogonal 

floors of 23x16m, as shown by the exterior perimeter. T3/B6 is a 
setback building, which comprises a six floor base structure, with 
plan dimensions of 23x16m (shown by the exterior perimeter), and 
a three floor top structure with a reduced size of 18x12m (indicat-
ed by the interior perimeter in Fig. 1). Model T6/B3 is also a set-
back building, comprising a base structure with three floors identical 
to those of Model T0/B9, and a top structure comprising six floors 
similar to the top floors of Model T3/B6. 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 1: Plan view of the analysed building models (all dimensions in meters) 

 
In all three building models, the lateral load resisting system along the 
y-direction consists of a wall, W, a coupled wall bent, CWy, and by 
two moment resisting frames, FR.  Two coupled wall bents provide 
lateral resistance in the x-direction. When uniformly distributed gravi-
ty loads are assumed on the floor slabs, their centres of mass lie on the 
same vertical axis (nominal location of the Mass Axis). Full details of 
these concrete models may be seen in [20]. 

 
For each building model T0/B9, T3/B6 and T6/B3, six different 
mass eccentricity configurations were investigated. The configura-
tion of the first three analyzed mass eccentric systems  of building 
models T0/B9, T3/B6 and T6/B3 are shown in Fig. 2. In all sys-
tems the centers of mass (CM) of the base and top structure were 
shifted along the x-axis as shown in the aforementioned Figure, 
but in all cases the center of the total mass, Mtot, lies on the verti-

cal (nominal) axis passing through the centroids of all floors. 
Since all the three analyzed mass eccentricities systems for each 
building model (in the case of T3/B6 the eccentric systems 
(+)A:T3/B6, (+)B:T3/B6 and (+)C:T3/B6)) are structurally asym-
metric along the y-direction, all the aforementioned systems were 
also investigated for the reversed location of the various floor 
eccentricities (i.e.: their algebraic sign was reversed, (-)A:T3/B6, 
(-)B:T3/B6 and (-)C:T3/B6). Similarly, the first three eccentric 

systems of model T6/B3, are (+)A:T6/B3, (+)B:T6/B3 and 
(+)C:T6/B3 and the reversed eccentricities are (-)A:T6/B3, (-
)B:T6/B3 and (-)C:T6/B3.  
 
 
 
 
 
 

 
 
 
 
Fig. 2a: The first three analyzed mass eccentric systems of model T0/B9: 

(i) (+)A:T0/B9; (ii) (+)B:T0/B9 and (iii) (+)C:T0/B9 
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Fig. 2b: The first three analyzed mass eccentric systems of model T3/B6: 

(i) (+)A:T3/B6; (ii) (+)B:T3/B6 and (iii) (+)C:T3/B6 

 
 
 
 
 
 

 
 
 
 
 
Fig. 2c The first three analyzed mass eccentric systems of model T6/B3: (i) 

(+)A:T6/B3; (ii) (+)B:T6/B3 and (iii) (+)C:T6/B3 

4. Results and Discussion  

The numerical analysis of the mass eccentricity configurations for 
each building model T0/B9, T3/B6 and T6/B3 was performed 
with the structural analysis program SAP2000-V16, for a ground 
excitation along the y-direction, as defined by the acceleration 
spectrum of EC8-2004 (type 1, ground type B, soil factor 1, hori-
zontal ground acceleration 0.40g). The normalized base torques 

obVT/rT 
 
(where Vo is the base shear of the corresponding un-

coupled building model and rb is the radius of gyration of the floor 
mass of the base structure) and top rotations, Θ, for the different 

locations (indicated by the normalized coordinate  
b/rxx  ) of the 

coupled wall bent CWy, of the systems of Figs. 2a-2c are shown 
by the red lines in Fig. 3. All the data were calculated on the basis 
of the first 12 peak modal values combined according to the CQC 
rule (the damping ratio in each mode of vibration was taken as 

5%).  
 
The blue lines in Fig. 3 show the torsional response of the systems 
with reversed mass eccentricities, while the black lines show the 
response of these systems when no mass eccentricities are taken 
into account. The results in Fig. 3 show that the variation of base 
torques is smoother than those of the top rotations, which suggests that 
the mostly affected response parameter is the top rotation. The invert-

ed peaks of the top rotation and, to a lesser degree, of the base torques, 
clearly indicate an optimum location of the coupled wall bent CWy. In 
Figures 3a and 3b the minimum values of the rotations and base 
torque point to almost the same value of  x . This is less noticeable by 
the torques curves (solid lines) in Figure 3c. They show a rather ex-
tended range of locations of the coupled wall bent CWy where the 
base torque registers small values.  

 
The inverted peaks of the base torques and top rotations are point-
ing to almost symmetrical locations with respect to those indicated 
by the black lines, whose inverted peaks indicate the optimum 
location of CWy where the torsional response is minimized. The 
results demonstrate, that, for any spatial variation of mass eccen-
tricities, the optimum location of the key element, which minimiz-
es the torsional effect of the structure has an almost symmetrical 

location, with respect to its nominal location, when the mass ec-
centricities are reversed. Figure 4 shows the locations of the CWy 
bent, which minimizes the torsional response of the six mass ec-
centricity configurations, as predicted by the analytical solution 
[20]. The locations of the models without mass eccentricities, as 
derived in [19], are also shown Figure 4. The results suggest that 

the numerical modeling verifies the analytical solution with rea-
sonable accuracy. 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 3a: Top rotations (x10

-2
 rads) and normalized base torques of the 

eccentric systems (+)A:T0/B9, (+)B:T0/B9 and (+)C:T0/B9 red lines) and 

the systems (-)A:T0/B9, (-)B:T0/B9 and (-)C:T0/B9 (blue lines), together 

with the corresponding quantities of the system with no mass eccentricities 

(model T0/B9, black lines) 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 3b: Top rotations (x10

-2
 rads) and normalized base torques of the 

eccentric systems (+)A:T3/B6, (+)B:T3/B6 and (+)C:T3/B6 (red lines) and 

the systems (-)A:T3/B6, (-)B:T3/B6 and (-)C:T3/B6 (blue lines), together 

with the corresponding quantities of the system with no mass eccentricities 

(model T3/B6, black lines) 
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Fig. 3c: Top rotations (x10

-2
 rads) and normalized base torques of the 

eccentric systems (+)A:T6/B3, (+)B:T6/B3 and (+)C:T6/B3 (red lines) and 

the systems (-)A:T6/B3, (-)B:T6/B3 and (-)C:T6/B3 (blue lines), together 

with the corresponding quantities of the system with no mass eccentricities 

(model T6/B3, black lines) 

 
Fig. 4: Predicted normalized locations of the key element (CWy bent) for 

optimum torsional response of the systems of Figures 3 a,b,c and the mod-

els with no mass eccentricity. 

4. Conclusions  

This paper investigates the effect of mass eccentricity on the 
earthquake induced torsion in buildings, using both analytical and 
numerical modelling results. An analytical solution is proposed, 
which identifies the optimum location of a key structural element 
for which the torsional response of a structure is minimized for 

any height wise variation of the mass eccentricities. The accuracy 
of the proposed analytical solution is then verified with numerical 
modeling on 9-story buildings with height wise variations of the 
accidental eccentricities. 
 
The numerical modelling results show, that the variation of the base 
torques is smoother than those of the top rotations, which implies that 
the top rotations was the mostly affected response parameter. Both the 

top rotations and base torques have an inverted peak, which indicates 
an optimum location of the key structural element. Small shifts of the 
key element from its optimum location result in rather large torsional 
distortions, but these effects gradually become less significant as the 
key element moves further away from its optimum location. The 
results demonstrate that, for any spatial variation of mass eccentri-
cities, the optimum location of the key structural element, has an 
almost symmetrical location, with respect to its nominal location, 
when the mass eccentricities are reversed. The location of the key 

element which minimizes the torsional response of the structure 
predicted by the analytical solution is verified with reasonable 
accuracy by the numerical modeling results.   
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