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Abstract 

 
 Bilinear pairings, also called bilinear mappings, have developed as an important active area of cryptographic research. The Tate and 

Weil pairings were proposed for the use of cryptography such as identity-based cryptography, attribute base cryptography, pairing based 

cryptography, and short signatures. A bilinear pairing is a mapping of a pair of points on an elliptic curve defined on any field F to an 

element of the multiplicative group of a finite extension of F. Bilinear mappings transfer the discrete logarithm problem from a curve 

defined over a finite field to the multiplicative group of a finite field. In geometry, Lemniscates curve is a plane curve based on two given 

points called foci. These foci are located at distance 2a from each other. In this work, bilinear pairings is applied to Lemniscates curve 

with the model of elliptic curve pairings. 
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1. Introduction  

Bilinear pairings is used to develop inventive protocols to send 

and receive secret messages between two or more parties. The 

purpose of this work is to study bilinear pairings and apply it on 

Lemniscates curves. During 1964 an individual, James Bernoulli, 

from well-known Bernoulli family (of mathematicians) published 

his research on a symmetric curve which he called it as lemniscus. 

The word lemniscus in Latin means ribbon. The lemniscus curve is 

a special type of a Cassinian Oval. This Lemniscates curve is 

symmetric with respect to the origin, and the coordinate axes. This 

symmetricity is an important property of this curve. The definition 

of Lemniscates curve is the locus of a point, which the product of 

those distances from 2 fixed points (-a, 0) and (a, 0), called the 

foci, is at a distance of 2a units and is equivalent to a2. The 

Cartesian formula of Lemniscates is (     )     (     )  
Figure 1 shows the curve which the value of a = 5. The polar 

coordinate equation of the curve is x = r cos and y = r sin  

2. Operations on the Lemniscates Curve 

Let us set         .  

Then, the equation of Lemniscates is become       (   
  )     (         )     (      ) 

i.e.;                         
        

   
         

 
√        

  
 

 also, we can write the equation of the Lemniscates as 

      (     )     (         ) 
    (      ) 

i.e.;                        
        

   
         

 
√        

  
 

There will be two issues; the first issue is how to select the sign of 

x and y; the second issue is the t shall lie on at which interval. 

 

 
Fig. 1 Lemniscates Curve 

For the first case, if there is a point (x, y) on the Lemniscates 

curve, the other points are (-x, y), (x, -y) and (-x, -y). So, it is 

sufficient to parameterize the Lemniscates curve on the first 

quadrant. The remaining curve could be found by the property of 

symmetricity of the Lemniscates curve. 

Therefore, we take,   
√        

  
  

and  
√        

  
 . 

For the second case, note that the Lemniscates curve passes 

through the origin and crosses the x-axis at (1, 0). The point (0, 0) 

links to t = 0 and (1, 0) links to t = 1. Therefore t should be in the 

interval [0, 1] 

1.2. The Arc Length of Lemniscates 

Consider a > 0, where a is a real number. 

Let F1 = (a, 0) and F2 = (-a, 0) be the foci on R2. 

Let C = { P  R2; PF1 . PF2 = a2 }. 

Let us develop the equation of the curve C on polar coordinates. 
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We have P = (r cos , r sin  ): 

Then    
                   

                
Hence, (             )(            )  
(     )                 
                           
        (       )           
In case of  P  C is on the 1st quadrant. Let s be the length of arc 

among O = (0, 0) & P. 

Therefore    ∫ √   (
 

  
)
 

 
   . Since    

 

  
  ,     
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Therefore, the arc length of Lemniscates is  

   ∫√
   

      
    ∫

   

√      

 

 

  

 

 

  

2.2. The Lemniscates Function 

The Lemniscates curve may appear unusual at initial look, but 

various parallels exist between it and of the sine function. i.e.; the 

sine function might be defined as the inverse integral function as 

below: 

y = sin s  s = sin-1y = ∫
 

√    

 

 
   .  

The Lemniscates function  = (s) can also be defined as inverse 

function of an integral 

 = (s)  s = ∫
 

√    



 
  . 

2.3. The Properties of (s) 

The function of Lemniscates satisfies various interesting 

identities: 

Proposition 1: 

If f(x) = sin x, then: 

1) f(x+2) = f(x) 

2) f(-x) = -f(x) 

3) f( - x) = f(x) 

4) f /2(x) = 1 – f 2(x) 

The function of Lemniscates (s) fulfils related identities. In fact, 

we may view the function of Lemniscates as a conjecture of the 

sine function for several curves. Of course, the sine function is 

only significant with respect to the unit circle, whereas (s) 

pertains to the Lemniscates curve. We notice the following 

propositions are true of the function of Lemniscates: 

Proposition 2: 

If f(s) = (s), then: 

1) f(s+2) = f(s) 

2) f(-s) = -f(s) 

3) f( - s) = f(s) 

4) f / 2(s) = 1 – f 4(s) 

The identities 1, 2 and 3 are very easy to observe. The 4th of first 

Proposition is simply rewritten of the well-known identity cos2x = 

1 – sin2x, where cos x is, in fact, the differentiation of sin x. Now 

though the similarity among this identity and the corresponding 

identity for the function of Lemniscates is clear, this is the least 

intuitive identity of (s). 

2.4. The Subtraction and Addition Laws for (S) 

The trigonometry sine function fulfil the addition law sin(x+y) = 

sin x cos y + cos x sin y. Therefore, if we say f(x) = sin (x), then 

f(x+y) = f(x)f /(y) + f /(x)f(y). We derive a related result for (s), 

starting with the below identity: 

∫
 

√(    )
     

 

 

∫
 

√(    )
   ∫

 

√(    )
      



 

 

 

 

 

where  ,    [0, 1] and   
 √       √     

      
   [0, 1] 

By allowing x, y and z equal the 3 integrals above, respectively, 

and applying the  function to both of the sides of the equation, 

we get 

(x+y) = (z) =   
 √       √     

      
  , 0 ≤ x+y ≤ 



 
. 

Now, since (x) =   and (y) =  , we have 

(x+y) = (z) =   
( )√   ( )  ( )√   ( ) 

   ( ) ( )
  , 0 ≤ x+y ≤ 



 
. 

And the last of our basic  properties implies that √   ( )  = 

 ( ), yielding 

 

(   )  
( ) ( )  ( )( )

   ( ) ( )
   , 0 ≤ x + y ≤ 



 
. 

Since both sides of the equation are analytic functions of x which 

are defined  x when y is any fixed value, the equation holds true 

 x and y. 

The subtraction law for (s) shall be easily derived from the 

addition law. Since (-x) = -(x) and /(-x)= /(x) 

(   )  
( ) ( )  ( )( )

   ( ) ( )
  

2.5. Scalar Multiplication 

From addition law, we can get (2x) = 
 ( ) ( )

   ( )
. 

By replacing x and y with 2x and x, respectively, we get 

(3x)+ (x) = (2x+x)+ (2x-x) = 
 (  ) ( )

   (  ) ( )
 . 

Now using the doubling formula 

(2x) = 
 ( ) ( )

   ( )
 

(  )  ( )  

( 
( ( ) ( ))

   ( )
 ( ))

  (
 ( ) ( )

   ( )
)
 

 ( )

 

Finally, since /2(x) = 1 - 4(x), we get our result: 

(3x) = (x) 
    ( )  ( )

    ( )   ( )
 . 

With these understanding, we explore the creation on the 

Lemniscates. The point over the Lemniscates with respect to the 

arc length s could be constructed by straight edge and compass iff 

=(s) is a constructible number. By Noting that as the 

Lemniscates be defined by the equation  (     )  
   (     ) and that 2 = x2 + y2, we note that 4 = x2 – y2. Then 

by solving in terms of , we see that: 

    √
 

 
(     )         √

 

 
(     )   

2.6. Lemniscates on Prime Field Fp 

The equation of Lemniscates on a prime field Fp is 

(     )      (     ) (     ) 
Here a mod p ≠ 0 and p is a prime number. 

Here the elements of the field are integers from 0 to p – 1. Every 

arithmetic operations comprise of whole numbers from 0 to p – 1. 
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The algebraic rules discussed in previous section is used on the 

prime field Fp. 

3. Bilinear Pairings 

In this section how the bilinear pairings is defined and the 

properties of bilinear pairing is discussed with respect to 

Lemniscates curve. 

3.1. Definition of Pairings 

Let p be a prime number. Let (G1, +) be an additive cyclic group 

of points of a lemniscates curve L over a finite field F of order p 

and with identity I. Let (G2, *) be a multiplicative cyclic group of 

order p with identity 1. A bilinear pairing is a function map e on 

(G1, G2), written as  

e :G1 ×G1 →G2, 

which satisfies the following conditions: 

1. Bilinear:  A, B, C G1,  

e(A + B, C) = e(A, C) e(B, C) 

e(A, B + C) = e(A, B) e(A, C) 

2. Non-degenerate: e(A, B)  1 for some A, B  G1. 

3. Alternating: AG1, e(A, A) = 1 

and e(B, C) = e(C, B)–1 

4. Compatible: A L[pp\], BL[p] and p, p\Z, we have epp\(A, 

B) = ep([p
\]A, B). 

3.2. Pairing on Lemniscates 

Before defining the Pairing, take a look at divisor groups and 

divisor is necessary. Let L be an lemniscates curve defined over 

the field F. The divisor group of L is an abelian group which is 

denoted by div(L), generated by the points A of L. Hence, a 

divisor Ddiv(L) is the formal sum 

  ∑   ( )

  ( )

 

where np  Z and np is zero for all but finitely more AL(F). The 

following are some results about divisor and divisor group: 

1. The degree of a divisor D, deg D, is the coefficients np of 

  ∑   ( )

  ( )

 

2. A divisor is principal, if deg D is zero and  

  ∑   ( )

  ( )

   

3. Let L be a lemniscates curve over field F and let A, B  L(F). 

Then (A) ~ (B) iff A = B. 

4. Let L be lemniscates curve over a field F and let D be a divisor 

in div(L). Then  unique point A  div(L) fulfilling D ~ (A) – (I). 

We define :Dp  P, i.e.;  sends each divisor Dp in div(L) to the 

associated point A. 

5. Let A be a point on an lemniscates curve, fA a function, and DA 

= (A) − (I) a divisor such that div(fA) = DA . Then fA(DA) = 

fA(A)/fP(I). 

4. Conclusion 

Lemniscates curve is symmetric curve and have many interesting 

properties. Pairing on elliptic and hyper elliptic curve have been 

used in many cryptographic scheme. Presently research shows 

pairing on elliptic curve is better than pairing on elliptic curves. In 

this article we discussed the point arithmetic on the symmetric 

curve lemniscates and presented the bilinear pairing on this curve. 

This study has to be improved with the development of algorithm 

for pairing operations. 
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