

Copyright © 2019 Saad Ahmed Dheyab et. al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4) (2018) 4702-4705

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet. v7i4.18058

Research paper

Performance evaluation of massive data standardization using

multicore CPU and GPU

Saad Ahmed Dheyab 1 *, Dr. Buthainah Fahran Abed 2, Dr. Mohammed Najm Abdullah 3

1 College of Engineering, University of Information Technology and Communications, Ph.D. candidate in ICCI, Baghdad, Iraq.

2 Smart Cities Dept., University of Information Technology and Communications, Baghdad, Iraq
3 Computer Engineering Dept., University of Technology, Baghdad, Iraq

*Corresponding author E-mail: saad.theyab@uoitc.edu.iq

Abstract

Standardization is one of the most important methods for the preprocessing phase in machine learning. It increases the quality of the

results in terms of accuracy. Researchers have focused on the development of these preprocessing methods to suit the diversity of data

generated from different sources. In this paper, three types of standardization methods (z score, min-max, log2) were applied to a mas-

sive dataset using three different preprocessing approaches (CPU single core, CPU multicore open MP, and GPU) and evaluated their

performance. From the results, these approaches showed a faster GPU performance compared to the conventional CPU performance.

Keywords: Standardization; GPU; Massive Data; Preprocessing.

1. Introduction

Parallel computing is an approach towards accelerating many

computationally intensive algorithms, Such as those that are used

in image processing, simulations, sound and video applications,

machine learning, data mining, and security devices [1]. Recently

graphics Processing Units (GPUs) have been largely deployed as

parallel computing engines [2]. Researchers are more interested in

developing the use of the General Purpose Computing on

Graphics Processing Unit (GP-GPU) programming model after the

introduction of the Compute Unified Device Architecture (CUDA)

framework by NVIDIA Corporation. Which the applications

found in several fields like machine learning, data science, bioin-

formatics, and data mining [3].

As a contribution, this paper introduced the creation of the CUDA

versions of the parallel standardization frameworks to be parallelly

executed on single or multiple GPU cards. These CUDA versions

can speed up the computational performance of the systems com-

pared to the CPU. The performance of the novel algorithms was

evaluated on a dataset comprised of several elements with 42 at-

tributes and collectively compared.

The remaining part of this paper is presented as follows: Section 2

reviewing the previous related works, focusing on the pressing

issues associated with massive datasets. Section 3 introducing a

brief explanation of data standardization and its suitability in solv-

ing complex machine learning problems. Section 4 focusing on the

important parallel computing approaches and the CUDA frame-

work that enabled the GP-GPU programming model. Section 5

showing the details of the programming model proposed in this

study. Section 6 presented the codes of the proposed algorithms,

while section 7 discussed the results of the performance evalua-

tions. The conclusions from the study are presented in the last

section of the paper.

2. Related works

The interest in GPU computing has increased over the years as the

need for more data processing using machine learning increases.

Several articles on the implementation of CUDA in machine

learning (ML) GPU frameworks and other algorithms are hereby,

reviewed.

A study on the comparison between different ML approaches and

a simple BSP-based model in the prediction of the execution time

of GPU applications has been presented [4]. In this analysis, ex-

periments were conducted using 9 different applications that can

execute vector operations and 9 different NVIDIA GPUs made up

of 6 Kepler and 3 Maxwell architectures.

A new brute force algorithm for the building of k-nearest neighbor

graph has been described [5]. There are two parts of the proposed

algorithm; the first part involves finding the distances between the

input vectors, while the second part involves the selection of the k-

neighbors for the testing sample. Furthermore, a new quick sort-

based algorithm was implemented for a faster sorting of the dis-

tance pairs. The speed of the new algorithm was observed to in-

crease with an increase in the k-variable.

The use an ML approach for the prediction of SpMV kernel per-

formance on GPU algorithm has been proposed [6]. Two popular

ML algorithms (Support Vector Regression (SVR) and Multilayer

Perceptron neural network (MLP)) were used in the proposed

concept. From the experimental results, the SVR was found to

achieve a better accuracy on the two different GPUs (Fermi GTX

512 and Maxwell GTX 980 Ti) by presenting an average predic-

tion error in the range of 7 - 14%.

In this work, three different ML preprocessing techniques were

compared over CPU single core using c++, CPU multicore with

open MP, and NVIDIA GPU using CUDA. These techniques were

also compared over each hardware processing in terms of their

performances.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 4703

3. Data standardization

Data preprocessing plays a significant role in machine learning as

it is a major step towards data standardization. This is a crucial

step, especially when using parameters of different scales and

units. For instance, some ML techniques utilize the Euclidean

distance where all parameters are expected to have a similar to

ensure a fair comparison. There are 3 known methods for data

rescaling during standardization. These methods are the Z-score

method, the Min-Max method, and the Log2 method. The scales

of these methods are all numeric variables in the range [0-1]:

3.1. Z- score method

The Z-score or Zero mean normalization method involves the

normalization of data based on their mean and standard deviation

(SD) [7] using Formula 1:

(1)

Where Mean (p) = sum of P attribute values, and Std(P) = SD of

all the P attribute values.

3.2. Min -max method

In the Min-Max method, the original data is linearly manipulated,

with the values normalized within a certain range. To map the v-

value of attribute A from a minA-maxA range to a new_minA,

new_maxA range, the computation shown in Formula 2 is per-

formed.

(2)

Where v = new value in the desired range.

The advantage of this normalization method is in the annealing of

all the values to a certain range [7].

3.3. Log2 method

To make a better decision during the data preprocessing phase and

to reduce the computational overhead, it is necessary to convert

the original dataset into a normal form. The continuous-valued

features are discretized using a logarithm to the base 2 before

casting the resulting value to the integer to avoid bias. For each

continuous-valued z, 3 steps are involved [8].

If (z ≥ 2) z = ∫log2 (z + 1)

(3)

4. Parallel computing

Parallel programming involves the use of several processors to

simultaneously perform different aspects of the same program

with the aim of reducing the total process execution time [9]. Par-

allel programming is mainly used for two main reasons; the first

reason is to reduce the required time for troubleshooting and solv-

ing complex problems, and the second reason is that it is possible

to take advantage of computing resources that may not be locally

available or underutilized. It also helps to overcome memory-

related challenges especially when the available memory on a

single system may not be enough to solve a given problem. Fur-

thermore, it helps to overcome the physical limits of miniaturiza-

tion and speed which currently restricts the chance of constructing

sequential computers. The next paragraph is focusing on parallel

programming models (CUDA and OpenMP). The performance of

these APIs is analyzed and compared in terms of speedup and

runtime [10]:

4.1. GPU programming

The CPU consists of cores which have been optimized by using

some serial processing, while GPU consist of several smaller cores

designed for parallel performance, a CPU-GPU combination will

be ideal. The CPU executes the serial parts of the code while the

GPU executes the parallel parts. GPU computing involves the

collective use of a graphics processing unit and a CPU to speed up

general purpose applications in the science and engineering fields.

CUDA is a parallel programming model and a computing platform

that enables a dramatic increase in the performance of a system

using GPU. The concept of the language is that developers rely on

the power of the GPU to perform massive operations in a faster

way than using the CPU [9].

4.2. Open MP programming

The Open MP standard was developed and maintained by Open

MP Architecture Review Board (ARB), a conglomerate of some

big companies like SUN Microsystems, SGI, IBM, Intel, and oth-

ers. Their API focuses on certain directives that support the devel-

opment of parallel programs with shared memory through the

implementation of an optimized and automatic set of threads. The

use of OpenMP is useful in many aspects, as shown in its robust

support for parallel programming, simplicity and slight changes in

the code, ease of understanding, one support nested parallelism,

use of directives and the possibility of dynamically adjusting the

number of threads used [11].

5. Programming models

In this paper, three algorithms for standardization (z-score, min-

max, and log2) were implemented using three different program-

ming models described below:

5.1. CPU single core using c++

In this model, the algorithms were implemented in a traditional

way and processed using a single processor core of core i7 7th

CPU. They were serially executed on a massive data of millions of

elements * and 42 attributes. The execution time of each algorithm

was measured and compared to the parallel execution models.

5.2. CPU multicore using open MP

In this model, the algorithms were implemented in a parallel way

and processed using 8 processor cores of core i7 7th CPU. They

were parallelly executed using open MP directives on a massive

data of millions of elements * and 42 attributes.

5.3. GPU many core using CUDA

In this model, the algorithms were implemented in a parallel way

and processed using 768 processor cores of GPU GTX 1050ti.

They were parallelly executed using CUDA on a massive data of

millions of elements * and 42 attributes.

Table 1 showed the details of each programming model.

6. Reduction and algorithms

Reduction is one of the most prominent processes that can reduce

execution time in parallel processing and used in finding the

summation, maximum and minimum elements. Figure 1 shows

how to find the maximum element in reduction parallel processing.

In the results, the differences in the execution times using reduc-

4704 International Journal of Engineering & Technology

tion of the massive data, specifically in the min-max algorithm,

will be established.

Table 1: Pprogramming Models

CPU single

core
CPU multicore

GPU many

core

Processor Core i7 7th Core i7 7th GTX 1050 ti

Programming C++ Open MP Cuda
Cores no. 1 8 768

Execution Serial Parallel Parallel

Fig. 1: Finding The Maximum Element Using Reduction Parallel

Processing.

The next paragraph shows the details of all the algorithms imple-

mented in this paper.

Algorithm 1: Z-score in single core CPU

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

For each attribute, do

For each sample, do

Compute mean;

Compute STD;

Compute z score value

End

End

Algorithm 2: Min-max in single core CPU

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

For each attribute, do

For each sample, do

Compute min;

Compute max;

Compute standardize value

End

End

Algorithm 3: Log2 in single core CPU

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

For each attribute, do

For each sample, do

Compute log2 (value+1)

End

End

Algorithm 4: Z-score in open MP

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#pragma omp parallel for

For each attribute, do

For each sample, do

Compute mean;

Compute STD;

Compute z score value

End

End

Algorithm 5: Min-max in open MP

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#pragma omp parallel for

For each attribute, do

For each sample, do

Compute min;

Compute max;

Compute standardize value

End

End

Algorithm 6: Log2 in open MP

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#pragma omp parallel for

For each attribute, do

For each sample, do

Compute log2 (value+1)

End

End

Algorithm 7: Z-score in CUDA

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#does in parallel with reduction

For each attribute, do

For each sample, do

Compute mean;

Compute STD;

Compute z score value

End

End

Algorithm 8: Min-max in CUDA

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#do in parallel with reduction

For each attribute, do

For each sample, do

Compute min;

Compute max;

Compute standardize value

End

End

Algorithm 9: Log2 in CUDA

Input: data (million*42)

Output: standardized data

Loading data sample from testing data;

#Do in parallel with reduction

For each attribute, do

For each sample, do

Compute log2 (value+1)

End

End

7. Reduction and algorithms

The execution time of each algorithm was measured and

compared to find the best method that can speed up the

performance of the algorithms in processing massive data. Table 2

described the details of the observed execution times of the

algorithms.

Table 2: Execution Times of the Algorithms (S)

 CPU single core CPU multicore GPU many core

Min-max 0.85 0.32 0.13

Z-score 3.1 0.61 0.15

International Journal of Engineering & Technology 4705

 CPU single core CPU multicore GPU many core

Log2 7.4 1.35 0.39

Figure 2 showed the differences in the execution time of each

algorithm. Log2 algorithm using GPU was 18 times faster than

CPU single core and 3 times faster than CPU multicore open MP.

Z-score algorithm using GPU was 20 times faster than CPU and 4

times faster than open MP. Finally, Min-max algorithm using GPU

was 6 times faster than CPU and 2.4 times faster than open MP.

The results showed the GPU to have a better performance in

massive data processing compared to the other processing

approaches.

Fig. 2: Comparision of the Execution Time (S) of the Algorithms.

8. Conclusion

The major contribution of this study is the development of the

CUDA versions of parallel standardization algorithms which can

be executed on single or several GPU cards in parallel. The use of

GPU accelerates the processing of massive data which may not be

efficiently processed using the traditional methods. This paper

showed the effect of using reduction methods in parallel data pro-

cessing. The CPU comprises 8 cores and slower in data processing

compared to GPU processor with 768 Cores. A dataset composed

of millions of elements and 42 attributes was processed using

GPU, GTX, 1050, and Core i7 processor in less than a second.

References

[1] Masek, Jan & Burget, Radim & Povoda, Lukas & Kishore Dutta,

Malay. (2016). Multi–GPU Implementation of Machine Learning
Algorithm using CUDA and OpenCL. International Journal of

Advances in Telecommunications, Electrotechnics, Signals, and

Systems. 5. https://doi.org/10.11601/ijates.v5i2.142.
[2] Kirk, D. B., & Hwu, W. W. (2013). Programming massively

parallel processors (2nd edition). Waltham, MA: Elsevier Inc.

[3] Abdul Hay Bin Sulaiman, Muhamad & Suliman, Azizah & Ahmad,
Abdul. (2014). Measuring GPU-accelerated parallel SVM

performance using large datasets for multi-class machine learning

problem. 299-302. 10.1109/ICIMU.2014.7066648.
[4] M. Amaris, D. Cordeiro, A. Goldman, and R. Y. Camargo, “A

simple bsp-based model to predict execution time in GPU

applications,” in High-Performance Computing (HiPC), 2015 IEEE
22nd International Conference on, December 2015, pp. 285–294.

https://doi.org/10.1109/HiPC.2015.34.

[5] I. Komarov, A. Dashti, R. D Souza,“Fast k-NNG construction with
GPU based quick multi-select”,2013.

[6] Benatia, Akrem & Ji, Weixing & Wang, Yizhuo & Shi, Feng.
(2016). Machine Learning Approach for the Predicting

Performance of SpMV on GPU. 894-901.

https://doi.org/10.1109/ICPADS.2016.0120.
[7] Saranya, C & Manikandan, G. (2013). A study on normalization

techniques for privacy-preserving data mining. 5. 2701-2704.

[8] Haddadpajouh, Hamed & Dastghaibyfard, Gholamhossein &
Hashemi, Sattar. (2015). Two-tier network anomaly detection

model: a machine learning approach. Journal of Intelligent

Information Systems. https://doi.org/10.1007/s10844-015-0388-x.
[9] P. S. Pacheco. An Introduction to Parallel Programming. University

of San Francisco, 2013.

[10] D. B. Kirk. Programming Massively Parallel Processors, Second
Edition: A Hands-on Approach. 2013.

[11] Ms. Ashwini M. Bhugul, (2017), “Parallel Computing using

OpenMP”, International Journal of Computer Science and Mobile
Computing, vol 6, issue 2, p90-94.

 .

 .

 .

CPU

 .

 .

 .

open MP

 .

 .

 .

CUDA
Min-Max

Z-score

Log()

seconds

https://doi.org/10.11601/ijates.v5i2.142
https://doi.org/10.1109/HiPC.2015.34
https://doi.org/10.1109/ICPADS.2016.0120
https://doi.org/10.1007/s10844-015-0388-x

