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Abstract 
 
Wireless Sensor Networks (WSN) comprises of tiny wireless sensor nodes for continuous observation of physical or environmental               
conditions. Sensor networks are increasingly deployed in decision-making infrastructures. They are widely used for battlefield                     
monitoring systems and Supervisory Control and Data Acquisition (SCADA) systems. Making decision makers aware of the trust                 
worthiness of the collected data is crucial. WSNs are used by Business Applications. These applications depend on trustworthy sensor 
data to control business processes. It is important to ensure the trustworthiness of the data generated from sensor nodes so that effective 
decisions can be made. Making decision makers aware of the trustworthiness of the collected data is crucial. WSNs are used by Business 
Applications. These applications depend on trustworthy sensor data to control business processes.  

We have proposed a different approach for provenance diffusion for WSN using Bloom filters. The major security attributes of the 
scheme are freshness, confidentiality and integrity. Experimental characteristics and results evaluating the scheme output the efficiency 
of the provenance encoding and its transmission.  
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1. Introduction 

Advances in hardware and network technologies enable the               
development of large-scale sensor networks. Sensor networks are 
deployed everywhere. Wireless Sensor Networks (WSNs) has the 
ability to control and monitor different physical environments. 

Erroneous or non-trustworthy sensor data are due to Intentional 
misbehaviour and unintentional errors. Unintentional errors of the 
sensor data are caused by mal-function of the hardware                     
malposition of the node or exhausted batteries. Intentional               
misbehaviour is caused by attackers, exploiting security                      
vulnerabilities of WSNs. Security for WSN has often to be                
balanced for saving energy and the limited resources (memory, 
CPU) that are available. WSN node are often easily accessible and 
rarely tamper-resistant. Hijacking of nodes and extraction of                 

cryptographic material is easy and gives the attacker the                  
possibility to add malicious nodes or inject bogus data into the 
network. 
The trustworthiness [19] of the collected data and making decision 
makers aware of the trustworthiness of these data become crucial. 
A possible approach to this problem is to associate each data item 
with a trust score. The trust score [2,4] provides an indication 
about the trustworthiness of the data item and can be used for data 

comparison or ranking. If a data item has the highest trust score in 
a data set, then we can say that the data item is the most                         
trustworthy compared with the other data items in the set. 
A multi-hop wireless sensor network consists of a number of     
sensor nodes and a base station. The node in a WSN has three 
roles, as a data source, a data forwarder and data aggregator [4,15]. 

The sensed information is processed by the sensor node and the 
data is transmitted to the base station. Packets are sent to the base 
station through sensor nodes when a data source acquires data. 
The data forwarder sends the received packets to the base station. 
The aggregator joins more than one packets into a larger packet 
and sends the newly created packet to the base station [5,6]. When 
more than one packets are aggregated the energy requirement for 
transmitting the aggregated packet is lower than the energy             

requirement when the packets are independently transmitted. 

2. System Model 

In a multi-hop wireless sensor network, all nodes transmit data on 
the basis of a local clock, and they do not have access to global 
timing information. We assume that nodes that transmit data to 
other node or to one or more sink nodes may fail, i.e. packet 

transmitted is not delivered or received at the intended destination 
node. So it is assumed to be a lossy channel. Each sink node is the 
root of a multi-hop tree that consist of 1:n parent-child relations. 
All the sensor nodes have the dual functionality, like generating 
data and forwarding received as well as generated data to other 
nodes. A finite FIFO send queue is used by each node. A packet is 
added to the queue on generating or receiving data and                         
transmitting the contents of its send queue to its parent node. 

The base station[6] is the central control authority of the routing 
tree, which does not have any resource constraint. Sensor nodes 
monitor their environment and the generated data is periodically 
communicated to the base station or the designated cluster head, if 
any. An event is monitored by a number of sensors. On a                 
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particular time period, independent monitoring is required at sink 
nodes, if any, or the base station. 

3. Provenance Model 

A multi-hop WSN consist of a number of nodes are usually               
modeled as  an acyclic directed graph G(N,E), where N is the set 
of nodes and E is the set of edges, defined as: 
N={ni |  ni is a network node with an identifier i}, a set of nodes. 
E={eij | eij is an edge connecting network nodes  ni and  nj}, a set 
of directed edges between nodes. 

 
Fig. 1:  a) Simple provenance; b) Aggregated provenance 

 

In the fig.1 Provenance Graphs with nodes numbered n1, n2, etc 
and BS is the Base stations are represented. 

4. Provenance Encoding Using Bloom Filter 

A Bloom filter is a bit array on m bits, all set to zero. Here we 
represent the Bloom filter as a data structure for probabilistic        

representation of a set of data items D={d1, d2, …., dn} using an 
array of m bits with k different hash functions h1, h2, …, hk. The 
data item di is associated to the output of hash function hi, which is 
mapped uniformly to the range [0, m-1] and is represented as an 
index pointing to a bit in an n-bit array. Bloom filter is represented 
as {b0, b1…, bm-1} with an array initial value, for all bi, set to 0.  
By using Bloom Filter[6,9] approach false positive matches are 
possible on the other hand false negative matches are not possible. 

False positive error is the incorrect rejection of a true null                 
hypothesis. This type of errors leads one to conclude that a                
supposed effect or relationship exists when in fact it does not. 
Examples of false positive errors include a sensor node shows a 
data to have a value when in fact the data does not have the value 
or which represents a null value. A false negative error is the              
failure to reject a false null hypothesis. Examples of false negative 
errors would be a sensor node shows a null value when in fact the 

data does have a value. 

Constructing Bloom Filters 

Consider a set D={d1, d2, …., dn} of  n elements.  Bloom filters 
describe membership information of D using a bit vector V of 

length m. For this, k hash functions, khhh ,...,, 21  with 

}..1{: mXhi  , are used as described below: 

The following procedure builds an m bits Bloom filter,                   

corresponding to a set D and using khhh ,...,, 21  hash functions: 

Function BloomFilter(set D, hash_func, int m){ 
return BF; 
BF = allocate m bits initialized to 0; 
for each ai  in set D{ 

for each hash_func hj{ 
BF[hj(ai)] = 1; 
}} 
return BF; 

} 
Therefore, if ai is member of a set D, in the resulting Bloom filter 
V all bits obtained corresponding to the hashed values of di are set 
to 1.  Testing for membership of an element e is equivalent to 
testing that all corresponding bits of V are set: 

Function MemberCheck (e, filter, hash_func) { 
return  1 or 0; 
for each hash_fun hj{ 
 if BF[hj(elm)] != 1 return 0; 
} 
 return 1; 
} 
Filters, BF, can be built incrementally as new elements are added 
to a set the corresponding positions are computed through the hash 

functions and bits are set in the filter.  Moreover, the filter               
expressing the reunion of two sets is simply computed as the                
bit-wise OR applied over the two corresponding Bloom filters. 

 
Fig. 2: A sample bloom filter with k=3, n=4, and m=16 

 

Initially the array values are set to 0s, each item in the di is being 

hashed k times and the bits corresponding to the values are then 
set to 1 in the bit array. 
One illustrious feature of Bloom filters is that there is a clear       
balance between the size of the filter and the rate of false positives.  
Observe that after inserting n keys into a filter of size m using k 
hash functions, the probability that a particular bit is still 0 is: 
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(Here we assume perfect hash functions that spread the elements 
of D evenly throughout the space {1..m}.  In practice, good results 
have been achieved using MD5 and other hash functions). Hence, 
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In Formula-2 perr is minimized for 2ln
n

m
k   hash functions.  

In practice however, only a small number of hash functions are 
used.  The reason is that the computational overhead of each hash 
additional function is constant while the incremental benefit of 

adding a new hash function decreases after a certain threshold. 
Formula-2 is the base formula for engineering Bloom filters. It 
allows, for example, computing minimal memory requirements 
(filter size) and number of hash functions given the maximum 
acceptable false positives rate and number of elements in the set. 



















k

perr

e

k

n

m
ln

1ln

(bits per entry)                                      (3) 



287 International Journal of Engineering & Technology 

 

 

The main design commutations are the number of hash functions 
used (driving the computational overhead) and the size of the filter 
and the collision (error) rate[12].  Formula-2 is the main formula 
to tune parameters according to application requirements. 
For inserting an element di belongs to D into a bloom filter, di is 

hashed with all the k hash functions generating the output 
h1(di)(1<=i<=k). To examine the membership of an item d’ from 
D, the bits at indices hi(d’)(1<=i<=k) is checked, if found any 0 
values, then d’ is not belongs to D, else all the bits are set to 1 
with a high probability of being d’ belongs to D. If a hash                  
collision is occurred false positive method is used to make the 
membership verification [6] and marks the indices hi(d’) to 1. 
Consider k number of hash functions, m as the bloom filter size 
(16bit in Fig. 1) and maximum number of elements in D is P [16]. 

The false positive probability is equal to that of getting 1 in all the 
k array positions computed by the hash functions while checking 
the membership of an element that was not inserted in the bloom 
filter.  
Each node in the packet path encodes its ID into an array through 
the bloom filter and then adds the array to the passing by packet. 
All elements in the array are set to 0 before the source of data 
node ID is encoded [21]. On receiving the packet at destination, 

the base station tests all the nodes in the wireless sensor network 
to get the nodes in the packet path. 

5. Provenance Collection and Encoding 

A distributed algorithm is used to encode provenance in an                  
in-packet bloom filter [16], and a centralized algorithm is used by 

the base station to decode the provenance [10]. A unique sequence 
identification number is attached to the forwarded packet along 
with data value and an in-packet bloom filter which holds the 
provenance also transmitting the provenance graph vertices over 
an in-packet bloom filter. 
For a data packet, provenance encoding is the generation of               
vertices in the provenance graph and inserting them into the bloom 
filter. Each vertex originates at a node and represent s the prove-

nance record of the host node. A vertex id uniquely identifies a 
vertex. The vertex id is generated for each packet based on the 
sequence number   (sqc) of the packet and the secret key (Ki) of 
the host node. A cryptographic function is used to produce this id 
in a secure way. For a given data packet, the vertex id of a vertex 
of the node ni is computed[13] as: 
vertex_idi=GENvertex_id(ni,sqc)=SBKi(sqc)   
where SB is a secure block cipher such as DES, AES, etc. 
A bloom filter is created whenever a source node generates a data 

packet, and initialized it to all 0’s, and is referred to as ibf0.              
According to the above equation the source node generates a         
vertex and inserts the vertex_id into it and transmits the bloom 
filter as a part of the packet. On receiving the packet, the                     
intermediate node nj performs data aggregation as well as                
provenance aggregation [4] [18]. If nj receives data from one child 
nj-1, then nj aggregates the partial provenance contained in the 
packet with own provenance record. Now the in-packet bloom 

filter (ibfj-1) belongs to the received packet has a partial                    
provenance (the sub-path provenance graph from source to                 
destination, nj-1. If the node nj has more than one child, the node 
generates an aggregated provenance from the partial provenance 
received from its child nodes and from its own provenance record.   
Initially, nj calculates a bloom filter ibfj-1 by performing bitwise 
OR operation on the in-packet bloom filters received from                
received from its children. ibfj-1 constitutes a partial but                         

aggregated provenance from all the child nodes. In both the case, 
the conclusive aggregated provenance is generated by encoding 
the provenance record of nj into ibfj-1, and the node nj creates a 
vertex using the Eq.(1) , inserts t he vertex_id into ibfj-1 which is 
then cited as ibfj. 

 

Provenance decoding and verification 

The base station conducts the verification process [13] to check 

the integrity of the transmitted provenance when a data packet is 
received at the base station. First the base station initializes a 
bloom filter with all zeros, and the bloom filter is updated by              
adding the vertex_id of each node in the path P and inserting this 
id into the bloom filter [15], which interprets the encoded                    
provenance. The base station now compares the bloom filter to the 
received in-packet bloom filter ibf. If the comparison fails, it                
indicates the change in the data packet transmission path of a 

bloom filter modification attack.  

 
Fig. 3: Provenance workflow at the base station 

 

After the successful provenance verification, if it is found that 
there is a natural change in the data flow path, we can determine 

the path correctly, otherwise an error has occurred probably in the 
form of an attack. One possible attack is to make all the                       
provenance bits to 1, signifies the presence of every provenance 
nodes. The threshold introduced in the Fig. 3 Provenance work-
flow graph, ʄ>ʄmax; where ʄ is the density metric, indicates the 
number of 1's in the provenance information in the in-packet 
bloom filter. If the density metric is below or equal to the                   
threshold, ʄ>ʄmax, the provenance is considered to be valid. As the 

bloom filter has m elements and k hash functions, the upper bound 
for the number of 1's in a bloom filter is set as nʄmax. Considering 
all these bounds, for an attacker, there is a very little chance to flip 
some bits to modify a legitimate node. Attacker [10] has to                   
identify the k bit positions to the corresponding node, which is 
different for each packet, which makes an attacker unsuccessful in 
this attack. Random modification of some bits is detected at the 
verification phase and makes it unsuccessful during the                               

provenance collection phase. 

6. Experimental Analysis and Results 

In this section, we present our experimental performance analysis. 
We first describe the experimental environment, and then present 
the experimental analysis and results. 
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Experimental Environment 

We have done simulation using OMNeT++ for wireless sensor 

network with a minimum of 2 nodes and a maximum of 100 nodes. 
Simulation model integrated a simple and robust technique to 
handle topological changes, since encoded provenance is                   
compared with the calculated provenance at each intermediate 
node, we can reduce the overhead of carrying all the provenance 
information to the base station. So the decoding errors are                    
minimized and speed up the provenance transmission.  
The objective of our experiments is to analysis the competence 

and effectiveness of our approach for the encoding and decoding 
of data provenance. To evaluate the efficiency, we measure the 
elapsed time for processing a data item with our cyclic framework 
in the context of a large scale sensor network and a large number 
of data items. To evaluate the effectiveness, we simulate an                  
insertion of incorrect data items into the network and shown that 
trust scores rapidly reflect this situation. For simplicity, we model 
our sensor network as an N-ary complete whose maximum                   

number of inputs that the output of a network node can feed                 
(fanout) and depth are N and d, respectively. We changed the               
values of N and d to control the size of sensor networks for as-
sessing the scalability of our trust framework. 

Experimental Results 

The study shows the balance between trustworthiness and                     
provenance similarity of data. If the dissimilarity increases the 

transmission overhead is also increases. To demonstrate the                 
performance of the probabilistic provenance transmission in a 
dynamic and asymmetric network we have performed OMNet++ 
simulation. And the result show that the probabilistic provenance 
transmission with the Bloom filter encoding scheme can utilize up 
to 40-60% less energy and converge with very less about 40% 
fewer packets than the traditional approach [], which increases the 
network life as the energy consumption is less. 
The decoding process for probabilistic Bloom filter provenance 

method requires a priori knowledge of order of nodes. Since topo-
logical changes are usual in WSNs, we need to keep node order 
information up-to-date so that encoding methods can correctly 
decode provenance. To study link change, we have done a simple 
simulation experiment. Fig. 4 shows a snapshot of link changes 
for two thousand packets transmitted from a source to the base 
station in a highly asymmetric 10X10 grid network. The link 
change of a packet denotes the number of next hop changes on the 

way from the source node to the base station with respect to the 
path followed by the preceding packet. The goal of our approach 
is to observe changes and transmit provenance of nodes that are 
part of the changed links with order information among them. 

 
Fig. 4: Topological changes of packets in a grid network 

 

Provenance Decoding Error: The provenance decoding process 
retrieves the provenance from the ipBF (in-packet Bloom-Filter. 
To measure the accuracy and efficiency of our provenance 
scheme, we calculate decoding error in both the verification and 
collection phases. The verification fails when there is a data flow 
path change or upon a Bloom-Filter modification attack.                     
Provenance verification failure rate (VFR) measures the ratio of 
packets for which verification fails. [20] 

 
Fig. 5: VFR for paths of 2 to 12 hops with various bloom filter sizes 

 

For each path length, the verification failure rate is averaged over 
1000 distinct paths. The results show that the provenance                 
verification process fails only for a very small fraction of packets. 

For most of the packets, verification process is sufficient to              
retrieve the provenance. The expensive provenance collection 
process is executed only for a very few packets when verification 
fails. Here verification failure rate increases linearly with the                
increase in path length. Also verification failure rate is not               
remarkably effected by Bloom-filter size, proving that even small 
Bloom-filter sizes provide good security.  

 
Fig. 6: The variation of provenance VFR over time 

 

The above figure shows the variation of provenance verification 

failure rate (VFR) over time as the number of packet                         
transmissions increases. As the network gets stable with time, the 
data paths do not change often and hence the VFR approaches 0.  

  
Fig. 7(a): Provenance collection analysis with number of hops 

 

 
Fig. 7(b): Provenance collection analysis with BF size 

 

Figures 7(a) and 7(b) shows the percentage of provenance               
collection error for different number of hops and the                                
corresponding false positive rates, respectively. [21] 

Fig. 8(a) shows the false positive rate as a function of the number 
of hash functions used.  The size of the Bloom filter is 32 bits per 
entry (m/n=32). In this case using 22 hash functions minimizes the 

false positive rate. Note however that adding a hash function does 
not significantly decrease the error rate when more than 10 hashes 
are already used. 
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Fig. 8(a): Representation of false positive rate 

 
Size of Bloom filter (bits/entry) as a function of the error rate        

desired. Different lines represent different numbers of hash keys 
used. Note that, for the error rates considered, using 32 keys does 
not bring significant benefits over using only 8 keys, which is 
shown in Fig. 8(b) 

 
Fig. 8(b): Size of BF as a function of the error rate 

7. Related Work 

Provenance for a packet document only its aggregation and                  
forwarding information [12]. The size of the provenance increases 
when there is an increase in the transmission hops and network 
nodes in a wireless sensor network. Even if there are a number of 
encoding schemes are available, when considering very large scale 
wireless sensor networks, these encoding methods suffer from 

lack of something to reach a particular standard, such as, (a) the 
broadcast flooding [9] can drain the power on each node, (b)                
compression techniques fail to accommodate provenance                  
information in a packet as the size of the provenance exceeds the 
capacity of the packet.  

8. Conclusion 

We address the issues of transmitting provenance for wireless 
sensor networks by discussing the Bloom filter method of                
provenance transmission scheme. We have proposed a novel             
approach for provenance transmission for WSN using bloom     
filters. The major security attributes of the schemes are freshness, 
confidentiality and integrity. Experimental characteristics and 
results evaluating the scheme output the efficiency of the                  

provenance encoding and transmission. In future work we focus 
on ranking the information trustworthiness of provenance data in 
wireless sensor network, also study how good a security                  
framework can observe and respond to different attacks. 
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