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Abstract 
 
Dead-time is common to real time processes and occurs when the process variable doesn’t acknowledge to any changes in the set point. 
Existence of dead time in the systems poses a challenge to control and stabilize, especially in a control feedback loop. Padé approxima-

tion provides a determinate approximation of the dead time in the continuous process systems, which can be utilized in the further simu-
lations of equivalent First Order plus Dead Time Models. However, the standard Padé approximation with the same numerator- denomi-
nator derivative power, exhibits a jolt at time t=0. This gives an inaccurate approximation of the dead time. To avoid this phenomenon, 
increasing orders of Padé approximation is applied. In the following manuscript, equivalent First Order plus Dead-Time models of two 
blending systems of orders four and seven are analysed for the same. As the orders of the Padé approximation increases, the accuracy of 
the response also increases. The oscillations are increased on a much smaller scale rather than having one big dip in the negative region 
(as observed in the first few orders of Padé approximation), and the approximation tries to synchronize with the desired response curve in 
the positive region. All the simulations are done in MATLAB. 
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1. Introduction 

Blending systems are very common in process industries such as 
Oil & Gas, Waste water treatment, Paper, Food, Pharmaceutical, 
Chemical and many more (Saravanakumar and Wahidabanu, 
2009). The real time industrial problems are non-linear in nature 
and exhibit dead time / time delay (Smith et al, 2006). This dead 
time occurs majorly due to the following factors (Bequette, 2002): 

1) External factors such as transportation lag due to long pipe-
lines or large travel distances.  

2) Internal factors such as non linearities of the Final Control 
Element, i.e., blunt use of conventional actuator sizing for 
valves, and excessive tuning of the controller. 

3) Uncertainties like noisy data, erroneous assumptions of im-
portant parameters, and incorrect modelling of the systems. 

Uncertainties occur in the following forms (Rhinehart, 2016): 
1) Parametric uncertainty where the incorrect parameters are 

communicated 
2) Model uncertainty where wrong modelling of the pro-

cess/system under consideration is done 
3) Stochastic uncertainty where the modelled outcome deviates 

a great degree from the expected outcome, given there is no 
Parametric or Model Uncertainties. 

Presence of dead time element complicates the analysis and design 
of control systems and makes satisfactory control more difficult as 
the performance might endure instability, high sensitivity to para-
metric uncertainties and poor disturbance rejection (Rhinehart, 

2016). One of the focal consequences of dead time include the 
effect of disturbances not seen by the controller for a while, thus 
making the effect of control action non-existent at the output caus-

ing the controller to take additional compensation unnecessarily, 
thus resulting in a loop with limitations to control (Bequette, 
2002).  
Any industrial process is mathematically represented in the form 
of nonlinear differential equations (continuous domain) or differ-
ence equations (discrete domain). Using analytical methods such 
as State Space Analysis, Initial-Final Value theorems etc. to solve 
these equations become a challenge with the increasing non-

linearities, orders of the transfer functions and dead time (Nidhi 
Yadav and Chandra Shekhar, 2017). The FOPDT model is often 
an equitable approximation to such process behaviours, as it has 
the efficacy for controller tuning rules and can be used as a com-
putationally surrogate model in simulations for training and opti-
mization (Korsane et al, 2014). Higher order industrial processes 
can be modelled as FOPDT, as the simulations become much 
easier.  
The FOPDT model has the continuous transfer function (Eq. 1) 

(Bequette, 2002): 
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Where: Kp: Process Gain 

 : Process Time constant 

Θ: Process Dead Time 
(Eq. 2) (Bequette, 2002) gives the transfer function for a pure time 
delay: 
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Some control system designs require a rational transfer function 
and the Padé approximation provides a determinate approximation 
of the dead-time in the continuous process systems, which can be 
utilized in the further simulations of equivalent First Order Plus 
Dead Time Models (Pradeep et al., 2010).However, the standard 
Padé approximation with the same numerator- denominator deriv-
ative power, exhibits a jolt at time t=0. This gives an inaccurate 
approximation of the dead time (Palmor and Z. J, 1996). To avoid 

this phenomenon, increasing orders of Padé approximation is ap-
plied (Kano and Ogawa, 2010). 
(Eq. 3) gives a first-order Padé approximation: 
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(Eq. 4) gives a second-order Padé approximation: 
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2. Materials and methods 

Two transfer functions, fourth order (Eq. 5) and seventh order (Eq. 
6) mimicking Blending processes have been used for experimenta-
tion (Shahian and Hassul, 1993). 
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The two point method of approximation uses the formulations 
given below. The controller gain is calculated using (Eq. 7). 
 
Kc = change in output/ change in input                                        (7) 
 
The process time constant is given by (Eq. 6). 

The process time constant, which is the time required to obtain 
63.2% of the final steady state value is given by (Eq. 8) 
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                                                              (8) 

 
The process dead time is calculated using (Eq. 9). 
 

pt   632.0                                                                                (9) 

 
Finally the FOPDT model is obtained using the (Eq. 1). 
Using the above formulations, the FOPDT models for 4th (Eq. 10) 
and 7th (Eq. 11) orders are given as follows (Z. Kalateh et al., 
2013): 
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The following block diagram is (Fig. 1) is used up for simulations 
related to the FOPDT modelling of the 4th order blending process 
(Eq. 5) & (Eq. 10) to obtain the responses for a unit step input.  
 

 
Fig. 1: Block Diagram Representation of Fourth Order in Simulink. 

 

(Fig. 2) shows the response of the fourth order transfer function 
model and FOPDT model for a unit step input. Both the graphs are 
approximately the same; therefore the approximation done using 
two-point method is correct. 
 

 
Fig. 2: Response of fourth Order Transfer Function and Dead Time Ap-

proximation. 

 
(Fig. 3) is used up for simulations for 7th order blending process 
represented by (Eq. 6) & (Eq. 11) and their responses have been 
obtained. 
 

 
Fig. 3: Block Diagram Representation of Seventh Order in Simulink. 

 
(Fig. 4) shows the response of the seventh order transfer function 
model and FOPDT model obtained using the two-point method of 
approximation. 
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Fig. 4: Response of seventh Order Transfer Function and Dead Time Ap-

proximation. 

3. Results & discussions 

The following graphs for 4th and 7th order systems modelled as 
FOPDT have been obtained for a unit step as the input. 

3.1. Fourth order 

i) First order Padé Approximation: 
The Padé approximation for first order is (Eq. 12): 
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From Fig. 5, a jolt at t=0s in the negative region is observed. This 

happens due to the zero in the right-half plane and this observation 
is highly undesired as it gives an inaccurate approximation. In 
addition, this response is inaccurate in the high frequency region 
and accurate in the low frequency region (Juneja et al, 2010). 
 

 
 

 
Fig. 5: Response with First Order Padé Approximation. 

 

The Padé approximation for second order is (Eq. 13): 
 

s2 −5.217s+9.074

10s3 +53.17s2 +95.95s+9.074
                                                             (13) 

 
The Padé approximation for fifth order is (Eq. 14): 
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         (14) 

 
As very evident from the Eq. 13 & Eq. 14, as the order of pade 
approximation increases, the number of terms also increases. Thus 
we can assume that the complexity in the analytical aspect of the 
system also increases. The response graphs for the increasing or-

ders of Pade’s approximation for a unit step have been obtained in 
the following figures. 

ii) Twenty-seventh order Padé Approximation 
(Eq. 15) gives the Padé approximation for 27th order: 
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The following figure gives the response for the 27th order of Padé 
approximation. 

 

 
 

 
Fig. 6: Response with Twenty-Seventh Order Padé Approximation. 

 
iii) Fiftieth order Padé Approximation: 
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Fig. 7: Response with Fiftieth Order Padé Approximation. 

 
(Eq. 16) gives the Padé approximation for 50th order and the re-
sponse is obtained in Fig. 7. 
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iv) Seventy-seventh order Padé Approximation 

The Padé approximation for 77th order is given by (Eq. 17) and the 
response is obtained in Fig. 8. 
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Fig. 8: Response with Seventy-Seventh Order Padé Approximation. 

 
As the orders of the Padé approximation increases, the accuracy of 
the response also increases. The oscillations are increased on a 
much smaller scale rather than having one big dip in the negative 
region (as observed in the first few orders of Padé approximation), 
and the approximation tries to sync with the desired FOPDT re-
sponse curve in the positive region. Clearly, these are more accu-

rate approximations when compared to the first few orders of Padé 
approximation. The response oscillates several times during the 
dead time period by small amplitude, thus giving a good approxi-
mation to dead time. On the other hand, the expression for the 
transfer function is quite complex and is not as useful for algebraic 
manipulation as is the first order approximation. 

v) Seventy-eighth order Padé Approximation: 
 

 
Fig. 9: Response with Seventy-Eighth Order Padé Approximation. 

 
Note that the instability in the response arises immediately at the 
78th order of the Padé approximation, and continue from herewith, 
for the 4th order equivalent FOPDT model. This helps us conclude 
that Padé approximation beyond 77th order does not yield a stable 
accurate result.  

3.2. Seventh order 

i) First order Padé Approximation: 
(Eq. 17) gives the Padé approximation for first order: 
 

−s+0.4808

3.417s2 +2.643s+0.4808
                                                                   (17) 

 
A similar large dip (as also observed in the case of fourth order 
system) deviating from the FOPDT response curve is observed in 
the Padé approximation response curve towards the negative re-
gion for the seventh order system modelled as FOPDT.  
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Fig. 10: Response with First Order Padé Approximation. 

 
(Eq. 18) gives the Padé approximation for second order: 
 

s2 −1.442s+0.6934

3.417s3 +5.928s2 +3.812s+0.6934
                                                       (18) 

 
The Padé approximation for sixth order is (Eq. 19): 

 
s6−10.1s5 +48.54s4−140s3 +252.4s2 −267s+128.4

3.417s7+35.5s6 +176s5+527s4 +1003s3 +1165s2 +705.6s+128.4
              (19) 

 
ii) Fortieth order Padé Approximation: 

 

 
 

 
Fig. 11: Response with Fortieth Order Padé Approximation. 

iii) Seventy-eighth order Padé Approximation: 
 

 
 

 
Fig. 12: Response with Seventy-Eighth Order Padé Approximation. 

 

As also observed in the case of fourth order system, on increasing 
the order of Padé approximation, more accurate responses have 
been obtained in the case of seventh order system as well. The 
oscillations are increased on a much smaller scale rather than hav-
ing one big dip in the negative region (as observed in the first few 
orders of Padé approximation), and the approximation tries to 
synchronize with the desired FOPDT response curve in the posi-
tive region.  

iv) Seventy-nineth order Padé Approximation: 

 

 
Fig. 13: Response with Seventy-Nineth Order Padé Approximation. 

 
Note that the instability for the seventh order blending process 
modelled as FOPDT, in the response arises immediately at the 79th 
order of the Padé approximation, and continue from herewith, for 

the 7th order equivalent FOPDT model. This helps us conclude 
that Padé approximation beyond 78th order does not yield a stable 
accurate result.  

4. Conclusions 

For both the order of the blending system- 4th and 7th order, simi-
lar responses have been obtained, i.e., as the order of the Padé 

approximation was increased, more accuracy in the FOPDT re-
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sponse was obtained with minimum deviation from the transfer 
function response. The oscillations are increased on a much small-
er scale rather than having one big dip in the negative region, as 
was observed in the first few orders of Padé approximation, and 
the approximation eventually tries to sync with the desired 
FOPDT response curve in the positive region.  
The Pade’s approximation of first order, second order or higher 
can thus provide a rational transfer function for various situations 

and is very useful in control analysis. Its accuracy is more evident 
at higher frequencies with larger orders of the approximation. The 
trade-off, however, is that as the mathematical expression be-
comes more complicated, it is more difficult to gain insight from 
the expression analytically, even though the numerical results are 
more accurate. 
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