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Abstract

C-prime fuzzy TT-ideals and prime fuzzy TT-ideals are studied, then proved some theorem and characterized the C-prime and prime

fuzzy TT-ideals in TT-semirings.
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1. Introduction

Most of the papers on fuzzy theory appeared showing the im-
portance of the concept and applications to logic, topology, theory
of algebraic structures, etc. Here, we introduce about C-prime ,
prime, C-semiprime and semiprime fuzzy TI-ideals in TT-
semirings.

2. Preliminaries:

For preliminaries refer the references

3. C-Prime and Prime Fuzzy TT-ldeals:

Def 3.1 : A fuzzy TT'-ideal « of a TT'-semiring Q is known as C-
prime fuzzy TI-ideal provided # : Q — [0. 1] is a non-constant
function and for any three fuzzy points a, b, , ¢s of T, a,'b,I'cs <x«
implies either a; € u or b€z or ¢ € .

Ex 3.2: Let Q be the set all 1x 2 matrices over 2 GF (the finite
field with two elements) and I' be the set of all 2x1matrices over 2
GF. Then Q is a TT" -semiring where aobst and aafiby (a, b, c € Q,
a B, y €I) denote usual matrix product. Let 7: Q —[0,1] by p (X)
= 0.3, if x = (0,0) and 0.4, otherwise. Then 7 is a C-prime fuzzy
Tr-ideal of Q.

Def 3.3: Suppose Q be a TI'-semiring. A fuzzy sub set #of T is
said to be a fuzzy c-system of Q if for each 4, s, 4« of x there
exist an element «, £ €T such thatu e Ep.

Th 3.4 : Every fuzzy TI-sub semi ring of a TI-semi ring is a
fuzzy c-system.

Proof: Let ¢is a fuzzy TI'-sub semiring of a TI'-semiring M and
& & & €& Since ¢ is a fuzzy TI-sub semi ring of M.
So, E(upvow) > £(u) V E(v) v EW) Y u,v,we M and ,5 €T .

Since & &, & €4 Therefore ¢u) =s, §(v) =tand {z) =r.

If &(x) =s, &(v) =tand §wz) =r foru,v,w € M. Then
EaraE =V LW AGWALW]

=mings, t, 1) = FUA EWA £W) < & (upvdw)
= ¢(p) and hence &L < ¢ = &asfé €S for a, FET.

Therefore s a fuzzy c-system of M.

Now (&I élé)(p) = 0 if p # upvdw, then it follows that
(STETEP) =0< (p) = TAl'e < = &adfs € for a, FET.
Therefore «is a fuzzy c-system of M.

Th 3.5: A fuzzy TT-ideal z of a TI-semiring Q is C-prime

fuzzy TT-ideal iff its complement 7'=1-rxis a fuzzy c-
system.

Proof: Suppose 7 is a C-prime fuzzy TT-ideal of Q. Suppose as,
b,c,€x’. Thenas& 7, b, ¢ 7andc, & =

Suppose if possible aI'bIc, 7', then albIc <z ~ zisC-
prime fuzzy TI'-ideal of Q, either a;€ 7zorb,€ 7 or c,€ 7 ltisa
contradiction. Therefore if a,, by, ¢, Eﬂ", then aI'bIc, < 7’
and hence 7' is a fuzzy c-system.
Conversely, suppose that 77 "isa fuzzy c-system of Q.

Let a, b, ¢, € Qand a'bI'c, <z Suppose if possible as& , by
¢ 7 and ¢, ¢ 7 Thena, by, c, er’. Since 7' is a fuzzy c-system
and hence aI'bIc, < 7' Thus aIbIc « 7

It is a contradiction. Hence either a;€ 7zorb,€ 7 or c,€ =
Therefore zzis a C-prime fuzzy TT-ideal of Q.

O
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Def 3.6: A fuzzy subset m of a T I -semiring M is said to be prime
if for any fuzzy subsets 4, v ¢ of M, dowé < 7
SA<zorvizmoré<r.

Th 3.7: Let Q be a TI-semiring and ¢ a fuzzy subset of Q.
Then ¢ is prime iff

s(pywsa) < max{s(p),s(w),c(a)} for all p, w,a € T and y, 5€
r.

Proof: Suppose that ¢is prime. Letp,w,a € Q.

Since paw/ga € Q for some o, FET.
We have ¢(pawsa) € [0, 1]. We put £ = ¢((pawsa) — (1).

Since p, w, a € Q and Z€ [0, 1], the fuzzy points (pawsa),, p., W,

an are defined. Let xé Q. If x # pawga for @ £ € T, then
(pawpa),(x) =0. = ¢is a fuzzy subset of Q,

we have ¢(x) € [0, 1], ¢(x) >0. Then¢(pawsa), < ¢(x).

If X = pawsa, then (pawsa),(x) = A. Then by (1),

(pawga)(x) = ¢(pawsa) = ¢(X).

Therefore (pawga),(X) < ¢(x). We have (pawsga), < ¢— (2).
Since ¢is prime, by (2), we have pa<¢or wy < ¢or ;< ¢

Then A =pa(p)<¢(p)or A = wy (W)< ¢(w) or or A = az ()< ¢(a).
Therefore ¢(pawga) < ¢(p) or ¢(pawsa) < ((w) or ¢(pawsa) <
¢(a) for some @, FET.

Thus ¢(pywoa) < max{s(p),s(w),s(a)}

Letx,y,z€Q, @ FeTand /€ [0, 1], xsay,Bz:< ¢. Letqe Q.
Ifg#x,q#yandg#z thenx(q) =0,y.(q) =0and z:(q) = 0.
Since ¢is a fuzzy subset of Q, ¢(z) €[0, 1], so 0 < ¢(2).

i.e. x(q) < (2), v (@) < ¢(2) and 2 (Q) < ¢(2).
Ifg=xorg=yorq=z then x(q)=Aory,(q)=rorz(Q) =X\
Since xaay, 2. < ¢, we have

A = (xiay,BLa)Y(xay 1) = (Xay SOy (xaypr) = (xaypr).
Then, by hypothesis, we have

A< s(xaypr) <¢(x) = ¢(y) = <(2) = <(p)
and hence x,(q) = () = 2:(q) = ¢(a).
Th 3.8: Let M be a TI-semi ring and @+ IS M. Then | is a
prime subset of T iff the fuzzy subset &, is a prime fuzzy sub

set of M.
Proof : Obviously, &, is a fuzzy subset of M. Lete, p, ve€ Mand

7, 0ET. Ifeppdvé |, then

& (eypov) =0< max{¢, (e).& (p).& (M)}

Let eppdv € 1. Then & (eypov)=1. Since I is a prime sub set of
M, we haveeelorpelorvel.

Thus & (e)=1or & (p)=lor & (v) =1 and so

§| (eyp&v) =1<1= max{é (e)|§| (p)v‘; (V)}

Therefore, the fuzzy subset é:l is a prime fuzzy sub set of M.

Conversely, suppose that e, p, v € M and p, €T be such
that eppdv € I. Then & (eypov) =1. Since &, is a prime fuzzy

sub set of M, we have 1=¢ (eypsv) = max{¢, (e),&, (p), & (V)3 -

Thus & (e)=1or & (p)=1or & (v) =1 and so e€ | or pe | or ve I.
Therefore, | is a prime sub set of M.

Def 3.9: A fuzzy TT -ideal 7z of a TT -Semiring M is known as

prime fuzzy T 1 -ideal provided for any fuzzy TT-ideals ¥, &, n of
M, Idyp<u=>v<poré<uorn<u.

Th 3.10: A fuzzy TT -ideal £of a T I -semi ring M is said to be
prime fuzzy TT -ideal iff &(syesd) =max{&(s),£(e),£(d)} for any s,
e, deEM & y, J€T.

Proof : Suppose that ¢is a prime fuzzy TI'-ideal. Then ¢is fuzzy
Tr-ideal of M = for any s, e, d e M & p, J € T, we

have &(syesd) > max {&(s), £(e), £(d)} &
¢ is a fuzzy prime = &(syesd) <max{&(s),£(e),£(d)} and hence

&(syesd) =max {£(s),£(€), £(d)} .

Conversely, suppose that forany s, e,d e Mand y, J€T,

&(syesd) =max {&(s),£(e), £(d)} -

Then we have &£(syesd) > max {&£(s), £(e), £(d)} &

&(syesd) <max {£(s),£(e),£(d)} . Therefore ¢ is a fuzzy TT-ideal of
M. By th 3.7, ¢is prime fuzzy subset, so ¢ is prime fuzzy TI-
ideal of M.

Corollary 3.11: A fuzzy TT -ideal & of a TT -semiring Q is
said to be prime fuzzy TT -ideal if

T syt o) = max{e(s), &(F), £} ¥ s, 1.1 €Q.
y,0el’

Proof: Since ¢is a prime fuzzy TT-ideal of Q. Then
nt E(sy fol) =&(sy fol) =max{s(s), &().£(N} Vs, f,1€Q
y,0el’

Ex 3.12 : Let Q be the set of all 1x2 matrices over GF, ( the finite
field with two elements) and " be the set of all 2x1 matrices over

GF,. Then Tisa TT -semi ring where satfu and Asgtv for all s,
t, ue Q and A,u,v el denotes the usual matrix product. Let
0.3if x=(0,0)

£:Q —[0,1] be defined by &(x) = 5 otherwise °

Then € is a
fuzzy prime TT -ideal of Q.
Th3.13: Let Q be a Tr-semiring and @ 1 € Q. Then
(i) lisaprime TT-ideal of Q.
(i) The characteristic function g, of | is a prime fuzzy
Tr-ideal of T are equivalent.

Proof : (i) = (ii) : Let | be a prime TT-ideal of Q and y, be the
characteristic function of I. Since I # @, g, is non-empty. Let r, f,
v e Q. Suppose rI'fTv C I. Then g (ryfov)=1 for y,5erl.
Hence inf, scr 44 (ryfov) =1.
Now | being prime, then we have, rel or felorvel.
Hence g4(r)=1 or z4(f)=1 or g (v)=1 which gives
max{zy (), g (f), 2 (V}=1. Thus we see that
inf, ser 24 (ry fov) = max{ (r), g (), 19 (V)}.
Now suppose that rpflv & |. Then for y,5eT, ryfovel
which means that z (ry fév) =0.
Consequently, inf, ser 44 (ryfov)=0.
Now since lisaprimeof Q, r& I, f€ 1 & v € .
Hence £ (r)=0 or £ (f)=0 or g (v)=0
Consequently, max{z (r), 24 (), 24 (v)}=0.
Thus we see that in this case also
inf,, ser s (ry fov) = max{ey (), g4 (F), 24 ()}
(if) = (i): Let y, be a fuzzy prime TTI-ideal of Q. Then g is a
Tr-ideal of T. So, lisa TT-ideal of Q. Letr, f,veQ 3 rpflvC I
Then g (ryfév)=1for y,6eT". Hence inf, ser a4y (ryfov)=1.
Let re I, fe land ve I. Then g (r)=0 or £ (f)=0 or
1 (v)=0 Which means max{z (r), 24 (), 24V} = 0. =
inf, ser 4 (ryfov)=0. Thus we get a contradiction. Hence
re |, fe | &ve I. Thuswe see that | isa prime TT-ideal of Q.
Th 3.14: If Q be a TI' -semiring and 7z be a non-empty fuzzy
subset of Q. Then.
(i) 7 is fuzzy prime T I -ideal of Q.

(ii) For any te [0,1] the t-level subset of z (if it is non-empty) is
a prime T I -ideal of Q are equivalent.

Th 3.15: Let p be a fuzzy subset of a I'-semi ring R. Then gis
a fuzzy prime of R iff V t€ [0, 1], pf =, then p} is a prime
of R.
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Proof : Assume p is a fuzzy prime TI-ideal of R. Then s a
fuzzy TI-ideal of R. Assume that p° =@ . By known theorem,

p! is a fuzzy TI-ideal of R. Letp,w,h € Rand , J € I such
that pywsh e pf. Then p(pywsh)>t. Since pis a fuzzy prime
of R, p(pywsh) = p(p) or p(pywsh) = p(w) or p(pywsh)= p(h).
= p(p)>torpw)>torph)>t.

Hence, pepf orwepf orhepf®.
Therefore pf is a prime of R.

Conversely, assume for all te [0,1], if ptR =, then

pf is a prime TI-ideal of R.

Letp,w,heRand y, J €. Then we have, pis a fuzzy prime of
R. This implies

p(pywoh) z p(p), p(pywoh) = p(w) and p(pywsh) = p(h) .
We have, pywshe pof forallt < p(pywsh) .

Since pf is a fuzzy prime TI-ideal of R for all t < p(pywsh),
pepforwep’ orhepf for all t<p(pywsh). This implies
that p(p) >t or p(w) >t or p(h) >t forall t < p(pywsh).
Then p(p) = p(pywsh) or p(w) = p(pywsh) or p(h) = p(pywsh) .

Hence o(pywsh) = p(p) or p(pywsh) = p(w) or p(pywsh) = p(w) .
Hence is a fuzzy prime TT-ideal of R.

Th 3.16: Every completely prime fuzzy Tr-ideal of a TI-
semiring Q is a prime fuzzy TT-ideal of Q.

Proof : Suppose that « is a fuzzy completely prime TI-ideal of a
TIr-semiring Q.

Let », & 1 be fuzzy TI-ideals of T such that w00 < 4

Suppose v£xand ¢ £u.

Then there exists x € T and y € T such that #(X) <u(X), #Yy) < AY).
Let Ax) =rand {y) =s.

Take any elementz € Q, , F€ T and let (z) = t.

Then x,TysLz(xpydz) = min(r, s, t). But wu(Xpydz) > L T X py 5z)
> min (AX), Y), 7Az)) = min(r, s, t) = X Ty Lz(xpy Jz).

Since x,Tys[z(p) =0 if p #Xxpydz, it follows that x,T'y[z, < «

So by hypothesis, either X, < #or ys< uor z;< p. Since r £ zx)
and s < zy) , it follows that 7(z) =t < {y). Hence < «.

Th 3.17: Let T be a commutative TI-semiring. Then a prime
fuzzy TT-ideal #of Q is a fuzzy completely prime of Q.

Proof: Suppose that « is a fuzzy prime TT-ideal in a commutative
Tr-semiring Q. Suppose X, Ys, z; are three fuzzy points of T and p;
JE T, such that x,I'y 'z, <
Then X Ty Lz(xpy I2)< 1 (Xpy Jz).
Hence min(r, s, )< u (xpydz)— (1).
Let fuzzy subsets v, & be defined by
r ifpe<x>
(=L 0 otherwise
_Sifpe<y>
<(P) 7{0 otherwise.
t ifpe<z>
1(P) _{0 otherwise.
Clearly if p is not expressible in the form p = uavs for some

UE<X >, VE<y>, w € <z>and @, F€ I. Hence ' & I'(p) = 0.

v n(p) = Sup{min(v(u), £(v), 7(W))} = min(r,s, ).
p=uavpw,ue<x>ve<y> we<z> a,fel’

Since T is commutative, u €< x > implies u = xphdt for some b,

CET, p, S €T. Similarly v e<y > implies v = y&se for some d, e

ET, 4 €T andw € <z>impliesw =z7Zig for some £ g €T

and ¢, /€ T. So by commutatively again,

uavpn = (xph &) oy Ml ce) Az tdg) = xphdtay e frtag

= Xy Izabbe N fedTAg = Xpydzad for some de T.

Since « is a fuzzy TT-ideal and hence u (Uuavw)> u (X dz)=

min(r, s, t) by (1). Thus /I'¢Ty < 4 From the definition of v, & 7

it is easily shown that , ¢ and 7 are fuzzy TT-ideals of Q. Since

Otherwise

s a fuzzy prime TT-ideal, it follows that either » < x#or ¢ < x or

7 < w. So either Ux) <g(x) or dX) < ) or 7A(X) < 44x). Thus
either X, € wory; € xor z, €

Def 3.18: A non-empty fuzzy subset 7 of a TT-semiring W is said
to be a fuzzy m-system provided for any fuzzy points x,, yq 2, €73
WTW' T, TWTW' TWTW' Tz WTW' Ty, TWTW' A 7+ 9.
Th 3.19: A fuzzy TT-ideal 7 of a TI-semiring W is a fuzzy
prime of W iff 7' isa fuzzy m-system of W.

Proof: Suppose that T is a fuzzy prime of a TI'-semiring W and
TED.

Letx, Yo zr € 7. Thenx, € 7,y € zandz, €

Suppose if possibleW'TW' I'x, TWTW’'TWTW' I'zT'W'TW' Ty,
TWTW'A 7'=0.

WTW' TX, TWTW' TWTW'TzIT'WTW' Ty, TWTW'A 7'=@.
SWTW' TX,TWTW' TWTW' TzI'WTW'Ty,TWTW' €
Since zis fuzzy prime, eitherx, € z ory, € zrorz, € r.

It is a contradiction. Therefore

WTW' Tx, TWTW' TWTW' ITzIT'WTW' Ty, TWTW'A 7’ # @.
Hence 7’ is a fizzy m-system.

Conversely suppose that 7' is either a m-systemof Tor ' =& .
If 7' = &, then T = rand hence zis a fuzzy prime of W.

Assume that 7' is a fuzzy m-system of Q. Let x,, Y, 2, € W
and< x, >I< y;>I<z >C =

Suppose if possible x, & 7,y € 7 &z, € =

Then X,, Yq,2r € 7'. Sine 7’ is a fuzzy m-system,

= WTW'I'x, TWTW' TWTW' T'zI'WTW' Ty, TWTW'A 7’
#0.= WITW' Ix, TWTW' TWTW’' I'zI'WTW' 'y, TWTW'
Er= <x, >I'< y>I< z, >& 7 ltisacontradiction.
Therefore x, € zory, € rorz € z

Hence zis a fuzzy prime of W.

4. Completely Semi prime Fuzzy Tr-ldeals
and Semi prime Fuzzy TT -ldeals:

Def 4.1 :A fuzzy TI -ideal p of a TI -semiring M is said to be
fuzzy irreducible T I -ideal provided for any fuzzy TT-ideals », &

7of T,vAlAp=pa3v=poré=porn=p.

Th 4.2: Let | be a nonempty subset of a TI'-semiring M. Then
(2) 1'is completely semi prime.
(2) The characteristic function & of | is fuzzy completely semi
prime are equivalent.
Proof :Suppose that | is completely semi prime. Let u be any ele-
ment of M. If upudu € 1, then, since | is completely semi prime,
we have u € I. Thus &(u) =1 = &upudu). If upudu € 1, then we
have ¢{u) > 0 = ¢(upudu).Therefore we have ¢(u) > &(upudu)
forallu eM,y, 5 € T and ¢ is a completely semi prime fuzzy sub-
set of M.

Conversely suppose that the characteristic function & of
I is a fuzzy completely semi prime. Letupudu € l,u € M, y, S € T.
Then, since ¢ is fuzzy completely semi prime, we have ¢&(u) >
&(upudu) > 1. Since ¢ is a fuzzy subset of M and ¢(u) <1 for any
u € M, so we have ¢(u) = 1, which implies that u € 1. It thus fol-
lows that | is completely semi prime.

Th 4.3: Let g#be any fuzzy TT-ideal of a TT'-semiring M. Then
(1) £is fuzzy completely semi prime.

(2)f(u) =&(upudl) for all ue M, y, ser.

(3) ¥(u) = f[(up)™* u] for all ue M, yer and n is odd number
are equivalent.

Th 4.4: Let & be a fuzzy TT-ideal of a TT-semiring M. Then ¢
is completely semi prime iff for any fuzzy points u,€M, Vi €(0,
1], u;0uy0u;,< Eimplies U, EE
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Proof : Let ¢ be a fuzzy TT-ideal of a I'-semiring M and u € M.
Then du) > upudu).

Since u;ouou; = (Upudu)a.  If uyouou; <& = (Upudu)r € A €0,
1]. Then &upudu) > 4, and so &u) > 4, which implies ueé&
Therefore, u,ou,ou; < ¢ implies u,E&

Conversely, let u be any element of M. Put 1 =¢ (upudu).

If 2 €(0, 1], since u,ou,0u; € ¢ then, by hypothesis, we have
u;€&Which implies &(a) >4 = ¢(upudu).

Th 4.5: If & is a completely semi prime fuzzy TI-ideal of a TT-
semi ring M, then E(aphdt) = §(bdtpa) = fcypadb) for all a, b, ¢
eMand y, #erT.

Proof : Suppose that ¢ is a completely semi prime fuzzy TT-ideal
of a Tr-semiring M.

Foralla,b,c €T, y, 5eT, by Th 4.3, we have

Aayp ) = g[(appde) farh o) fayh )]
=fdaybdyarpdLyaph &) = (b ya).

Similarly, {(bdtya) > daph ).

It thus follows that &(apbdt) = &(bdLya).

Similarly, prove the remaining part.

Th 4.6: Every completely prime of a TI-semiring Q is a com-
pletely semi prime fuzzy TI-ideal of Q.

Def 4.7: Suppose M be a TT-semiring. A fuzzy subset 7z of M is
known as a fuzzy d-system of T if for each w,€7 there exists an
element «, #€ I such that wyaw, A, € 7.

Th 4.8: A fuzzy TT-ideal ¢ of a TI-semiring H is completely
semi prime fuzzy TTI-ideal iff its complement g' zl—gis a
fuzzy d-system.

Proof: Suppose that ¢is a completely semi prime fuzzy TT-ideal
of H. Let the fuzzy point u,€ g’ . Then u,&¢  Suppose if possible
there exists no @, F€T such that u,au, €’ . Then uyau AU,
€ ¢ Since ¢is completely semi prime fuzzy TT-ideal of H and
hence u,€¢. It is a contradiction. So, u,ou,0u, €’ . Therefore

¢' isafuzzy d-system of H.

Conversely, let g' is a fuzzy d-system of H. Let u,e M
and u,aup U €¢. Suppose if possible the fuzzy pointu, & ¢ Then
ueg’ Since ¢ is a fuzzy d-system then there exist @, £ €I

such that uyau,sU, €' . Thus uyau,l, €¢ Itis a contradiction.

Hence, u,E¢. Therefore ¢ is a completely semi prime fuzzy TI'-
ideal of H.

Def 4.9: A fuzzy TI -ideal 1 of a TI" -semiring Q is known as
semi prime fuzzy provided for any fuzzy TT-ideals » of T, vovov
<7Z=Vv<r.

Th 4.10: If P be a TI-semiring and za fuzzy subset of P. Then
7 is semi prime iff z(u) > r(uypuou).

Lemma 4.11: A fuzzy T1 -ideal & of a TI" -semiring P is semi
prime fuzzy if £(u)> inf &(upusu) .
y,0el’

Th 4.12: For any non-empty fuzzy subset zofa TI -semiring
M, then
(i) zris a fuzzy semi prime ,

(if) #(a)= inf z(ayada)vaeM are equivalent.
y,0el’

Th 4.13 : Let M be a commutative T I -semiring and # be
fuzzy T1 -ideal of T. Then the following are equivalent:

(i) xIxIx, cu=x,cu wherexeis fuzzy point of M.

(i) pis asemi prime fuzzy T1 -ideal of T.

(iii) dlddocuy=ocu.

Proof : (i) = (ii): Let o' ol o c i and o €. Then 3 x € T such
that o(x) >x). Let o(x) = @ By (i) x IxXIX, cu=x,cu.
This shows that x_(x) < u(X)

=a=0(X) >4(X). This is a contradiction.
(ii) = (iii): Trivial.
(iii) = (i): Let x,I'x,I'x, <z, where Xq is fuzzy point of T. As-

suming that x« = o is a fuzzy TTI'-ideal of T such that o(y) = 0 for
allye T{x} and o(x) = . ol'ol'o < . Then it can be said that

X, Ix I'x, < 4, since o u, ocanbe obtainas o=x,c u.

Th 4.14: Let B(#@)H where H isaT I -semiring . Then

1) B is semiprime

2) The characteristic function £y of I is fuzzy semi prime are
equivalent.

Proof : (i) = (ii) : Let B be a semiprime of T and 4y be the

characteristic function of I. Since B # @, Ly is non-empty. Let
leH. Suppose IT'ITTC B. Then wg(lylsl)= 1 for y,0el".
Hence inf, srug(I7161)=1. Now B being semiprime, we get
leB. Hence ug(l)=1.

Thus we see that inf, s - ug(17161) > max ug(l) .

Now suppose that IT ITI € B. Then fory,8 €T", Iy16l ¢ B which
means that g (ly161) = 0. Consequently, inf, s - ug(l17161) =0.

Now since B is a semiprime of H, I B. Hence ug(l)=0. Con-
sequently, max s (1) = 0. Thus we see that in this case also

inf, ser 1 (1711) = max (1) .

(it) = (i) : Let g be a fuzzy semiprime of H. Then g is a TI-
ideal of H. So, B is a TI-ideal of H. Let e H 3 ITIl'l C B.
Then pg(lylol) = 1 for y,6 €I’ .Hence inf, s pg(Iy161) =1.
Let 1€ B. Then wug(l)=0. Which means max(l) = 0. This im-
plies that inf, s.rg(17161)=0. hus we get a contradiction.
Hence | € B. Thus we see that | is a semiprime TT-ideal of H.

Th 4.15: Let T be a commutative TT-semiring. A fuzzy TI-
ideal g of T is fuzzy C-semi prime if and only if fuzzy semi
prime of T.

Proof: Suppose that « is a completely semi prime fuzzy TT-ideal
of T. Then, #is a semi prime fuzzy TT-ideal of T.

Conversely, suppose that 4 is a semi prime fuzzy TT-
ideal of T. Let &, is a fuzzy point of T and a,l'a,l'a, < 4 Then
aplay(xpy O 7) <uxpy O 2).

Hence min(p) = p < #x»y O z) - (1). Let fuzzy subset » be de-
fined by

r ifze<a>, where <a> isthe TI-ideal generated by a
V@) ={ 0 otherwise
Clearly if z is not expressible in the form z = uavpw for some u, v,
we <a>and 2 B € I. Hence wV oV (z) = 0. Otherwise,
vovov(z) = Sup{min(v(u),v(v),v(w))}=min(p)=p. Since T is

z=uavpw and u,v,we<a>,a, fel’
commutative, u, v, w € <a > implies u = apbdc, v=a&dle and w =
anffg forsomeb,c,d,e,f,9€T, », J & { n 8 € T. Sobycom-
mutatively again, uavpw = (apbdc) & (asgdle)f(anfBg) =
aybocaasdlefanfbg = apadaab ec{dnedffg = ayadaad for some d
€ T. Since x is a fuzzy Tr-ideal and hence 4 (uavpw)
> U (apuda) = min(p) = p by (1). Thus, »Tv T'v < x From the
definition of » it is easily shown that » is fuzzy TT-ideal of T.
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Since s a fuzzy semi prime TT-ideal, it follows that » < « So
A EL.
p

Th 4.16: A fuzzy TT-ideal of a TT-semiring H is fuzzy prime iff
it is fuzzy semi prime and fuzzy irreducible.

Def 4.17: A TI-semiring H is known as fully fuzzy prime if each
of its fuzzy TI-ideal is prime.

Def 4.18: A TT-semiring H is known as fully fuzzy semiprime if
each of its fuzzy TT-ideal is semiprime.

Def 4.19: A Tr-semiring H is known as right weakly regular
provided for each | € H, € ITHTITHTITH.

Th 4.20: Let H be a TI-semiring. A fuzzy semiprime irreduc-
ible right TT-ideal of T is a fuzzy prime right TT-ideal.

5. Conclusion

Mainly we investigate completely prime and prime fuzzy Tr-
ideals in TT-semirings.
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