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Abstract 
 

With the significant growth in medical imaging techniques and the demand for better processing of medical information, the mandate of 

automation in disease detection is also increasing. In the modern time, the nature of the diseases has also changed. The highly mortal 

diseases are becoming difficult to detect due to the high involvements of medical individual and high dependency of human knowledges. 

The human knowledge is prone to error and often criticized for longer time delay for processing information in disease detections. Thus, 

the demand from the modern computing and implementation based computational algorithms are to automate the medical disease detec-

tion processes with greater accuracy. One such disease with superior mortal rate is brain tumours or cancerous growth in the brain tissues. 

The regular medical practice approaches have demonstrated the challenges in detection of the tumours and more so the nature of the tu-

mours. Ill detection of the tumour type or the shape of the tumour or the size of the tumours can lead to life threats. Thus, the need for 

automation in detection is the most expected form of replacements in place of manual diagnosis. Another challenge is the available data 

formats for such disease reports. The available reports for brain tumour are only in the form of magnetic resonance images or MR Images. 

The MR Images can cause higher obstacles for further processing as due to the capture process of the patient data. Often, it is observed 

that the noise present in the MR images makes the processing vulnerable in accuracy. A number of parallel research outcomes have 

demonstrated significant outcomes of detection of available tumours in the human brain using segmentation methods. Nonetheless, all 

parallel attempts are criticized for not able to model the growth or the nature of the tumours presents in the human brain. Thus, this work 

proposes a novel automated framework for detection of tumour types by deploying progressive segmentation and model the growth stag-

es based on features. The parallel outcomes have outrun on detection accuracy due to the use of standard segmentation methods, which is 

designed for generic image processing and bound not to match the specificity of medical image processing. Thus, this work introduces a 

novel segmentation method, which is progressive in nature for higher accuracy. This work also outcomes into an automated feature ex-

traction model for brain tumours. The major contribution of the work is to determine the nature of tumour and a sustainable prediction 

model for tumour stages inside the human brain. The work demonstrates high accuracy for correct detection and prediction of the pa-

tient’s life threats in in real time order to take timely medication for making the precious human life more precious. 
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1. Introduction 

The generic physiology of human body makes the brain as core of 

the nervous system. The adult brain size of the human body ranges 

between 1.3 to 1.4 Kgs. As per the most recent human brain imag-

ing by K. L. Bigos et al. [1] demonstrates that the brain is com-

prising of soft tissues, neurons and glial cells. Though study of the 

human brain is still considered to be a challenge due to the com-

plex structure, the researchers like S. Herculano-Houzel et al. [2] 

have made significant progress in estimating the number of cells 

or like the report from Brain Facts and Answers [3] estimated the 

number of connections in human brain. It is regardless to mention 

that, any damage or any disruption in the human brain cell can 

heavily damage the functions of the brain, nervous systems and 

for overall body. Thus, a huge number of researches are ongoing 

in terms of detection and for preventive cares of the human brain 

cells.  

The major disruption of the brain functions can be observed in the 

presence of tumours in brain cells. These tumours can be highly 

aggressive in terms of growths over time. Thus, based on the ag-

gressiveness of the cell division patterns or cell growths, the tu-

mours can be classified in two classes as with a reduced pace 

growth or noncancerous growth can be identified as benign and 

with a high pace of growth or cancerous growth can be identified 

as malignant tumours. It is notable that, the damages from the 

brain tumours are usually not life threating rather can cause dis-

functions in the whole body as reported in the study by L. M. De 

Angelis et al. [4].  

The commonly found malignant brain tumours are called glioma. 

The glioma generates from the brain cell called glial, which is 

responsible for growth of the brain. The glioma can cause 80% of 

the situations of the malignant brain tumours as found in the study 

by M. L. Goodenberger et al. [5]. This analysis was made possible 

again with brain imaging techniques deployed by J. Meng et al. 

[6]. This study made the functioning of human brain much clear 

for further analysis and malfunctioning detection [Fig – 1].  

Also, the gliomas can be further classified based on several char-

acteristics and severity. The report published by World Health 

Organization have made some clear distinguishes, which is further 

reported by D. N. Louis et al. [7], for classifying the tumours as 

grade – I to grade – IV, where grade – I and II can be considered 

as low grade and grade – III and IV can be considered as high 

grades. The possibilities of transforming low grade to high grade 

is also significant as 60% of low grade gliomas are seen to get 
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converted into a high grade as shown in the surveys by E. B. Claus 

et al. [8] and K. A. Jaeckle et al. [9].  

 

 
Fig. 1: Anatomy of Human Brain. 

 

The detection of the brain cell functionalities or presence of any 

tumours or growth and location of tumours in the brain cell can be 

identified using magnetic resonance imaging or MRI methods. 

The process is generally occurring by deploying a specific contrast 

again called Gadolinium. The MR images based on specific char-

acteristics of detecting features of brain cells or brain functioning 

can be classified in two four major groups as T1 analysis, T1 – 

Gadolinium analysis, T2 analysis and finally FLAIR analysis. The 

graphical representations of the image types for these analyses can 

be easily distensible [Fig – 2]. 

 

 
Fig. 2: Visual Differences of MR Image Types (A) TI, (B) T1 – Gadolini-
um, (C) T2 and (D) FLAIR. 

 

The first three types are based on expansion of the brain cells dur-

ing the functioning of brains and the last type is based on the re-

covery phases from the expansions. 

The research on analysing and detecting brain tumours can be 

observed from a decade. The main aim for the studies, which are 

already present, are on the detection and modelling of tumour 

characteristics. The significant outcomes from these works are 

widely accepted and at the same point of time highly criticized as 

well due to the fact that these methods do not deploy the modern 

accurate methods for detection of tumour cells. Thus, the out-

comes from these researches demands improvements. The recent 

review by J. C. L. Alfonso et al. [10] clearly shows the limitations 

in terms of accuracy for the existing methods. This review also 

includes the cross domain works by H. M. Byrne et al. [11] on 

cancerous growth detection, H. L. P. Harpold et al. [12] on math-

ematical modelling of the information available, work by H. Hat-

zikirou et al. [13], work of A. H. Juffer et al. [14] on computation-

al benefits on modelling growth, Y. Kam et al. [15] on applica-

tions of modelling and benefits, the work of N. L. Martirosyan et 

al. [16] on feature extractions on mathematical modelling, the 

application by N. Meghdadi et al. [17] based on medical imaging 

methods, A. Roniotis et al. [18] on diffusion method for growth 

modelling, the predictive framework by S. Sanga et al. [19], simu-

lating the cell properties on nonliving situations by Z. Wang et al. 

[20], on silico model by L. B. Edelman et al. [21] and finally the 

notable work by P. M. Altrock et al. [22] on cancer for human 

body cells.  

Henceforth it is the demand from the recent research to include the 

advance imaging and mathematical models in order to improve the 

modelling mechanisms. This work deploys a progressive segmen-

tation technique and further extraction of the features for tumour 

class detection with a high accuracy.  

The rest of the work is organized such as in the Section – II, the 

recent outcomes from the parallel researches are elaborated, the 

Section – III defines the benefits of MR Imaging and classifica-

tions of the MR image types, in the Section – IV, the proposed 

matrix with tumour features is elaborated, in the Section – V, the 

novel segmentation method is elaborated, in the Section – VI, the 

feature or attribute extraction algorithm is furnished, in the Section 

– VII, the rule based classification of tumour method is framed, in 

the Section – VIII, the complete working flow of the proposed 

framework is demonstrated, in the Section – IX, the obtained re-

sults from the framework in parts are explained and discussed, in 

order to demonstrate the advantages of the proposed framework in 

this work, the comparative analysis is done in the Section – X and 

the work presents the final conclusion in the Section – XI.  

2. Outcome of the Parallel Researcher 

The detection of tumours and cancerous behaviours in human 

brain cells are one of the most popular area of research over a 

decade now. A good number of research attempts can be consid-

ered in order to understand the progress made by various research-

ers. Majorly, these attempts can be classified in three major cate-

gories as vivo, vitro and silico as classified by E. Konukoglu et al. 

[23]. Also, the types of analysis can be classified in three catego-

ries as well namely continuous, discrete and hybrid based on the 

growth patterns of the tumours as clearly stated by Z. Wang et al. 

[24] in their work.  

The framework proposed in this work highly relates to silico cate-

gory and hybrid analysis for modelling and detection categories 

respectively.  

The notable work by M. A. J. Chaplain et al. [25] made the analy-

sis of growth phases much clear based on the growth pattern anal-

ysis for hybrid tumour types. The contributions of T. Roose et al. 

[26] also cannot be ignored for presenting a much simpler mathe-

matical model for growth measurements. The benefits of mathe-

matical modelling based on features is significant and makes any 

study high accurate as demonstrated by R. P. Araujo et al. [27]. 

Also, the general level-set methods are quite accurate for the 

simulation of tumour growths as showcased by C. S. Hogea et al. 

[28]. The hybrid models are comparatively more difficult for anal-

ysis and modelling or prediction as proven by J. D. Humphrey et 

al. [29]. 

Henceforth, this work applies the proposed methods to reduce the 

complexity and increase the accuracy compared to the existing 

methods.  

The accuracy and the features highly depend on the types of the 

MR images. Thus, it is highly suggestable that, for any study us-

ing brain imagining techniques, the types of the MR images must 

be analysed.  

The next section of this work analyses the MR image types and 

the associated benefits.  
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3. MR Image Classifications 

The MR images, as highlighted in the previous sections of this 

work, can be classified in four major classes. In this section of the 

work, the benefits from each type is elaborated.  

Firstly, the Spin – Lattice unwinding time or T1 variation picture 

is indicated as rot steady for the recuperation time for the turn 

charge. The visual representations can be observed here [Fig – 3]. 

The sample is collected from BRATs 2017 dataset. 

 

    
Patient – 1 Patient – 2 Patient – 3 Patient – 4 

    
Patient – 5 Patient – 6 Patient – 7 Patient – 8 

 

  

 

 Patient – 9 Patient – 10  

Fig. 3: Visual Differences of MR Image Types – T1. 

 

Secondly, the transverse turn to turn unwinding time T2 is the rot 

consistent for the recuperation time for the turn polarization, 

where the charge vector rot towards the balance [Fig – 4]. The 

sample is collected from BRATs 2017 dataset. 
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 Patient – 9 Patient – 10  

Fig. 4: Visual Differences of MR Image Types – T2. 

 

Third, the T1C is the concentrated Spin – Lattice unwinding imag-

ing which is like T1 pictures with the higher grouping of the at-

tractive reverberation extents. The subtle elements of the T1 pic-

ture is as of now been exhibited in the past sub area [Fig – 5]. The 

sample is collected from BRATs 2017 dataset. 
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 Patient – 9 Patient – 10  

Fig. 5: Visual Differences of MR Image Types – T1C or Gadolinium. 

 

Finally, the FLAIR or Fluid Attenuated Inversion Recovery is 

additionally a sort of picture produced by attractive reverberation 

to imagine the beat succession. The beat grouping can be gotten 

by applying Fourier change on any attractive unwinding yields 

and applying the rot. Henceforth, the result of FLAIR is likewise 

comparative as T1, T2 and T1C. By the by, the significance of 

FLAIR can't be overlooked for the areas where the organ liquid is 

high and hindrances the best perception of attractive unwinding 

like the cerebrospinal liquid in the event of mind MR imaging [Fig 

– 6]. The sample is collected from BRATs 2017 dataset. 
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 Patient – 9 Patient – 10  
Fig. 6: Visual Differences of MR Image types – FLAIR. 

 

Among the assortment of imaging modalities, Magnetic Reso-

nance Imaging (MRI) indicates most points of interest of cere-

brum and is the most well-known test for determination of mind 

tumours. X-ray contains T1-weighted MRI (T1w), T1-weighted 

MRI with differentiate improvement (T1wc), T2-weighted MRI 

(T2w), Proton Density-Weighted MRI (PDw), Fluid-Attenuated 

Inversion Recovery (FLAIR), et cetera. Not at all like Computed 

Tomography (CT) picture, have MRI pictures from various sorts 

of machines had diverse dark scale esteems. 

Henceforth, from above knowledge, it is understandable that the 

features to be extracted for any further modelling must comply 

with all the imaging types of MR. Thus, in the next section of this 

work the proposed feature list is explained.  
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4. Proposed Brain Tumour Detection Parame-

ters Matric 

Characterization or modelling or detection of the brain tumour 

needs a specific set of matric. This section of the work defines the 

matric used in this proposed framework. The matrices used in this 

kind of works, must comply with the underlying imaging tech-

niques. Thus, this proposed matric considers the list of features 

which can be extracted from any MR image types.  

The details of the proposed feature list or the matric for tumour 

analysis is elaborated here [Table – I].  

 
Table- I: Tumour Detection Parameter Matric 

Name of the 

attribute 
Description 

Value Range for Classifi-

cation 

Species 
The type of the tumour 

based on the growth rate  

Three Possible values:  

A. BENIGN 

B. MALIGNANT 
C. HYBRID 

Size  
The size of the tumour in 

mm.  

Min size 0.0020  

Max size 0.0065  

Entropy 

Defines the state of the 

brain without any measur-

ing scale  

The higher entropy de-

termines higher level of 

disorders  

RMS 

The rostral migratory 

stream or RMS is a special-

ized migratory route found 
in the brain denoting regu-

lar smelling capabilities of 

brain.  

Less denotes loss of 

smelling capabilities or 

effect on other sensory 
functions.  

Average range is 0.09 to 

0.08. 

Variance Variance of brain volume  
Grouped in ages of 3, 9, 

12, 35 

Smoothness 
Smoothness of the brain 

cell surface 

Low denotes presence of 

Lissencephaly, caused by 

tumorous cells  

Kurtosis 
Kurtosis defines the sharp-
ness of the brain signals 

during MRI analysis  

As high as better  

Skewness 
Skewness defines asym-
metry of the brain respon-

siveness  

As low as better  

IDM 
IDM denotes the electrical 

activities of the brain. 

The negative denotes less 
delay in the brain signal 

processing capabilities.  

Contrast 
The amount of contrast 
agents used during the MRI 

process  

Defers based on various 

clinical practices 

Correlation 

The clinical correlation 

defines the severity of 

demand for further analy-

sis. 

As high as highly rec-
ommended for further 

analysis  

Energy 

The energy generated in the 

human brain due to electron 
transmissions  

As high as effective.  

Average is 0.7 kilo calo-
ries  

Homogeneity 

The functional homogenei-

ty of the brain defines the 
working pattern of the brain 

functions  

As high as better.  
Average is 0.6.  

 

Henceforth, these features can be extracted from various magnetic 

resonance imaging techniques and can be used for further analysis 

or modelling the nature of the tumours.  

Nonetheless, the features can only be extracted from the MR im-

ages, if the segmentation of the brain tumour is correct. Thus, the 

next section of this work, elaborates on the proposed improved 

and specific segmentation algorithm for brain tumour detections.  

5. Proposed Novel Progressive Segmentation 

Algorithm 

The available segmentation methods used in the parallel research 

outcomes are not specifically designed for brain tumours or for 

brain imaging. The existing segmentation algorithms are made 

applicable for the brain images after applying specific pre- 

processing measures. It is regardless to mention, that as an effect 

of pre-process on any images, the image bound to loss some 

amount of information. In the space of regular image processing, 

the information loss is marginal as loss of few pixel values will 

certainly not underrate the results. Nonetheless, in case of medical 

imaging, loss of little pixel information can lead to highly inaccu-

rate results.  

 

 

 

Thus, this work presents a medical image specific segmentation 

algorithm.  

 

 
Algorithm 1: Proposed Progressive Intensity Based Segmentation (PIBS) 

Step - 1. Accept the MR Image 

Step - 2. Calculate different segments of the image 

Step - 3. For each segment  

a. Calculate the image intensity  

Step - 4. For each segment  

a. Consider individual pixel values  
b. For each pixel  

i. Compare the segment intensity and pixel in-

tensity  
ii. Calculate the image segments based on the re-

gion intensity 

c. Convert all segments in region specific groups as prima-
ry_segments[] 

Step - 5. Calculate the mean intensity for all segments  

Step - 6. Calculate differential intensity for all segments  

Step - 7. For all primary_segments[]  

a. Match with differential intensity  

b. Re-calculate the segments based on region specific differ-

ential intensity 
c. If primary_segment[] intensity is higher than region    

specific differential intensity 

i. Then discard the segment 
d. Else  

i. Group all accepted segments as                     

final_segments[] 

Step - 8. Report the final segmentation as final_segments[] 

Step - 9. For each segment in final_segments[] 

a. Check for tumorous behaviour 

i. Group all segments as tumour_true_segment[] 
b. Else 

i. Discard the segment  

Step - 10. Report the tumours as tumour_true_segment[] 

 

The algorithm flow is analysed graphically as well [Fig – 7].  
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Fig. 7: PIBS Algorithm Flow. 

 

Further, once the regions with the tumours are identified, the fea-

tures or the parameter metric must be formulated. In the next sec-

tion of the work, the feature extraction algorithm is elaborated.  

6. Proposed Tumour Attribute Extraction   

Algorithm 

The feature-based tumour detection and modelling methods are 

highly acceptable due to the fact that, the differentiation of the 

tumour classes can be easily identified based on feature metric. 

After the detection of the segments on the MR Image with the 

presence of tumours, the specified segments can be supplied to the 

proposed feature extraction algorithm as demonstrated in this sec-

tion of the work.  

 
Algorithm - 2: Proposed Feature Extraction from MR Image (FEMRI) 

Step - 1. Accept the segments with tumours  

Step - 2. Apply curve fitting method on tumour regions  

Step - 3. For each shape  
a. Calculate the area 

b. Report each tumour size 

Step - 4. Convert the digital MR image into analogue signal  
a. Calculate the entropy of the signal  

b. Report the entropy as final entropy of the brain 

c. Calculate the sharpness of the signal 
d. Report the entropy pattern as Homogeneity 

e. Report the sharpness as brain Kurtosis 

f. Calculate the Skewness of the signal  
g. Report the Skewness as brain Skewness 

h. Calculate the Energy of the signal  

i. Report the Energy as brain Energy 
Step - 5. Calculate the IDM for the Brain Signals  

a. Report the IDM for brain  

Step - 6. Calculate the density of the nervous system cells  

a. Report the density as RMS 

b. Report the Contrast 

Step - 7. Calculate the total brain cell area 

a. Apply curve fitting method on total area  

Step - 8. Calculate the area for each shape  
a. Report the total area as variance of the brain  

Step - 9. Apply Edge-Detection method on the MR image  

a. Calculate the variation of the edge  
b. Report the variation of the edge pixels as smoothness  

Step - 10. Calculate Correlation with the final results 

a. Report the Correlation 

 

The algorithm flow is analysed graphically as well [Fig – 8]. 

 

 
Fig. 8: FEMRI Algorithm Flow. 

 
Once the feature sets are extracted for each tumour for each da-

taset images, the classification of the tumours can be applied. The 

proposed class detection algorithm is furnished in the next section.  

7. Proposed Tumour Class Detection            

Algorithm 

The purpose of the image segmentation is to make the segments 

applicable to feature extraction and the purpose of feature extrac-

tion is to make the rule engine for tumour classifications.  

Henceforth, this section of the work elaborates on the rule-based 

algorithm for tumour class detection. 

 
Algorithm - 3: Apriori Based Rule Engine for Tumour Class Detection  

                        (ABRETCD)  

Step - 1. Class=BENIGN 6 ==> RMS='All' 6 conf:(1) 

Step - 2. Variance='(-inf-0.00801]' 6 ==> RMS='All' 6 conf:(1) 

Step - 3. Class=MALIGNANT 5 ==> RMS='All' 5 conf:(1) 

Step - 4. Variance='(0.00809-inf)' 5 ==> RMS='All' 5 conf:(1) 

Step - 5. Kurtosis='(-inf-6.73072]' 4 ==> RMS='All' 4 conf:(1) 

Step - 6. Kurtosis='(6.73072-7.44774]' 4 ==> RMS='All' 4 conf:(1) 
Step - 7. Class=BENIGN Variance='(-inf-0.00801]' 4 ==> RMS='All' 4 

                  conf:(1) 

Step - 8. Size='(-inf-0.00252]' 3 ==> Class=BENIGN 3 conf:(1) 
Step - 9. Size='(0.00294-0.00336]' 3 ==> Class=BENIGN 3 conf:(1) 

Step - 10. Smoothness='(0.91464-0.92205]' 3 ==> Class=BENIGN 3  

                  conf:(1) Class=BENIGN 6 ==> Entropy='(0.08978-inf)'  
                  Variance='All' 6 conf:(1) 

Step - 11. Finally, Entropy <= 0.0897: MALIGNANT (5.0) and Entropy  

                   > 0.0897: BENIGN (6.0) 
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The final analysis of the rule engine is visualized here [Fig – 9]. 

 

 
Fig. 9: Final Analysis of the Rule Engine Algorithm Flow. 

 

In the next section of this work, the complete workflow of the 

proposed automated framework is elaborated.  

8. Proposed Framework 

The primary purpose of the proposed automated framework for 

detecting the class of the brain tumour. Nevertheless, the automat-

ed framework is also capable of reporting the size and entropy of 

the brain during the detection process as well. The [Fig-10] shows 

that, it accept the MR Images as input from dataset BRATS-2017 

and apply the PIBS Algorithm for Segmentation, further output of 

the Segments are applied to FERMI Algorithm for feature extrac-

tion for all the eleven patients images further analysis. FERMI 

output is applied to ABRETCD Algorithm to determine the tu-

mour classes as Benign or Malignant.  

The complete flow of the proposed framework is enlisted here in 

this section of the work [Fig – 10]. 

 

 
Fig. 10: Processing Flow of the Proposed Algorithm. 

 
Henceforth, in the further section of this work, the obtained results 

from the proposed framework are discussed.  

9. Results and Discussions 

The results obtained from the proposed framework are highly 

satisfactory and are discussed in this section. The results are di-

vided as per the framework components with Segmentation, Fea-

ture List extraction, Detection of tumour presence, Classification 

of the tumours, RBF kernel Accuracy, Linear kernel Accuracy, 

Polynomial kernel Accuracy and finally Quadratic kernel Accura-

cy.  

a) segmentation Phase Result  

Firstly, the segmentation results are analysed [Table – II]. The 

information of existing number of segments are available in the 

dataset for each patient records and further, the proposed progres-

sive segmentation algorithm is applied on the same dataset to 

match the accuracy. 

 
Table- II: Segmentation Accuracy 

Dataset 

Actual Number of 

Segments with Tu-
mours 

Number of Segments 

Detected with Tu-
mours 

Accuracy 
(%) 

Patient-1 1 1 100 

Patient-2 1 1 100 

Patient-3 1 1 100 
Patient-4 1 1 100 

Patient-5 2 2 100 

Patient-6 2 1 50 
Patient-7 1 1 100 

Patient-8 1 1 100 

Patient-9 1 1 100 
Patient-10 1 1 100 

Patient-11 1 1 100 

 

The results are analysed graphically as well [Fig – 11]. 

 

 
Fig. 11: Segmentation Accuracy Analysis. 

 

It is natural to understand that the accuracy of the proposed pro-

gressive segmentation algorithm is very high and satisfactory.  

b) Feature Extraction 

Secondly, the feature extraction algorithm results are furnished 

here [Table – III]. The extracted features are as proposed in the 

previous section of this work. 
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Table- III: Feature Extraction Accuracy 

Dataset Size Entropy RMS Variance Smoothness Kurtosis Skewness IDM Contrast Correlation Energy Homogeneity 

Patient-1 0.0031 3.1735 0.0898 0.008 0.9205 7.3282 0.469 
 
0.0577 

0.2088 0.199 0.7621 0.9352 

Patient-2 0.0031 3.1735 0.0898 0.008 0.9205 7.3282 0.469 
-

0.0577 
0.2088 0.199 0.7621 0.9352 

Patient-3 0.0024 3.2698 0.0898 0.0081 0.8974 7.9567 0.8862 0.4926 0.2717 0.0931 0.7686 0.9338 

Patient-4 0.003 3.555 0.0898 0.008 0.9178 6.3661 0.6499 0.4729 0.2414 0.1065 0.744 0.9277 

Patient-5 0.0025 3.3156 0.0898 0.0081 0.9032 6.232 0.3121 0.5631 0.2161 0.1382 0.7548 0.9325 
Patient-6 0.0021 3.5182 0.0898 0.008 0.885 6.7672 0.4413 0.5462 0.225 0.0991 0.7691 0.9365 

Patient-7 0.0063 3.2051 0.0898 0.008 0.9591 12.2408 1.1048 1.2156 0.3059 0.1421 0.7862 0.9379 
Patient-8 0.0043 3.6004 0.0898 0.0081 0.9407 6.0137 0.5267 0.3801 0.2255 0.1345 0.7466 0.9299 

Patient-9 0.0037 3.371 0.0898 0.0081 0.9314 7.3506 0.635 
-

0.1378 
0.2433 0.0933 0.7613 0.9329 

Patient-10 0.0046 3.029 0.0898 0.0081 0.9453 13.1839 1.0085 0.2863 0.275 0.118 0.7688 0.9346 

Patient-11 0.0042 3.5516 0.0898 0.008 0.9403 6.0614 0.5104 0.313 0.2314 0.1072 0.7418 0.9298 

 

The extracted features are visualized graphically as well [Fig – 12]. 

 
Table- IV: Feature Extraction Accuracy 

                                          1 denotes Extractability of the parameter and 0 denotes non-extractability of the parameter  

Dataset Size Entropy RMS Variance Smoothness Kurtosis Skewness IDM Contrast Correlation Energy Homogeneity 

T1 1 1 1 1 0 1 1 1 1 1 1 1 

T1C 1 1 1 0 1 1 1 1 1 1 1 1 
T2 1 1 1 1 0 1 1 0 1 1 1 1 

Flair 1 0 0 1 1 1 1 1 0 1 1 1 

 

 
Fig. 12: Feature Extraction Analysis. 

 

Also, the given features must be extractable from all types of MR 

images. Thus, this work performs the extractability analysis as 

well [Table – IV]. 

 

 
Fig. 13: Feature Extraction Analysis. 

Henceforth, it is usual to understand that, the features proposed in 

this work can be extracted from all possible MR image types and 

are widely accepted.  

c) Detection of Tumours 

Third, the detection of the tumours or the availability of the tu-

mour cells in the brain results are elaborated here [Table – V]. The 

True Positive rate (TP) or Success rate is 1, False Positive rate (FP) 

or Misclassification error is 0, Precision (Specificity) given as 

(FP/FP+TN) is 1, Recall (Sensitivity) given as (TP/TP +FP) is 1, 

F-Measure is 1 and ROC Area is 1 for Benign and Malignant is 

correctly classified in our proposed method as shown in [Table-V]. 

 
Table- V: Classification of Tumours 

 TP Rate FP Rate Precision Recall F-Measure ROC Area  Class 

 
1 0 1 1 1 1 BENIGN 
1 0 1 1 1 1 MALIGNANT 

Weighted Avg. 1 0 1 1 1 1  

 

Thus, it can be realized that the proposed tumour detection algo-

rithm can identify two available classes of tumours in the dataset.  

d) Classification of Tumours 

The major objective of this work is to classify the types of the 

tumours in the human brain cell. Based on the extracted features 

this work produces the classification and the results are compared 

with the dataset information [Table – VI]. 

 
Table VI: Classification Accuracy 

Dataset Actual Species Detected Species Accuracy (%) 

Patient-1 BENIGN BENIGN 100 

Patient-2 BENIGN BENIGN 100 

Patient-3 BENIGN BENIGN 100 

Patient-4 BENIGN BENIGN 100 
Patient-5 BENIGN BENIGN 100 

Patient-6 BENIGN BENIGN 100 

Patient-7 MALIGNANT MALIGNANT 100 
Patient-8 MALIGNANT MALIGNANT 100 

Patient-9 MALIGNANT MALIGNANT 100 

Patient-10 MALIGNANT MALIGNANT 100 
Patient-11 MALIGNANT MALIGNANT 100 

 

The results are visualized graphically as well [14]. 



2470 International Journal of Engineering & Technology 

 
 

 
Fig. 14: Classification Accuracy Analysis. 

 

The higher accuracy demonstrates improvements in the proposed 

method.  

e) RBF Kernel Accuracy  

A radial basis function (RBF) is a genuine esteemed capacity 

whose esteem depends just on the separation from the source, the 

standard is generally Euclidean separation, albeit other separation 

capacities are additionally conceivable. Entireties of outspread 

premise capacities are normally used to roughly given capacities. 

The RBF kernel on two samples x and x1 represented as feature 

vectors in some input space is k(x,x1) =exp(-ǁx-x1ǁ2/2σ2) . 

This section of the work, analyses the RBF accuracy of the pro-

posed method for all the eleven patients from dataset is shown in 

[Table -VII]. 

 
Table-VII: RBF Kernel Accuracy 

Dataset Accuracy (%) 

Patient-1 70 

Patient-2 70 

Patient-3 80 

Patient-4  0 
Patient-5 70 

Patient-6  0 

Patient-7  0 
Patient-8 70 

Patient-9 70 

Patient-10 70 
Patient-11  0 

 

The graphical analysis of the accuracy is done at a further section 

of the work.  

 

f) Linear Kernel Accuracy  

The linear kernel has only one parameter, an additive constant. 

Any floating-point value is allowed for this parameter. For degree, 

d=1, the linear kernel is defined as K(x,y)=(xTy+c)d , where x and 

y are the vectors in the input space and c is a free parameter. Us-

ing Linear Kernel method for all the patients the accuracy percent-

ages are obtained as shown in [Table-VIII]. 

 

This section of the work, analyses the Linear accuracy of the pro-

posed method [Table – VIII]. 

 
Table VIII: Linear Kernel Accuracy 

Dataset Accuracy (%) 

Patient-1 80 

Patient-2 80 

Patient-3 90 
Patient-4 80 

Patient-5 80 

Patient-6 80 
Patient-7 90 

Patient-8 90 

Patient-9 90 
Patient-10 80 

Patient-11 90 

 

The graphical analysis of the accuracy is done at a further section 

of the work. 

 

g) Polynomial Kernel Accuracy  

For degree, d, the Polynomial kernel is defined as 

K(x,y)=(xTy+c)d , where x and y are the vectors in the input space 

and c is a free parameter. Using Polynomial Kernel method for all 

the patients the accuracy percentages are obtained as shown in 

[Table-IX]. In the event that the quantity of highlights is expan-

sive, one should not have to outline to a higher dimensional space. 

That is, the nonlinear mapping does not enhance the execution. 

Nevertheless, for the fact of confirmation, the polynomial analysis 

is also carried out in this work [Table - IX]. 

 
Table- IX: Polynomial Kernel Accuracy 

Dataset Accuracy (%) 

Patient-1 80 

Patient-2 80 

Patient-3 70 
Patient-4 80 

Patient-5 70 

Patient-6 70 
Patient-7 70 

Patient-8 80 
Patient-9 80 

Patient-10 90 

Patient-11 80 

 

The graphical analysis of the accuracy is done at a further section 

of the work. 

 

h) Quadratic Kernel Accuracy  

If the number of features is far-reaching, one ought not to need to 

a framework to a higher dimensional space. For degree, d=2, the 

Quadratic kernel is defined as K(x,y)=(xTy+c)d , where x and y are 

the vectors in the input space and c is a free parameter. Using 

Quadratic Kernel method for all the patients the accuracy percent-

ages are obtained as shown in [Table X]. That is, the nonlinear 

mapping does not improve the execution. Nevertheless, for the 

fact of confirmation, the quadratic analysis is also carried out in 

this work [Table  X]. 

 

 

 

 
Table -X: Quadratic Kernel Accuracy 

Dataset Accuracy (%) 

Patient-1 90 
Patient-2 90 

Patient-3 70 

Patient-4 80 

Patient-5 80 

Patient-6 70 

Patient-7 80 
Patient-8 80 

Patient-9 70 

Patient-10 80 
Patient-11 80 

 

Finally, the complete accuracy analysis is visualized here [Fig – 

15]. 

Hence, it is clear to realize that the proposed framework produces 

a mean accuracy for modelling, detecting and classifying of 85%. 

Further, with the detailed understanding of the advantages of the 

proposed framework, this work compares this framework with 

parallel research outcomes.  
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Fig. 15: Framework Accuracy Analysis. 

10. Comparative Analysis 

The obtained results from the proposed framework clearly demon-

strate the improvements over the existing methods. Nonetheless, 

in this section of the work, in our proposed framework, Segmenta-

tion Accuracy is High, Feature Extraction is available, Classifica-

tion is available, Modelling is available and Complexity is low 

when compared with parallel research outcomes in order to con-

clude a firm realization of the betterments as shown in [Table – 

XI]. 

 

Table XI: Comparative Analysis 

Frameworks  
Comparative Parameters 

Segmentation Accuracy Feature Extraction Classification Modelling Complexity 

E. Konukoglu et al. 
[23] 

Moderate Not Available  Not Available Available High 

Z. Wang et al. [24] High Not Available Available Available High 

M. A. J. Chaplain et al. 
[25] 

Low Not Available Not Available Available Moderate  

T. Roose et al. [26] Moderate Available Available Available Low  

C. S. Hogea et al. [28] Low Not Available Not Available Available High  
J. D. Humphrey et al. 

[29] 
High Not Available Available Available Moderate 

Proposed ABRETCD High Available Available  Available Low  

 

Thus, it is natural to realize that the proposed framework is signif-

icantly better than the other parallel research outcomes.  

11. Conclusion 

Detection, prediction or classification of the brain tumours is a 

long existing medical process. Nevertheless, due to the human 

error and higher time dependencies, it is the expected to automat-

ed the complete process. For automating any medical process, the 

bottleneck is the accuracy and the time complexity or the model-

ling complexity. Thus, a large number of parallel research out-

comes are argued for acceptance. Also, the automated model or 

the framework is expected to be multipurpose. Hence feature and 

rule-based analysis is expected to be a prime component in any 

framework for getting the acceptance by researchers or practition-

er. Hence, this work proposes a component-based framework for 

progressive segmentation for reducing the information loss, hybrid 

feature extraction for making the framework enable for other pur-

poses, detection of tumours as primary function and classification 

of the tumour types for better medication. The proposed frame-

work demonstrates a remarkable 95.45% accuracy for segmenta-

tion, astonishing 100% accuracy for feature extraction, 100% ac-

curacy for tumour detection and 100% accuracy for class detection 

of the rumours. Though, the overall mean classification of the 

framework on BRATS dataset is 85%. The major outcomes of this 

work are to ensure highly accurate diagnosis of tumour in brain, 

making features of the tumours available for any further modelling 

and finally, detecting the class of the tumours for early medication 

in order to preserve precious human life from unexpected mortali-

ties. 
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