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Abstract 
 

In this paper the terms trio L-trio TΓ-ideal, La-trio TΓ-ideal, R-trio TΓ- ideal and trio TΓ- ideal of a TΓ-semi group are introduced and 

some examples are given. It is proved that (1) a TΓ-semi group T is a trio TΓ-semi group if and only if xΓTΓT = TΓTΓx = TΓxΓT  for all 

x ∈ T, (2) Every trio TΓ-semi group is a duo TΓ-semi group, (3) Every commutative TΓ-semi group is a trio TΓ-semi group (4) Every 

quasi commutative TΓ-semi group is a trio TΓ-semi group.   
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1. Introduction 

In the year 2012, A. G. Rao, and D. M. Rao[1, 2, 3] investigated 

on duo – semi groups. In the year 2013, K. Padmavathi, M. 

Ramesh and D.M. Rao[4] developed on Regular Duo Ternary 

Semi groups. G. Srinivasa Rao and D. M. Rao [5, 6] were intro-

duced and developed the notions of T-semirings in 2014 and 2015. 

M. Sajani Lavanya and D. M. Rao[7, 8] introduced the concept of 

TΓ-semirings in the year 2015.  

2. Preliminaries 

Note 2.1 : for preliminaries refer to reference [10]. 

3. Trio Ternary 𝚪-Semi group  

Def 3.1: A TΓ-semi group Q is called a L-duo ternary Γ-semi 

group if every left TΓ-ideal of Q is a two sided TΓ-ideal of Q. 

Def 3.2: A TΓ-semi group Q is called a R-duo ternary Γ-semi 

group if every right TΓ-ideal of Q is a two sided TΓ-ideal of Q. 

 Def 3.3: A TΓ-semi group Q is called a duo TΓ-semi group if it is 

both a left duo TΓ-semi group and a right duo TΓ-semi group. 

Th 3.4: A T𝚪-semi group M is a duo T𝚪-semi group if and only 

if p𝚪M𝚪M = M𝚪M𝚪p for all p ∈M. 

Def 3.5: A TΓ-semi group M is said to be a L-trio TΓ-semi group 

if every left TΓ-ideal of M is a lateral TΓ-ideal and right TΓ-ideal 

of M. 

Def 3.6: A TΓ-semi group M is said to be a R-trio TΓ-semi group 

if every right TΓ-ideal of M is a lateral TΓ-ideal and left TΓ-ideal 

of M. 

Def 3.7 : A TΓ-semi group Q is said to be a La-trio TΓ-semi 

group if every lateral TΓ-ideal of Q is a left TΓ-ideal and a right 

TΓ-ideal of Q. 

Def 3.8: A TΓ-semi group M is said to be a trio TΓ-semi group if 

it is a L-trio TΓ-semi group, a La-trio TΓ-semi group and a R-trio 

TΓ-semi group. 

Th 3.9: A TΓ-semi group M with identity is a trio TΓ-semi 

group iff  x𝚪M𝚪M = M𝚪M𝚪x = M𝚪x𝚪M for all x ∈ M. 

Proof: Suppose that M is a trio TΓ-semi group and  

x∈ M.  Let t ∈ xΓMΓM.  Then t = 
i ix u v   for some ui , vi∈ M, 

,   .  Since MΓMΓx is a left TΓ-ideal of M, MΓMΓx is a TΓ-

ideal of M.  So x∈ MΓMΓx, ui , vi∈ M, MΓMΓx is a TΓ-ideal of M 

⇒
i ix u v  ∈ MΓMΓx ⇒ t ∈ MΓMΓx.  Therefore xΓMΓM  ⊆ 

MΓMΓx.  Similarly we can prove that MΓMΓx ⊆  xΓMΓM.   

Therefore,  xΓMΓM = MΓMΓx  for all x∈ M. ⟶ (1) 

Let t ∈ xΓMΓM.  Then t = 
i ix u v   for some ui , vi ∈ M. 

Since MΓxΓM is a La-TΓ-ideal of M, MΓxΓM is a TΓ-ideal of M.  

So x ∈ MΓxΓM , ui , vi ∈ M, MΓxΓM is a TΓ-ideal of M 

⇒
i ix u v  ∈ MΓxΓM ⇒ t ∈ MΓxΓM.  So xΓTΓT ⊆ TΓxΓT.   

Similarly, we can prove that MΓxΓM ⊆ xΓMΓM. 

Therefore, xΓMΓM = MΓxΓM for all x∈ M. ⟶ (2).   

Hence form (1) and (2) xΓMΓM = MΓMΓx = MΓxΓM for all x∈ 

M 

Conversely Let xΓMΓM = MΓMΓx = MΓxΓM  ∀ x ∈ M.  Let Q be 

a L-TΓ-ideal of M. 

Let x∈ Q, ui , vi∈ M.  Then 
i ix u v  ∈ xΓMΓM = MΓMΓx = 

MΓxΓM ⇒
i ix u v  = 

i is t x  = 
i ip x q  for some si, ti, pi, qi∈ 

M and , , , , ,      .  Let x ∈ Q, si, ti∈ M, Q is a L-TΓ-

ideal of M ⇒
i is t x  ∈ Q ⇒

i ix u v  ∈ Q.  So Q is a R-TΓ-ideal 

of M and let x∈ Q, pi, qi∈ M, A is a La-TΓ-ideal of M ⇒ 

i ip x q  ∈ Q ⇒ i ix u v  ∈ Q.  Hence, Q is La-TΓ-ideal of M.  

So Q is a R-TΓ-ideal of M and La-TΓ-ideal of M and hence Q is a 

TΓ-ideal of M.  Hence, M is L-trio TΓ-semi group.  Similarly, we 

can prove that M is a R-trio TΓ-semi group as well as La-trio TΓ-

semi group.  Hence M is trio TΓ-semi group. 
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Th 3.10: Every trio T𝚪-semi group is a duo T𝚪-semi group. 

Proof: Let Q be a trio TΓ-semi group.  Then by theorem 3.9, 

xΓQΓQΓx = QΓxΓQ ∀ x ∈ Q.  Therefore, Q is a duo TΓ-semi 

group. 

Note 3.11: The converse of the theorem 3.10, need not necessarily 

true.  i.e., every duo TΓ-semi group need not be trio TΓ-semi 

group. 

Example 3.12: Consider the set T = { 0, - s, - t, - r} and Γ = T 

with the following compositions: 

. 0 -s -t -r 

0 0 0 0 0 

s 0 -s -t -r 

t 0 0 0 0 

r 0 -s -t -r 

. 0 -s -t -r 

0 0 0 0 0 

-s 0 s t r 

-t 0 0 0 0 

-r 0 s t r 

Clearly M is a TΓ-semi group.  Let P = {0. – t} is a L-TΓ-ideal 

and R-TΓ-ideal of M, but not La-TΓ-ideal of M and hence M is a 

duo TΓ-semi group but not trio TΓ-semi group.  Since let –t ∈ P 

and – a, - c ∈ M ⇒ (–s)α(- t)β(- r)  ∈ MΓPΓM and(–s)α(- t)β(- r) = 

- r ∉ P and hence MΓPΓM ⊈ P.  Therefore P is not La-TΓ-ideal of 

M and hence M is not trio TΓ-semi group. 

Th 3.13: Every commutative TΓ-semi group is a trio TΓ-semi 

group. 

Proof : Let T is a commutative TΓ-semi group Therefore xΓTΓT = 

TΓTΓx = TΓxΓT ∀ x ∈ T..  By theorem 3.9, T is a trio TΓ-semi 

group. 

Th 3.14: Every quasi commutative TΓ-semi group is a trio  

TΓ-semi group. 

Proof : Suppose that T is a quasi commutative TΓ-semi group.  

Then for each a, b, c∈ T, there exists a n ∈ N such that a𝛼b𝛽c = 
nb 𝛼a𝛽c = b𝛼c𝛽a = 

nc 𝛼b𝛽a = c𝛼a𝛽b =
na 𝛼c𝛽b.   suppose Q 

be a L-TΓ-ideal of T.  Therefore, TΓTΓA ⊆ Q.   Let  a∈ Q and s, t 

∈ T.  Since T is a quasi commutative TΓ-semi group, there exist a 

odd n such that a𝛼s𝛽t = tn𝛼s𝛽a ∈ TΓTΓQ ⊆ Q.  Therefore, a𝛼s𝛽t 

∈ Q for all a ∈ Q and s, t ∈ T, 𝛼, 𝛽 ∈ Γ and hence QΓTΓT ⊆ Q. 

Thus Q is R-TΓ-ideal of T.  Now a𝛼s𝛽t = t𝛼a𝛽s ∈ TΓQΓT ⊆ Q ∀ 

a ∈ Q, s, t ∈ T and 𝛼, 𝛽 ∈ Γ and hence QΓTΓT ⊆ Q.  Thus Q is a 

La-TΓ-ideal of T.  Therefore T is a L-trio TΓ-semi group.  Simi-

larly, we can prove that T is a La-trio TΓ-semi group and T is a R-

trio TΓ-semi group.  Therefore, every quasi commutative TΓ-semi 

group is a trio TΓ-semi group. 

Def 3.15: An element a of a TΓ-semi group T is said to be regular 

provided x, y ∈ T and 𝛼, 𝛽, 𝛾. 𝛿 ∈ Γ such that a𝛼x𝛽a𝛾y𝛿a = a. The  

ternary semi group T called regular TΓ-semi group  

Some authors may define the regular element in TΓ-semi group if 

there exist an element x ∈T, 𝛼, 𝛽 ∈ Γ such that a = a𝛼x𝛽a.  But 

obviously both the conditions are same. 

Th 3.16: Every idempotent element in a TΓ-semi group is reg-

ular. 

Def 3.17: An element a of a TΓ-semi group T is said to be left 

regular if there exist x, y∈ T  and 𝛼, 𝛽 ∈ Γ such that a = (a𝛼) 3x𝛽y. 

Def 3.18: An element a of a TΓ-semi group T is said to be lateral 

regular if there exist x, y∈ T and 𝛼, 𝛽 ∈ Γ such that a = x𝛼 (aβ)3y. 

Def 3.19: An element a of a TΓ-semi group T is said to be right 

regular if there exist x, y∈ T and 𝛼, 𝛽 ∈ Γ such that a = x𝛼y𝛽 

(a𝛾)3. 

Def 3.20: An element a of a TΓ-semi group T is said to be intra 

regular if  there exist x, y∈ T such that a = x𝛼(a𝛽)5y. 

Def 3.21: An element a of a TΓ-semi group M is said to be semi-

simple if q 2( )q q      i.e. 
2( )q q      = < q >. 

Th 3.22: An element a of a TΓ-semi group M is said to be semi 

simple if q 1( )mq q      i.e. 
1( )mq q      = 

<q>  ∀ odd  m. 

Def 3.23 : A TΓ-semi group M is called semi simple TΓ-semi 

group provided every element in M is semi simple. 

Th 3.24: If T is a trio TΓ-semi group with identity, then the 

following are equivalent for any element a ∈ T. 

  1) a is regular. 

  2) a is left regular. 

  3) a is right regular. 

  4)  a is lateral regular 

  5) a is intra regular. 

  6) a is semi simple. 

Proof : Since T is trio TΓ-semigroup, aΓTΓT = TΓaΓT = 

TΓTΓΓaΓTΓT = TΓTΓa.   

We have aΓTΓa = aΓaΓT = TΓaΓa = TΓTΓaΓTΓT = 

(aΓ)2TΓ(aΓ)2 = aΓTΓaΓTΓa = aΓaΓaΓTΓT = TΓTΓaΓaΓa = 

TΓaΓaΓaΓT = < (aΓ)2a > = < a > Γ< a > Γ< a >. 

(1) ⇒ (2) : Let a is regular.  Then a = a𝛼x𝛽a𝛾y𝛿a  for some x, y ∈ 

T and 𝛼, 𝛽, 𝛾. 𝛿 ∈ Γ.  Therefore a ∈ aΓTΓaΓTΓa = aΓaΓaΓTΓT = 

aΓaΓT ⇒ a = (a𝛼) 3x𝛽y for some x, y ∈ T and 𝛼, 𝛽  ∈ Γ.  There-

fore a is left regular. 

(2) ⇒ (3) : let a is left regular.  Then a = (a𝛼) 3x𝛽y for some for 

some x, y ∈ T and 𝛼, 𝛽 ∈ Γ.  Therefore a ∈ aΓaΓaΓTΓT = 

TΓTΓaΓaΓa ⇒ a = x𝛼y𝛽 (a𝛾)3 for some for some for some x, y ∈ 

T and 𝛼, 𝛽, 𝛾.  ∈ Γ. Therefore a is right regular. 

(3) ⇒ (4): Let a is right regular.  Then for some x, y ∈ T, and 𝛼, 𝛽 

∈ Γ, a = (a𝛼) 3x𝛽y.  Therefore a ∈ TΓTΓaΓaΓa  = < (aΓ)2a >  ⇒ a 

= x𝛼 (aβ)3y for some x, y ∈ T and 𝛼, 𝛽 ∈ Γ.  Therefore a is lateral 

regular. 

(4) ⇒ (5): Let a is lateral regular.  Then for some x, y ∈ T, 𝛼, 𝛽 ∈ 

Γ,  a = x𝛼 (aβ)3y. Therefore a ∈ TΓaΓaΓaΓT  = TΓ(aΓ)5T = < 

(aΓ)4a >  ⇒ a = x𝛼(a𝛽)5y for some x, y ∈ T. 

Therefore a is intra regular. 

(5) ⇒ (6): Let a is intra regular.  Then a = x𝛼(aβ)5y  for some x, y 

∈ T.  Therefore a ∈( < a >Γ) 4< a >.  Therefore a is semi simple. 

Def 3.25: An element a of a TΓ-semi group T is said to be an 

idempotent element provided 
2( )a a a  . 

Def 3.26: An element a of a TΓ-semi group T is said to be zero of 

T if aΓbΓc = bΓaΓc = bΓcΓa = a b,c, x   T. 

Notation 3.27: For any TΓ-semi group T, let ET denotes the set of 

all idempotents of T together with the binary relation denoted by e 

≤ f  if and only if e = eΓeΓf = fΓeΓefor e, f ∈ ET. 

Def 3.28: A TΓ-ideal Q of a TΓ-semi group M is said to be semi-

primary provided √Q is a prime TΓ-ideal of M. 

Def 3.29: A TΓ-semi group M is said to be a semi primary TΓ-

semi group provided every TΓ-ideal of M is a semi primary TΓ-

ideal 

Th 3.30: Let T is a trio semi primary TΓ-semi group, then the 

idempotents of T form a chain under natural ordering.  
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4. Conclusion  

In this paper we are introducing the concept of trio TΓ-ideals in 

TΓ-semi group. Previously, many of the researchers studied about 

duo ideals in different algebraic structures. 
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