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Abstract

In this paper section 1 reflects, the terms, ‘PSTrI-ideals’ of a ternary I'-semigroup and ‘PSTZI=semi group’ are introduced can character-
ized PSTI-semi group. In section 2, the terms, ‘SPSTI-ideals, ‘SPSTI=semi group’ are introduced and classified these SPSTI-ideals.
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1. Introduction

The notions of PSTT-ideals in semi groups, SPST/=semi group
and some classes of PST/=semi group was introduced by Rama-
kotaiah and Anjaneyulu . In this thesis we introduce and made a
study on PST/Z~ ideals and SPST/-ideals SPST/-semi groups and
obtained KRULL’s theorem for SPST/-semi group in ternary
semi groups.

2. Preliminaries

Note 2.1 : For preliminaries refer to the references and their refer-
ences.

Note 2.2: Throughout this paper PSTT-ldeal, SPSTT-ideal, CPTT-
ideal and CSTT-ideal means pseudo-symmetric ternary T-ideal,
semi pseudo-symmetric I'-ideal, completely prime ternary I'-ideals
and completely semi prime ternary T'-ideal respectively unless
otherwise stated.

3. PSTTI-ldeals

We now introduce the notion of a PSTT-Ideal of a TT'-semi group.

Def 3.1 : A TI-ideal P of a TI'-semi group T is called PSTT-Ideal
if X,y,2 €T, xIyI'zc P =>xIsIyI'tlzcPforalls, teT.

Note 3.2: A TI-ideal P of a TT'-semi group T is PSTT-Ideal iff x,
y,Z €T, xI'y['z € P implies XL T'TyI'T'I'z € P.

Ex 3.3: LetZ={u,v,w }and I" = {1, j, k}. Define aternary op-
eration “.” in T as shown in the following table:

: u Vv W
u u u u
\ u u u
W u \ W

Define a mapping T x I' x T x I’ x T — T by uiviw = uvw. It is
easy to see that T is a TI-semi group. The TI-ideals of T are
{u}, {u,v} {u, vwr}whichare PSTT-Ideal.

Th 3.4 : Let P be a PSTI-Ideal in a Tr-semi group T and p, q,
reT. Thenplglr c P iff <p>T<q>I<r> CP.

Cor 3.5 : Let P be any PSTT-Ideal in a TT-semi group T and py,
P2.....pn € T wherenisanoddn € N. Then p;T'p,I....Tp,c A iff
<p>T<p>T..I<p,> C A

Cor 3.6: Let P is a PSTI-Ideal in a TI-semi group T. Then for
anyoddmeN, (pI")™p cPimplies(<p>T)™'<p>cP.

Cor 3.7 : Let P be a PSTTI-Ideal in a TT-semi group T. If (aI)™a
c P, for some odd m € N, then (< aIsItl >™'< aIsIt >) € P,
(< sItrar >™<srtra >) < P, and (< sTaltr > < srart >) c P
foralls,teT.

n

Th 3.8: Let Q, be a PSTI-Ideal of M, then ﬂQr # ofa TI-
r=1

semi group M is a PSTT-ldeal of M.

Th 3.9 : Every CSTTI-ideal A in a TT-semi group M is a PSTT-
Ideal.
Proof : Let Q be a CSTT-ideal of the TT'-semi group M.
Letx,y,ze Tand xI'yI'z c Q. xI'yI'z c Q implies
(yTzDXT)YTzlx = (yTzDX)C(YTzDX)C(YyTzI'X)
=ylrzZI'(xryr)I'(xryr'z)rx c Q.
(yTzIXDATzlx ¢ Q, Q is CSTI-ideal = yI'zlx c Q.
Similarly (zIxIyI)%ZIxTy = (ZDXTy)T(zDXCY)C(ZDXTY)
=2 (xXTYI')I'(xTyI')I'xTy € Q.

(ZIXTYD%2IxTy € Q, Q is CSTI-ideal = zI'XI'y € Q.
Ifs, t €T, then
(XDsTyTtrz) XISyt z

= (XTSIYTtT ) L(XCSTYtrz)T(XTsTyT 't 'z)

O
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= X[sTYr[zDXC(STy)C(zIXIs)IyItrz < Q.
(XTSTYIrzD)XIsIYItrz € Q, Q is CSTI-ideal
= XI'sI'YI'tl'z ¢ Q. Therefore Q is a PSTT-Ideal.

Note 3.10 : The converse of theorem 3.9, is not true,

Ex 3.11 : Consider the TI'-semi group in example 3.3. P = {p} is
a PSTT-Ideal in the ternary I-semi group T, and it is not com-
pletely semi prime, since qaqaeq =p € P, butq ¢ A.

Th 3.12 : If Alis a PSTT-ldeal of a TI'-semi group M then P, =
Py.

Proof : Obviously, P, CP,. Letpe&P, Then for some odd m €
N we have (pI)™x c P. Since P is PSTI-Ideal, (pI)™*p c P
= (< p>I)"'<p>CP=>pe P, Hence, P, CP, and hence
P2 = P4.

Th 3.13 : If P is a PSTT-Ideal of a TT-semi group M then P, =
{x : (xI)"x c A for some odd n €N } is a minimal CSTT-ideal

of T.
Proof : Obviously, P < P, and hence P, (#@) subset of M. Let

X€ Pyand s, te M.

Now x € P, = (xI)™'x ¢ A for some odd n. c
s, teT, Ais a PSTI-Ideal of T = (X['sI'tD)"xI'sl't < P,
(STXID)™sIxt € P, (STOXD)™sTthx ¢ P => xTsIt €
sSIXT't € Py, SI'tIX c P,. Therefore P, is a TI'-ideal of M. Let
XE€ M and(xI)’x ¢ P,. Now (x[)’ ¢ P, = (xD)XD)™ (xI)*x
P for some odd n = (xI)**x € P=>x€& P,. SoP,isa CSTI-
ideal of T. Let A be any CSTI-ideal of T containing P. Letxe&
P,. Then (xI)*x c P for some odd n. By corollary 3.6, (xI')"x
cP=>Ex>D" < x> CPCA. Since P is CSTI-ideal, (<
x>)"< x> CA=>xe€A. Therefore P, is the minimal CSTI-
ideal of M contains P.

Th 3.14 : If P is a PSTT-ldeal of a TT-semi group M then P, =
{x : (< x>T)™< x > C P for some odd n} is the minimal semi
prime TT-ideal of M contains P.

Proof : Clearly P P, and hence P, is a nonempty subset of M.

Letxe P,ands, teT.
Since x&€ P,, (< x>I'm™< x > CP for some odd m. Now (<

XIsIt>I)™ < xIsTt > C (< x>I)™ < x > C P, (< sIxIt >IN)™ <
SIxIt > and (< sItIx>D)" T < sIthx > C (< x>D)™ < x>CP
=> XI'sI't, sSIXT't, sT'tI'x ¢ P4. Then P4 is a TI'-ideal of M con-
taining P. Let x& T such that (< x>T)’< x > C P,. Then ((<
w)’< x >D)™ (< xeol’< x > CP = (< x >T)™ < x> CP
=> x& P, Therefore P, is a semi prime TI'-ideal of M contain-
ing P. Let P isasemi prime TI-ideal of T containing P. Suppose
XE P, Then (<x>T)™< x> CPCA. Since A is a semi prime
Tr-ideal of T, (< x >N)™< x > C A for some odd number n
—=>xe€ A~ P,CA. Hence P, is the minimal semi prime TI-
ideal of M containing P.

Th 3.15 : Each prime TT-ideal A minimal relative to contain-
ing a PSTT-Ideal P in a TT'-semi group M is CPTT-ideal.

Cor 3.16 : Each prime TT-ideal A minimal relative to con-
taining a CSTT-ideal P in a TI-semi group M is CPTT-ideal.

Th 3.17 : Let Q be a TT-ideal of a TT-semi group M. Then Q
is CPTT-ideal iff Q is prime and PSTT-Ideal.

Proof : Suppose Q is a completely prime TT-ideal of T. Therefore
Q is prime. Letp, g, r € Tand pI'gl'r € Q. pI'qlr € Q, Q is
completely prime > p€Qor qe Qorr € Q = pI'siqlitlr € Q
forall s, t € T. Hence Q isa PSTT-Ideal.

Conversely, let Q is prime and PSTI-Ideal. Letp, g, r € T and
prglr € Q. pIglr € Q, QisaPSTr-Ideal = <p>I'<q>I'<r>

cQ=><p>cQor<g>cQor<r>cQ=>peAorqgeQor
r € Q. Therefore Q is CPTT-ideal.

Cor 3.18: Let Q be a TT-ideal of a TI-semi group M. Then Q
is CPTT-ideal iff Q is prime and CSTT-ideal.

Cor 3.19 : Let Q be a TT-ideal of a TI'-semi group M. Then Q
is CSTT-ideal iff Q is semi prime and PSTT-Ideal.

Th 3.20 : Let Q be a PSTT-ideal of a TT-semi group M and P,
be the CPTT-ideal of M, Pqbe the minimal CPTT-ideal of M and
Pt be the minimal CSTT-ideal of M. Then the following are
equivalent.

n
1)Q,= ﬂ P, containing Q.

r=1

n
2) Qll = ﬂPq containing Q.

gq=1

n
3)Q = ﬂ R, relative to containing Q.
t=1
4) Q,= {x €T : (xI)™x € Q for some odd m}
5) Qs = The intersection of all prime Tr-ideals of T
containing Q.

6) Q; = The intersection of all minimal prime TI-ideals of T
containing Q.
7) Q311 = The minimal semi prime TI-ideal of T relative to

containing Q.
8) Qu={x€T:(<x>I™<x>cQ for some odd m}.

Def 3.21 : A TI'-semi group T is said to be a PSTT- semi group
if every TI-ideal in T is a PSTT-Ideal.

Th 3.22 : Every commutative TI'-semi group is a PSTT- semi
group.

Proof : Suppose M is commutative TT'-semi group. Then pI'ql'r =
qrrTp = rIpl'q = qU'plr = rT'ql'p = pI'rlq for all p, q, r € T. Let
Q be a TI-ideal of T. Suppose p,q,r € T,pI'qfrc Qands, te T.
Then pI'sT'qI'tl'r = pI'qlsI'tl'r = prql'sCrTt = prgqlrTsi't € Q.
Hence Q is a PSTI-ideal and hence M is a PSTT-semi group.

Th 3.23 : Every pseudo commutative TI-semi group is a
PSTT- semi group.

Proof : Let T be a pseudo commutative TT'-semi group and Q be
any TI-ideal of T. Suppose p,q,r € T, pI'qlr € Q. Ifs teT.
Then pI'sT'qItI'r = pI'ql'pltlr = sT'qlrTpl't = sI'(pI'gl'nIt € Q.
Therefore, pI'sT'qI'tl'r € Q for all s, t € T. Hence Q isa PSTI-
ideal. Hence, T is a PSTT- semi group.

Th 3.24 : If M is a TT-semi group in which every element is a
mid-unit, then M is a PSTT- semi group.

Proof : Let M be a TI'-semi group in which every element is a
mid-unit and Q be any TT-ideal of M. Let p, g, r € T and pr'ql’r
C Q. Ifs €T, then s is a mid-unit and hence, pI'sCql’'sI'r = p'ql'r
C Q. Hence Qisa PSTT-ideal. Hence M is a PSTT- semi group.

4. SPSTT-ideals:

We now introduce the notion of SPSTTI-ideals of a TI'-semi
group

Def 4.1 : A TI-ideal Q in a TI'-semi group M is said to be
SPST/Iideal if forany odd m,x € T, xI)™x € Q = (< x>I)™!
<x>cQ.

Th 4.2 : Every PSTT-ideal of a TI'-semi group is a SPSTI-
ideals.
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Note 4.3 : The converse of the above theorem, is not true.

Example 4.4 : Let T be a free TI'-semi group over the alphabet {p,
q,r, st} LetQ=<pl'qlr>uU<qlrTp>uU <rIpl'q>. Since
prgl'r € Q and pI'slgl'tl'r € Q, Q is not PSTI-ideal. Suppose
(xD)"*x € Q for some odd n. Now the word x contains paqsr or
qftap or rppaq for some @, £, y € I' and hence (< x > < x>
Q. Therefore (xI)"x € Q for some odd number n = (< x >I)"<
x>C Q. Therefore Q is a SPSTI-ideals.

Th 4.5 : Each semi prime TI-ideal P minimal relative to con-
taining a SPSTT-ideal A in a TI-semi group T is CSTT-ideal.

Cor 4.6 : Each prime TTI-ideal P in a TI-semi group T mini-
mal relative to containing a SPSTI-ideal A is CPTT-ideal.

Cor 4.7 : Each prime TT-ideal minimal relative to containing a
PSTT-ideal A in a TI-semi group T is CPTT-ideal.

Th 4.8 : If Q is a TT-ideal in a TI-semi group T, then
1) Q is CSTT-ideal.
2) Q is semi-prime as well as PSTT-ideal.
3) Q is semi-prime as well as SPSTTI-ideal are equivalent.

Proof : (1) =(2) : Let Q is a CSTI-ideal of T = Q is a semi
prime TT-ideal of T and by th 3.19, Q is a PSTTI-ideal of T.

(2) =(3) : Let Q is semi prime and PSTT-ideal. By th 4.2, Q is a
SPSTTr-ideal. Therefore, Q is semi prime and SPSTT-ideal.

(3) = (1) : Let Q is semi prime and SPSTT-ideal.

Letp€e T, (pI)?p € Q. Since Q is SPSTI-ideal, p € T, (pI)°p S
Q= (<p>I’*p>c Q. Since Q issemi prime, by th 2.10, (< p
>N’ p>cQ=<p>cQ. ~Qiscompletely semi prime.

Th 4.9 : If Q is a TI-ideal of a semi simple TI-semi group M,
then the conditions

1) Q is CSTT-ideal.

2) Q is PSTT-ideal.

3) Q is SPSTT-ideal are equivalent.
Proof : (1) = (2) : Let Q is CSTI-idea. By cor 3.19, Q is PSTT-
ideal.
(2) = (3) :Let Q is PSTT-ideal. By theorem 4.2, Q is SPSTI-
ideal.
(3) = (1) : Suppose that Q is SPSTT-ideal. Let q € T, (qT)*q <
Q. Since Q is SPSTT-ideal, (qI)’g € Q = (<q>IN*q>< Q.
Since T is semi simple, g is a semi simple element. Therefore g
€ (<q>IN*q><c Q CQ. Thus Q is completely semi prime.

Th 4.10 : If Q is a Tr-ideal of a TI'-semi group M, then the
conditions.

1) Q is CPTT-ideal.

2) Q is prime as well as PSTT-ideal.

3) Qis prime as well as SPSTT-ideal are equivalent.

Proof : (1) = (2) : Let Q is completely prime. By theorem 3.17,
Ais prime as well as PSTT-ideal.

(2) = (3) : Let Q is prime as well as PSTT-ideal.
PSTI-ideal by th 4.2, Q is SPSTT-ideal.

(3) = (1) : Let Q is prime as well as SPSTT-ideal. Since Q is
prime then we have, Q is semi prime. Since Q is semi prime and
SPSTT-ideal, by theorem 3.8, A is CPTT-idea. Since Q is prime
and CSTT-idea then we have, Q is CPTT-idea.

Since Q is

The following theorem is an analogue of KRULL’s
Theorem.

Th 4.11 : Let Q be a SPSTT-ideal of a TT-semi group M and
Let Q be a PSTT-ideal of a TI-semi group M and P, be the
CPTT-ideal of M, Pqbe the minimal CPTT-ideal of M and P:be
the minimal CSTT-ideal of M. Then the following are equiva-
lent.

n
1)Q;= ﬂ P, containing Q.

r=1

n
2) Qll = ﬂPq containing Q.

g=1

n
3) Qlll = ﬂ R, relative to containing Q.
t=1
4) Q= {x € T : (xI)™x €Q for some odd m}
5) Qs= The intersection of all prime Tr-ideals of T
containing Q.
6) Qi = The
ideals of T containing Q.

intersection of all minimal prime TI-

7 Q;l = The minimal semi prime TrI-ideal of T relative

to containing Q.
8) Qs = {X € T : (<x>I)™< x > € A for some odd n}

We now present some of the consequences of the above theorem.

Th 4.12 : If P is a maximal TTI-ideal of a TI-semi group M
with P,#M, then

1) P is CPTT-ideal.

2) P is CSTT-ideal.

3) P is PSTT-ideal.

4) P is SPSTT-ideal are equivalent.
Proof : (1) = (2) : Let P is CPTI-ideal. Then we have, P is CSTT-
ideal.
(2) = (3) : Let P isis CSTr-ideal. By th 3.9, P is PSTT-ideal.
(3) = (4) : LetPisPSTr-ideal. By th 4.2, P is SPSTT-ideal.
(4) > (1) : Let P is SPSTr-ideal. By the th 3.11, P € P, < M.
Since P is maximal TI-ideal and P,# T, it implies that P = P,.
Let x € M, (xI[)>x € P. Since P is SPSTT-ideal, (< x >I')’< x > €
P. Then x € P,=P. = Pis CSTI-ideal. Letx,y € M, xI'y € P.
Since P is CSTT-ideal, by cor 2.8, xTyIz S P = <x>T<y>I'<z
>CP. Ifpossiblex&P,y¢gP,z¢P. ThenPU<x>PU<y>,
PuU<z>are TT-idealsof TandPU<x>=PuU<y>=PuU<z
> =M, Since P is maximal,y,zeP U<x>x,zZ€E€P U<y>andx,
YEPU<ZI>=Y,ZESX>X,ZELYy> X, YyE<ZI> =<x>=<
y>=<z> Now<x>T<y>I'<z>CP=<x>I'<y>[<z>=
(x>’ x>C P = (xIN* SP=xeP. Itisacontradiction. -
eitherxePory ePorzeP. ~Pis CPTI-ideal.

We now introduce the notion of a SPSTT-semi group.

Defi 4.13 : A TI'-semi group M is said to be a SPSTI-semi group
if every TT-ideal of T is SPSTI'-semi group.

Th 4.14 : A TI-semi group M is SPSTI-semi group iff every
principal TT-ideal is SPSTI~ideal.

Th 4.15 : In a SPSTI=semi group M, an element a is semi sim-
ple iff a is lateral regular.

Th 4.16 : If M is a SPSTIsemi group, then

1) S={p € T : V<p> # M} is empty or a CPTT-ideal.

2) M\S is empty or an Archimedean TT-sub-semi group of M
are true.

Proof : (1) suppose S = @, then nothing to prove. If S # @, then
clearly Sisa Tlr-ideal of M. Letp,q,r € Mand prglrrc S. If
possiblep € S,q &S, r €S, then V<p>=M, V<g>=Mand vV <r
>=M. = pIqglr € S, then V<pI'ql'r> # M. Now M = J<p> N
V<g> N v<r> = <pI'ql'r> # M. It is a contradiction. Hence p €
SorgeSorresS. ~ SisaCPTr-ideal.

(2) S is a CPTT-ideal, M\S is either empty or a TT-sub-semi
group of M. Letp,q,r€ T\S. Then\V<p>=+v<q>=+v<r>=
M. Now q, r ev<p>, r,pev<q>r,p e~ <r> therefore we
have, (qI')™'q< <p > for some odd n. So (qI)"'q € MI'pI'M =
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(qI)™q = sIplt for some s, t € M. If either sor t € S, then
(qI)™g € Sand hence g € S. It is a contradiction. Hences, t €
M\S. Now (qI)™'q=sIpl't € (M\S)[pI'(M\S). Hence M\S is an
Archimedean TT-sub semi group of M.

Th 4.17 :1f M is a SPSTI=semi group, then
1) M is a strongly Archimedean TT-semi group.
2) M is an Archimedean TTI'-semi group.
3) M has no proper CPTT-ideals.
4) M has no proper CSTT-ideals.
5) M has no proper prime TT-ideals.
6) M has no proper semi prime TT-ideals are equivalent.

Th 4.18 : If P is a nontrivial maximal TTI-ideal of a SPSTI-
semi group M then P is prime.

Proof : LetPisnotprime. Then3p, g, re M\P3<p>I<q
>I'<r>c P. Nowanyu€e M\P,wehave M=PU <b>=PU <
¢c>=PU<u> Sinceq,r,u€e T\P,wehaveq,re <u>andue
<q> UE <r> So<q>=<r>=<u> Therefore (<g>T)’<q>
S P, (<r>)’<r>cP. Ifp+#gq, then p = saqst for some s, t €
M!and 2, FET. Sope <s>I'<q>I<t> Ifeitherse Porte P
then p € P. Itis a contradiction. Ifs¢&Pandt¢P, then <s>I<
g>I<t>c(<q>N)’<q>cP. ~pe<s><q>r<t>c P, «
a € P. ltis a contradiction. Hence p = q and hence P is trivial,
which is not true. Therefore P is prime.

Th 4.19 : If M is a SPSTI=semi group and contains a nontrivial
maximal TI-ideal then M contains semi simple elements.

Th 4.20 : Let M be a SPS-Archimedean TI-semi group. Then
a Tr-ideal P is maximal iff it is trivial, as well as M has no
maximal TT-ideals if M = (MI)’M.

Th 4.21 : Let M be a SPSTI-semi group containing maximal
TTr-ideals. If either M has no semi simple elements or M is an
Archimedean TI-semi group, then M # (MI)?M as well as
(MI)®M =P" where P" denotes the intersection of all maximal
TT-ideals.

4. Conclusion

D. M. Rao studied about PST- ideals in T'-semigroups. Further D.
M. Rao and A .A. extended the same results to T-semi groups.
Here mainly we study PSTT-ideals and extended the results to TT-
semi groups.
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