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Abstract 
 

C-prime fuzzy TΓ-ideals and prime fuzzy TΓ-ideals are studied, then proved some theorem and characterized the C-prime and prime 

fuzzy TΓ-ideals in TΓ-semirings. 
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1. Introduction 

Most of the papers on fuzzy theory appeared showing the im-

portance of the concept and applications to logic, topology, theory 

of algebraic structures, etc.  Here, we introduce about C-prime , 

prime, C-semiprime and semiprime fuzzy TΓ-ideals in TΓ-

semirings.   

2. Preliminaries:  

For preliminaries refer the references  

3. C-Prime and Prime Fuzzy TΓ-Ideals: 

Def 3.1 : A fuzzy TΓ-ideal 𝜇 of a TΓ-semiring Q is known as C-

prime fuzzy TΓ-ideal provided 𝜇 : Q → [0. 1] is a non-constant 

function and for any three fuzzy points at, br , cs of T, atΓbrΓcs ≤𝜇 

implies either at ∈ μ or br∈𝜇 or cs ∈ 𝜇.  

Ex 3.2: Let Q be the set all 1× 2 matrices over 2 GF (the finite 

field with two elements) and Γ be the set of all 2×1matrices over 2 

GF. Then Q is a TΓ -semiring where aαb𝛽c and αaβbγ (a, b, c ∈ Q, 

α ,β, γ ∈Γ) denote usual matrix product. Let 𝜋 : Q →[0,1] by μ (x) 

= 0.3, if x = (0,0) and 0.4, otherwise. Then 𝜋 is a C-prime fuzzy 

TΓ-ideal of Q. 

Def 3.3: Suppose Q be a TΓ-semiring.  A fuzzy sub set 𝜇 of T is 

said to be a fuzzy c-system of Q if for each 𝜇s, 𝜇t, 𝜇r of 𝜇 there 

exist an element 𝛼, 𝛽 ∈Γ such that𝜇s𝛼𝜇t𝛽𝜇r ∈𝜇.  

Th 3.4 : Every fuzzy T𝚪-sub semi ring of a T𝚪-semi ring is a 

fuzzy c-system. 

Proof: Let 𝜉 is a fuzzy TΓ-sub semiring of a TΓ-semiring M and 

𝜉s, 𝜉t, 𝜉r ∈𝜉.  Since 𝜉 is a fuzzy TΓ-sub semi ring of M.  

So, ( ) ( ) ( ) ( )  u, ,  and ,u v w u v w v w M           .   

Since 𝜉s, 𝜉t, 𝜉r ∈𝜉.  Therefore 𝜉(u) = s,  ξ(v) = t and 𝜉(z) = r.  

If 𝜉s(x) = s,  𝜉t(v) = t and 𝜉rwz) = r for u, v, w ∈ M.  Then 

(𝜉sΓ𝜉tΓ𝜉r)(p) = { ( ) ( ) ( )}s t zu v w
p u v w

 
 

 

    

             = min(s, t, r) = 𝜉 (u)⋀ 𝜉 (v)⋀ 𝜉 (w) ≤ 𝜉 (uγv𝛿w)  

            = 𝜉 (p) and hence 𝜉sΓ𝜉tΓ𝜉r ≤ 𝜉 ⇒ 𝜉s𝛼𝜉t𝛽𝜉r ∈𝜉, for 𝛼 , 𝛽 ∈ Γ.   
Therefore 𝜉 is a fuzzy c-system of M.  

Now (𝜉sΓ𝜉tΓ𝜉r)(p) = 0 if p ≠ u𝛾v𝛿w, then it follows that  

(𝜉sΓ𝜉tΓ𝜉r)(p) = 0 ≤ (p) ⇒ 𝜉sΓ𝜉tΓ𝜉r ≤ 𝜉 ⇒ 𝜉s𝛼𝜉t𝛽𝜉r ∈𝜉, for 𝛼 , 𝛽 ∈ Γ.   
Therefore 𝜇 is a fuzzy c-system of M.  

Th 3.5: A fuzzy T𝚪-ideal 𝝅 of a T𝚪-semiring Q is C-prime 

fuzzy T𝚪-ideal iff its complement 1    is a fuzzy c-

system. 

Proof: Suppose 𝜋 is a C-prime fuzzy TΓ-ideal of Q.  Suppose as, 

bt, cr ∈  .  Then as ∉ 𝜋, bt ∉ 𝜋 and cr ∉ 𝜋.   

Suppose if possible s t ra b c  ≰  , then s t ra b c   ≤ 𝜋.  ∵ 𝜋 is C-

prime fuzzy TΓ-ideal of Q, either as ∈ 𝜋 or bt ∈ 𝜋 or cr ∈ 𝜋.  It is a 

contradiction.  Therefore if as, bt, cr ∈  , then s t ra b c   ≤    

and hence    is a fuzzy c-system. 

 Conversely, suppose that    is a fuzzy c-system of Q.   

Let as, bt, cr ∈ Q and s t ra b c   ≤ 𝜋.  Suppose if possible as ∉ π, bt 

∉ 𝜋 and cr ∉ 𝜋.  Then as, bt, cr ∈  .  Since    is a fuzzy c-system 

and hence s t ra b c   ≤   .  Thus s t ra b c  ≰ 𝜋.   

It is a contradiction.  Hence either  as ∈ 𝜋 or bt ∈ 𝜋 or cr ∈ 𝜋.  

Therefore 𝜋 is a C-prime fuzzy TΓ-ideal of Q. 
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Def 3.6: A fuzzy subset π of a T  -semiring M is said to be prime 

if for any fuzzy subsets 𝜆, 𝜈, 𝜉 of M, 𝜆oνoξ ≤ 𝜋 
⇒  or  or         . 

Th 3.7: Let Q be a T𝚪-semiring and 𝝇 a fuzzy subset of Q.  

Then 𝝇  is prime iff 

 ( ) max ( ), ( ), ( )p w a p w a      for all p, w, a ∈ T and γ, 𝜹 ∈ 

Γ. 

Proof: Suppose that 𝜎 is prime.  Let p, w, a ∈ Q.   

Since p𝛼w𝛽a ∈ Q for some 𝛼, 𝛽 ∈ Γ. 

We have 𝜎(p𝛼w𝛽a) ∈ [0, 1].  We put 𝜆 = 𝜎(p𝛼w𝛽a) → (1). 

Since p, w, a ∈ Q and 𝜆∈ [0, 1], the fuzzy points (p𝛼w𝛽a)λ, pλ, w𝜆 , 

aλ are defined.  Let x∈ Q.  If x ≠ p𝛼w𝛽a for 𝛼, 𝛽 ∈ Γ, then 

(p𝛼w𝛽a)λ(x) = 0.  ∵ 𝜎 is a fuzzy subset of Q,  

we have 𝜎(x) ∈ [0, 1], 𝜎(x) ≥0.  Then𝜎(p𝛼w𝛽a)λ ≤ 𝜎(x).  

If x = p𝛼w𝛽a, then (p𝛼w𝛽a)λ(x) = λ.  Then by (1),   

(p𝛼w𝛽a)λ(x) = 𝜎(p𝛼w𝛽a) = 𝜎(x). 

Therefore (p𝛼w𝛽a)λ(x) ≤ 𝜎(x).  We have (p𝛼w𝛽a)λ ≤ 𝜎 → (2).  

Since 𝜎 is prime, by (2), we have pλ≤𝜎 or w𝜆 ≤ 𝜎 or a𝜆 ≤ 𝜎.   

Then λ = pλ(p)≤𝜎 (p)or λ = w𝜆 (w)≤ 𝜎 (w) or or λ = a𝜆 (a)≤ 𝜎(a).  

Therefore 𝜎(p𝛼w𝛽a)  ≤ 𝜎(p) or 𝜎(p𝛼w𝛽a)  ≤ 𝜎(w) or 𝜎(p𝛼w𝛽a)  ≤ 

𝜎(a) for some 𝛼, 𝛽 ∈ Γ.  

Thus  ( ) max ( ), ( ), ( )p w a p w a       

Let x, y, z ∈ Q, 𝛼, 𝛽 ∈ Γ and𝜆 ∈ [0, 1], x𝜆𝛼yλβz𝜆 ≤ 𝜎.  Let q∈ Q.   

If q ≠ x , q ≠ y and q ≠ z, then xλ(q) = 0, y𝜆 (q) = 0 and z𝜆 (q) = 0.   

Since 𝜎 is a fuzzy subset of Q, 𝜎(z) ∈[0, 1], so 0 ≤ 𝜎(z).   

i.e. xλ(q) ≤ 𝜎(z), y𝜆 (q) ≤ 𝜎(z) and z𝜆 (q) ≤ 𝜎(z). 

If q = x or q = y or q = z, then xλ(q) = λ or yλ(q) = λ or zλ(q) = λ.   

Since x𝜆𝛼yλβz𝜆 ≤ 𝜎, we have  
λ = (x𝜆𝛼yλβz𝜆)γ(x𝛼y𝛽z) = (x𝛼y𝛽z)λγ(x𝛼y𝛽z) = 𝜎(x𝛼y𝛽z).   

Then, by hypothesis, we have  

λ≤ σ(x𝛼y𝛽z) ≤𝜎(x) = 𝜎(y) = 𝜎(z) = 𝜎(p)  

and hence xλ(q) = yλ(q) = zλ(q) = 𝜎(q). 

Th 3.8: Let M be a T𝚪-semi ring and ∅≠ I⊆ M.  Then I is a 

prime subset of T iff the fuzzy subset I  is a prime fuzzy sub 

set of M. 

Proof : Obviously, I  is a fuzzy subset of M.  Let e, p, v ∈ M and 

𝛾, 𝛿∈ Γ.  If e𝛾p𝛿v∉ I, then  

( ) 0  max{ ( ), ( ), ( )}I I I Ie p v e p v       .   

Let e𝛾p𝛿v ∈ I.  Then ( ) 1I e p v    .  Since I is a prime sub set of 

M, we have e ∈ I or p ∈ I or v ∈ I.   

Thus ( ) 1 or ( ) 1or ( ) 1I I Ie p v      and so  

( ) 1 1  max{ ( ), ( ), ( )}I I I Ie p v e p v        .   

Therefore, the fuzzy subset I  is a prime fuzzy sub set of M. 

 Conversely, suppose that e, p, v ∈ M and 𝛾, 𝛿 ∈Γ be such 

that e𝛾p𝛿v ∈ I.  Then ( ) 1I e p v    .  Since I  is a prime fuzzy 

sub set of M, we have 1 ( )  max{ ( ), ( ), ( )}I I I Ie p v e p v       .   

Thus ( ) 1 or ( ) 1or ( ) 1I I Ie p v      and so e∈ I or p∈ I or v∈ I.  

Therefore, I is a prime sub set of M. 

Def 3.9: A fuzzy T  -ideal 𝜋 of a T  -Semiring M is known as 

prime fuzzy T -ideal provided for any fuzzy TΓ-ideals 𝜈,  ξ, η of 

M, νΓξΓ𝜂 ≤ 𝝁  ⇒  or  or         .  

Th 3.10: A fuzzy T  -ideal 𝝃 of a T  -semi ring M is said to be 

prime fuzzy T  -ideal iff  ( ) max ( ), ( ), ( )s e d s e d      for any s, 

e, d ∈ M & 𝛾, 𝜹 ∈ Γ. 

Proof : Suppose that 𝜉 is a prime fuzzy TΓ-ideal.  Then 𝜉 is fuzzy 

TΓ-ideal of M ⟹ for any s, e, d ∈ M & 𝛾, 𝛿 ∈ Γ, we 

have  ( ) max ( ), ( ), ( )s e d s e d      &  

𝜉  is a fuzzy prime ⟹  ( ) max ( ), ( ), ( )s e d s e d      and hence 

 ( ) max ( ), ( ), ( )s e d s e d      . 

Conversely, suppose that for any s, e, d ∈ M and 𝛾, 𝛿 ∈ Γ,  

 ( ) max ( ), ( ), ( )s e d s e d      .  

Then we have  ( ) max ( ), ( ), ( )s e d s e d      & 

 ( ) max ( ), ( ), ( )s e d s e d      .  Therefore 𝜉 is a fuzzy TΓ-ideal of 

M.  By th 3.7, 𝜉 is prime fuzzy subset, so 𝜉 is prime fuzzy TΓ-

ideal of M. 

Corollary 3.11: A fuzzy T  -ideal  𝛏 of a T -semiring Q is 

said to be prime fuzzy T  -ideal if  
inf

,  
( ) max{ ( ), ( ), ( )}  s, ,s f l s f l f l Q        . 

Proof: Since 𝜉 is a prime fuzzy TΓ-ideal of Q.  Then  

inf

,  
( ) ( ) max{ ( ), ( ), ( )}  s, ,s f l s f l s f l f l Q             

Ex 3.12 : Let Q be the set of all 1x2 matrices over GF2 ( the finite 

field with two elements) and   be the set of all 2x1 matrices over 

GF2.  Then T is a T  -semi ring where s t u   and s t   for all s, 

t, uQ and , ,    denotes the usual matrix product.  Let 

: [0,1]Q  be defined by
0.3 if (0,0)

( )
0.2  otherwise

{ x
x


 .  Then ξ is a 

fuzzy prime T  -ideal of Q. 

Th 3.13 : Let Q be a T𝚪-semiring and ∅≠ I ⊆ Q.  Then  

(i) I is a prime T𝚪-ideal of Q. 

(ii) The characteristic function I of I is a prime fuzzy 

T𝚪-ideal of T are equivalent. 

Proof : (i) ⇒ (ii) : Let I be a prime TΓ-ideal of Q and I  be the 

characteristic function of I.  Since I ≠ ∅, I  is non-empty. Let  r, f, 

v   Q.  Suppose r fΓv   I.  Then ( )I r f v   = 1 for ,   . 

Hence ,inf ( ) 1I r f v      .   

Now I being prime, then we have, r I  or f I or v I .  

Hence ( ) 1I r   or ( ) 1I f   or ( ) 1I v  which gives 

max{ ( ), ( ), ( )} 1I I Ir f v    .  Thus we see that  

,inf ( )I r f v      max{ ( ), ( ), ( )}I I Ir f v   .   

Now suppose that rΓfΓv ⊈ I.  Then for ,   , r f v I     

which means that ( )I r f v   = 0.   

Consequently, ,inf ( )I r f v      0.   

Now since I is a prime of Q, r  I,  f  I &  v   I.   

Hence ( ) 0I r   or ( ) 0I f   or ( ) 0I v     

Consequently, max{ ( ), ( ), ( )}I I Ir f v   = 0.   

Thus we see that in this case also 

 ,inf ( )I r f v      max{ ( ), ( ), ( )}I I Ir f v   . 

(ii)  (i): Let I be a fuzzy prime TΓ-ideal of Q.  Then I is a 

TΓ-ideal of T.  So, I is a TΓ-ideal of Q. Let r, f, vQ ∋ rΓfΓv  I.  

Then ( )I r f v   = 1 for ,   .  Hence ,inf ( ) 1I r f v      .  

Let r   I, f   I and v   I.  Then ( ) 0I r   or ( ) 0I f   or 

( ) 0I v     Which means max{ ( ), ( ), ( )}I I Ir f v    = 0.  ⟹ 

,inf ( ) 0I r f v      .  Thus we get a contradiction.  Hence  

r  I, f  I & v  I.  Thus we see that I is a  prime TΓ-ideal of Q.   

Th 3.14: If Q be a T  -semiring and 𝝅 be a non-empty fuzzy 

subset of Q.  Then. 

(i) 𝝅 is fuzzy prime T  -ideal of Q. 

(ii) For any t[0,1] the t-level subset of 𝝅 (if it is non-empty) is 

a prime T  -ideal of Q are equivalent. 

Th 3.15: Let 𝝆 be a fuzzy subset of a 𝚪-semi ring R.  Then 𝝆 is 

a fuzzy prime of R iff ∀ t∈ [0, 1], R

t  , then R

t  is a prime 

of R. 



International Journal of Engineering & Technology 165 

 
Proof : Assume 𝜌 is a fuzzy prime TΓ-ideal of R.  Then   is a 

fuzzy TΓ-ideal of R.  Assume that R

t  .  By known theorem, 

S

t is a fuzzy TΓ-ideal of R.  Let p, w, h ∈ R and 𝛾, 𝛿 ∈ Γ such 

that R

tp w h   .  Then ( )p w h t    .  Since 𝜌 is a fuzzy prime  

of R, ( ) ( ) or ( ) ( ) or ( ) ( )p w h p p w h w p w h h              .   

⟹ ( )  or ( )  or ( )p t w t h t     .   

Hence,  or w  or hR R R

t t tp      .   

Therefore R

t is a prime of R. 

 Conversely, assume for all t∈ [0,1], if R

t  , then 

R

t is a prime TΓ-ideal of R.  

Let p, w, h ∈ R and 𝛾, 𝛿 ∈ Γ.  Then we have, 𝜌 is a fuzzy prime  of 

R.  This implies  

( ) ( ),  ( ) ( ) and ( ) ( )p w h p p w h w p w h h              .   

We have,  for all ( )R

tp w h t p w h       .   

Since R

t  is a fuzzy prime TΓ-ideal of R for all ( )t p w h   , 

 or w  or hR R R

t t tp       for all ( )t p w h   .  This implies 

that ( )  or ( )  or ( )p t w t h t      for all ( )t p w h   .   

Then ( ) ( ) or ( ) ( ) or ( ) ( )p p w h w p w h h p w h              .   

Hence ( ) ( ) or ( ) ( ) or ( ) ( )p w h p p w h w p w h w              .   

Hence   is a fuzzy prime TΓ-ideal of R. 

Th 3.16: Every completely prime fuzzy T𝚪-ideal of a T𝚪-

semiring Q is a prime fuzzy T𝚪-ideal of Q. 

Proof : Suppose that 𝜇 is a fuzzy completely prime TΓ-ideal of a 

TΓ-semiring Q.   

Let 𝜈, ξ, η   be fuzzy TΓ-ideals of T such that 𝜈o𝜉 oη ≤ 𝜇.   

Suppose 𝜈 ≰𝜇 and 𝜉 ≰𝜇.   

Then there exists x ∈ T and y ∈ T such that 𝜇(x) <𝜈(x), 𝜇(y) < 𝜉(y).  

Let 𝜈(x) = r and 𝜉(y) = s.   

Take any element z ∈ Q, 𝛾, 𝛽 ∈ Γ and let (z) = t.   

Then xrΓysΓzt(x𝛾y𝛿z) = min(r, s, t).  But μ(x𝛾y𝛿z) ≥ 𝜈Γ𝜉Γ𝜂(x𝛾y𝛿z) 

≥ min (𝜈(x), 𝜉(y), 𝜂(z)) = min(r, s, t) = xrΓysΓzt(x𝛾y𝛿z).   

Since xrΓysΓzt(p)  = 0 if p ≠ x𝛾y𝛿z, it follows that xrΓysΓzt ≤ 𝜇.   

So by hypothesis, either xr ≤ 𝜇 or ys ≤  μ or zt ≤  μ.  Since r ≰ 𝜇(x) 

and s ≰ 𝜇(y) , it follows that 𝜂(z) = t ≤ 𝜇(y).  Hence 𝜂 ≤ 𝜇. 

Th 3.17: Let T be a commutative T𝚪-semiring.  Then a prime 

fuzzy T𝚪-ideal 𝝁 of Q is a fuzzy completely prime of Q. 

Proof: Suppose that 𝜇 is a fuzzy prime TΓ-ideal in a commutative 

TΓ-semiring Q.  Suppose xr, ys, zt are three fuzzy points of T and 𝛾, 
𝛿 ∈ Γ, such that xrΓytΓzt ≤ 𝜇.   

Then xrΓysΓzt(x𝛾y𝛿z)≤  (x𝛾y𝛿z).   

Hence min(r, s, t)≤  (x𝛾y𝛿z)→ (1).   

Let fuzzy subsets 𝜈, 𝜉,   be defined by  

 

  if p  
( ) {

0  otherwise

s  if p
( ) {

0 otherwise.

  if p
( ) {

0 otherwise.

r x
p

y
p

t z
p







 


 


 


 

Clearly if p is not expressible in the form p = u𝛼v𝛽w for some 

u∈<x >, v∈<y>, w ∈ <z> and 𝛼, 𝛽 ∈ Γ.  Hence 𝜈Γ Γη(p) = 0.   

Otherwise 
, , , , ,

( ) {min( ( ), ( ), ( ))} min( , , ).
p u v w u x v y w z

p Sup u v w r s t
   

     
       

      

Since T is commutative, u ∈< x > implies u = x𝛾b𝛿c for some b, 

c∈ T, 𝛾, 𝛿 ∈ Γ.  Similarly v ∈< y > implies v = y𝜃d𝜀e for some d, e 

∈ T, 𝜃, 𝜀 ∈ Γ and w ∈ < z > implies w = z𝜁f𝜆g for some f, g ∈ T 
and 𝜁, 𝜆 ∈ Γ.  So by commutatively again,  

u𝛼v𝛽w = (x𝛾b𝛿c)α(y𝜃d𝜀e)β(z𝜁f𝜆g) = x𝛾b𝛿cαy𝜃d𝜀eβz𝜁f𝜆g   
= x𝛾y𝛿z𝛼b𝜃c𝛿d𝛽e𝜁f𝜆g = x𝛾y𝛿z𝛼d for some d∈ T.   

Since 𝜇 is a fuzzy TΓ-ideal and hence  (u𝛼v𝛽w)≥  (x𝛾y𝛿z)≥ 

min(r, s, t) by (1).  Thus 𝜈Γ𝜉Γ𝜂 ≤ 𝜇.  From the definition of 𝜈, 𝜉, 𝜂 

it is easily shown that  , 𝜉 and 𝜂  are fuzzy TΓ-ideals of Q.  Since 

𝜇 is a fuzzy prime TΓ-ideal, it follows that either 𝜈 ≤ 𝜇 or 𝜉 ≤ 𝜇 or 
𝜂 ≤ 𝜇.  So either 𝜈(x) ≤𝜇(x) or 𝜉(x) ≤ 𝜇(x) or 𝜂(x) ≤ 𝜇(x).  Thus 

either xr ∈ 𝜇 or ys ∈ 𝜇 or zt ∈ 𝜇. 

Def 3.18: A non-empty fuzzy subset 𝜏 of a TΓ-semiring W is said 

to be a fuzzy m-system provided for any fuzzy points xp, yq, zr ∈𝜏 ∋ 

W W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq ΓW W  ∧ 𝜏 ≠ ∅.  

Th 3.19: A fuzzy T𝚪-ideal 𝝉 of a T𝚪-semiring W is a fuzzy 

prime of W iff    is a fuzzy m-system of W. 

Proof: Suppose that τ is a fuzzy prime of a TΓ-semiring W and 

     . 

Let xp, yq, zr     .  Then xp 𝜏, yq   𝜏 and zr   𝜏.   

Suppose if possibleW W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq 

ΓW W  ∧    = ∅. 

W W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq ΓW W  ∧    = ∅. 

 ⇒W W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq ΓW W   ⊆ 𝜏.  

Since 𝜏 is fuzzy prime, either xp   𝜏  or yq   𝜏 or zr   𝜏. 

It is a contradiction. Therefore  

W W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq ΓW W  ∧    ≠ ∅. 

Hence    is a fizzy m-system.  

Conversely suppose that    is either a m-system of T or    = .   

If    =  , then T = 𝜏 and hence 𝜏 is a fuzzy prime of W.   

Assume that    is a fuzzy m-system of Q. Let xp, yq, zr   W  

and <  xp  > Γ<   yq > Γ<  zr  > ⊆ 𝜏. 

Suppose if possible xp   𝜏, yq   𝜏  & zr   𝜏.   

Then xp, yq, zr     .  Sine    is a fuzzy m-system, 

⇒ W W  Γxp Γ W W  Γ W W  ΓzrΓ W W  Γyq Γ W W  ∧    

≠ ∅.  W W  Γxp ΓW W  ΓW W  ΓzrΓ W W  Γyq Γ W W   

⊈ 𝜏   <  xp  > Γ<   yq > Γ<  zr  > ⊈ 𝜏.  It is a contradiction.  

Therefore xp   𝜏 or yq   𝜏 or zr   𝜏.   

Hence 𝜏 is a fuzzy prime of W. 

4. Completely Semi prime Fuzzy T𝚪-Ideals 

and Semi prime Fuzzy T -Ideals: 

Def 4.1 :A fuzzy T -ideal ρ of a T -semiring M is said to be 

fuzzy irreducible T -ideal provided for any fuzzy TΓ-ideals 𝜈, 𝜉, 

𝜂  of T, ν⋀ξ∧η = 𝜌 ⇒  or  or         . 

Th 4.2: Let I be a nonempty subset of a T𝚪-semiring M. Then  

(1) I is completely semi prime. 

(2) The characteristic function 𝝃I of I is fuzzy completely semi 

prime are equivalent. 

Proof :Suppose that I is completely semi prime. Let u be any ele-

ment of M. If u𝛾u𝛿u ∈ I, then, since I is completely semi prime, 

we have u ∈ I. Thus 𝜉I(u) =1 = 𝜉I(u𝛾u𝛿u). If u𝛾u𝛿u ∉ I, then we 

have 𝜉I(u) ≥ 0 = 𝜉I(u𝛾u𝛿u).Therefore we have 𝜉I(u) ≥ 𝜉I(u𝛾u𝛿u) 

for all u ∈M,𝛾, 𝛿 ∈ Γ and 𝜉I is a completely semi prime fuzzy sub-

set of M. 

Conversely suppose that the characteristic function 𝜉I of 

I is a fuzzy completely semi prime.  Let u𝛾u𝛿u ∈ I, u ∈ M, 𝛾, 𝛿 ∈ Γ. 

Then, since 𝜉I is fuzzy completely semi prime, we have 𝜉I(u) ≥ 

𝜉I(u𝛾u𝛿u) ≥ 1. Since 𝜉I is a fuzzy subset of M and 𝜉I(u) ≤ 1 for any 

u ∈ M, so we have 𝜉I(u) = 1, which implies that u ∈ I. It thus fol-

lows that I is completely semi prime. 

Th 4.3: Let 𝝁 be any fuzzy T𝚪-ideal of a TΓ-semiring M. Then  

(1) 𝝃 is fuzzy completely semi prime. 

(2)𝝃(u) = 𝛏(u𝛾u𝜹u) for all u∈ M, 𝜸, 𝜹 ∈𝚪. 

(3) 𝛏(u) = 𝝃[(u𝛾)n-1 u] for all u∈ M, 𝜸 ∈𝚪 and n is odd number 
are equivalent. 

Th 4.4: Let 𝝃 be a fuzzy T𝚪-ideal of a T𝚪-semiring M. Then 𝝃 
is completely semi prime iff for any fuzzy points uλ∈M, ∀λ ∈(0, 

1], uλouλouλ≤ 𝝃 implies uλ∈𝝃. 
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Proof : Let 𝜉 be a fuzzy TΓ-ideal of a Γ-semiring M and u ∈ M. 

Then 𝜉(u) ≥ 𝜉(u𝛾u𝛿u).  

Since uλouλouλ = (u𝛾u𝛿u)λ.  If uλouλouλ ≤𝜉 ⇒ (u𝛾u𝛿u)λ ∈ξ, λ ∈(0, 

1]. Then ξ(u𝛾u𝛿u) ≥ λ, and so 𝜉(u) ≥ λ, which implies uλ∈𝜉.  

Therefore, uλouλouλ ≤ 𝜉  implies uλ∈𝜉. 
Conversely, let u be any element of M. Put λ =𝜉 (u𝛾u𝛿u). 

If λ ∈(0, 1], since uλouλouλ ∈ 𝜉, then, by hypothesis, we have 

uλ∈𝜉.Which implies  ξ(a) ≥ λ = 𝜉 (u𝛾u𝛿u).  

Th 4.5: If 𝝃 is a completely semi prime fuzzy T𝚪-ideal of a T𝚪-

semi ring M, then 𝛏(a𝜸b𝜹c) = 𝛏(b𝜹c𝜸a) = 𝝃(c𝜸a𝜹b) for all a, b, c 

∈M and 𝜸, 𝜹 ∈𝚪. 

Proof : Suppose that 𝜉 is a completely semi prime fuzzy TΓ-ideal 

of a TΓ-semiring M. 

For all a, b, c ∈ T, 𝛾, 𝛿 ∈Γ, by Th 4.3, we have 

𝜉(a𝛾b𝛿c) = ξ[(a𝛾b𝛿c)𝛾(a𝛾b𝛿c)𝛾(a𝛾b𝛿c)]  

=𝜉(a𝛾b𝛿c𝛾a𝛾b𝛿c𝛾a𝛾b𝛿c) ≥ 𝜉(b𝛿c𝛾a).   

Similarly, ξ(b𝛿c𝛾a) ≥ 𝜉(a𝛾b𝛿c).  

It thus follows that ξ(a𝛾b𝛿c) = ξ(b𝛿c𝛾a). 

Similarly, prove the remaining part. 

Th 4.6: Every completely prime of a T𝚪-semiring Q is a com-

pletely semi prime fuzzy T𝚪-ideal of Q. 

Def 4.7: Suppose M be a TΓ-semiring.  A fuzzy subset 𝜋 of M is 

known as a fuzzy d-system of T if for each wt∈𝜋 there exists an 
element 𝛼, 𝛽 ∈ Γ such that wt𝛼wt𝛽wt ∈ 𝜋. 

Th 4.8: A fuzzy T𝚪-ideal 𝝇 of a T𝚪-semiring H is completely 

semi prime fuzzy T𝚪-ideal iff its complement 1    is a 

fuzzy d-system. 

Proof:  Suppose that 𝜎 is a completely semi prime fuzzy TΓ-ideal 

of H.  Let the fuzzy point up∈  .  Then up∉𝜎.  Suppose if possible 

there exists no 𝛼, 𝛽 ∈Γ such that upαup𝛽up∈  .  Then up𝛼up𝛽up 

∈ 𝜎.  Since 𝜎 is completely semi prime fuzzy TΓ-ideal of H and 

hence up∈𝜎.  It is a contradiction.  So, upoupoup ∈  .  Therefore 

   is a fuzzy d-system of H. 

 Conversely, let   is a fuzzy d-system of H.  Let up∈ M 

and up𝛼up𝛽up∈𝜎.  Suppose if possible the fuzzy point up ∉ 𝜎.  Then 

up∈ 
.
  Since    is a fuzzy d-system then there exist 𝛼, 𝛽 ∈Γ 

such that up𝛼up𝛽up ∈  .  Thus up𝛼up𝛽up ∉𝜎.  It is a contradiction.  

Hence, up∈𝜎.  Therefore 𝜎 is a completely semi prime fuzzy TΓ-

ideal of H. 

Def 4.9: A fuzzy T -ideal  π of a T -semiring Q is known as 

semi prime fuzzy provided for any fuzzy TΓ-ideals 𝜈 of T, νoνo𝜈 
≤ 𝜋 ⇒  . 

Th 4.10: If P be a T𝚪-semiring and 𝝉 a fuzzy subset of P.  Then 

𝝉  is semi prime iff ( ) ( )u u u u    . 

Lemma 4.11: A fuzzy T -ideal ξ of a T -semiring P is semi 

prime fuzzy if 
,

( ) inf ( )u u u u
 

   


 . 

Th 4.12: For any non-empty fuzzy subset  𝜋 of a T -semiring 

M, then  

(i) 𝝅 is a fuzzy semi prime , 

(ii) 
,

( ) inf ( )   .a a a a a M
 

   


   are equivalent

                   

Th 4.13 : Let M be a commutative T -semiring and 𝝁 be 

fuzzy T -ideal of T.  Then the following are equivalent: 

(i) x x x x          where x𝛂 is fuzzy point of M. 

(ii) 𝝁 is a semi prime fuzzy T -ideal of T. 

(iii)           . 

Proof : (i) ⇒ (ii): Let        and 𝜍 ⊈𝜇 .  Then ∃ x ∈ T such 

that 𝜍(x) >𝜇(x). Let 𝜍(x) = 𝛼.  By (i)  x x x x         .  

This shows that ( ) ( )x x x   

⇒𝛼 =𝜍(x) >𝜇(x).  This is a contradiction. 

(ii) ⇒ (iii): Trivial. 

(iii) ⇒ (i): Let x x x      , where x𝛂 is fuzzy point of T.  As-

suming that x𝛂 = ς  is a fuzzy TΓ-ideal of T such that 𝜍(y) = 0 for 

all y∈ T\{x} and 𝜍(x) = β.        .  Then it can be said that 

x x x      , since   , 𝜍 can be obtain as 𝜍 = xα  . 

Th 4.14: Let B(≠∅)⊆H where H is aT -semiring .  Then  

1) B is semiprime  

2) The characteristic function B  of I is fuzzy semi prime are 

equivalent. 

Proof : (i) ⇒ (ii) : Let B be a semiprime of T and B  be the 

characteristic function of I.  Since B ≠ ∅, B  is non-empty. Let 

lH.  Suppose l  lΓl B.  Then ( )B l l l   = 1 for ,   . 

Hence ,inf ( ) 1B l l l      .  Now B being semiprime, we get 

l B .  Hence ( ) 1B l  .  

Thus we see that ,inf ( )B l l l      max ( )B l .   

Now suppose that l lΓl ⊈ B.  Then for ,   , l l l B    which 

means that ( )B l l l   = 0.  Consequently, ,inf ( )B l l l      0.  

Now since B is a semiprime of H, l  B.  Hence ( ) 0B l  . Con-

sequently, max ( )B l = 0.  Thus we see that in this case also  

,inf ( )B l l l      max ( )B l . 

(ii)  (i) : Let B be a fuzzy semiprime of H.  Then B is a TΓ-

ideal of H.  So, B is a TΓ-ideal of H. Let lH ∋ lΓlΓl   B.  

Then ( )B l l l   = 1 for ,   .Hence ,inf ( ) 1B l l l      .  

Let l  B.  Then ( ) 0B l  . Which means max𝜇(l) = 0. This im-

plies that ,inf ( ) 0B l l l      .  hus we get a contradiction.  

Hence lB.  Thus we see that I is a semiprime TΓ-ideal of H. 

Th 4.15: Let T be a commutative T𝚪-semiring.  A fuzzy T𝚪-

ideal 𝝁 of T is fuzzy C-semi prime if and only if fuzzy semi 

prime of T. 

Proof: Suppose that 𝜇 is a completely semi prime fuzzy TΓ-ideal 

of T.  Then, 𝜇 is a semi prime fuzzy TΓ-ideal of T. 

 Conversely, suppose that 𝜇 is a semi prime fuzzy TΓ-

ideal of T.  Let ap is a fuzzy point of T and apΓapΓap ≤ 𝜇.  Then 

apΓap(x𝛾y z) ≤𝜇(x𝛾y z).   

Hence min(p) = p ≤ 𝜇(x𝛾y z) → (1).  Let fuzzy subset 𝜈 be de-

fined by 

  if ,  where <  is the T -ideal generated by 
( ) {

0  otherwise

r z a a a
z

   
  

Clearly if z is not expressible in the form z = u𝛼vβw for some u, v, 

w ∈ < a > and 𝛼, β ∈ Γ.  Hence 𝜈o o (z) = 0.  Otherwise, 

 and , , , ,

( ) {min( ( ), ( ), (w))} min( )
z u v w u v w a

o o z Sup u v p p
   

     
   

   .  Since T is 

commutative, u, v, w ∈ < a > implies u = a𝛾bδc, v = aεdδe and w = 

aεfζg  for some b, c, d, e, f, g ∈ T, 𝛾, 𝛿, ε, ζ, η, θ ∈ Γ.  So by com-

mutatively again, u𝛼vβw = (a𝛾bδc)  (aεdδe)β(aεfζg) = 

a𝛾bδc𝛼aεdδeβaεfζg = a𝛾aδa𝛼bεcδdεeζfβg = a𝛾aδa𝛼d for some d 

∈ T.  Since 𝜇 is a fuzzy TΓ-ideal and hence  (u𝛼vβw) 

≥ (a𝛾aδa) ≥ min(p) = p by (1).  Thus, 𝜈Γ𝜈 Γ𝜈 ≤ 𝜇.  From the 

definition of 𝜈 it is easily shown that 𝜈 is fuzzy TΓ-ideal of T.  
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Since 𝜇 is a fuzzy semi prime TΓ-ideal, it follows that 𝜈 ≤ 𝜇.  So 

ap∈𝜇. 

Th 4.16: A fuzzy T𝚪-ideal of a T𝚪-semiring H is fuzzy prime iff 

it is fuzzy semi prime and fuzzy irreducible. 

Def 4.17: A TΓ-semiring H is known as fully fuzzy prime if each 

of its fuzzy TΓ-ideal is prime.
 

Def 4.18: A TΓ-semiring H is known as fully fuzzy semiprime if 

each of its fuzzy TΓ-ideal is semiprime. 

Def 4.19: A TΓ-semiring H is known as right weakly regular 

provided for each l ∈ H,  l∈ lΓHΓlΓHΓlΓH. 

Th 4.20: Let H be a T𝚪-semiring.  A fuzzy semiprime irreduc-

ible right T𝚪-ideal of T is a fuzzy prime right T𝚪-ideal. 

5. Conclusion  

Mainly we investigate completely prime and prime fuzzy TΓ-

ideals in TΓ-semirings.  
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