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Abstract 
 
The paper investigates an analytical approach for robust stabilization of nonlinear chaotic financial system in the presence of uncertain 
parameters. The primary focus of this paper is to find a robust solution for quickly adjusting and controlling the interest rate, investment 
demand and price exponent when the chaotic phenomenon occurs in the financial system or economic crisis happens. The paper fi rst 

demonstrates the non-linear dynamical model of the chaotic financial system and then it adopts Lyapunov stability theory based adaptive 
control scheme for robust stabilization of nonlinear chaotic financial system in the presence of uncertain parameters. Numerical 
simulations are demonstrated to verify the effectiveness of the proposed control scheme. The simulation results of this paper show that 
control scheme successfully eliminates the chaos of the nonlinear financial systems 
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1. Introduction 

Chaos control was first introduced Edward Ott, Celso Grebogi and 
James A. Yorke [1] in 1990 and subsequently, several research 
works have been explored to develop chaos control frameworks 
for dynamical systems due to its potential applications in 

economics, financial systems and various fields of engineering 
and natural sciences (see articles [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16]). The chaotic systems are very rich in dynamics 
and possess great sensitivity to initial conditions and this dynamic 
property is popularly known as the butterfly effect [17, 18]. In 
other words, if two trajectories emerging from two different close-
by initial conditions of the system separate exponentially in the 
course of time, then it can produce an infinite number of 
dynamical behaviors (either periodic and not periodic), with the 

only help of tiny perturbations chosen properly [17, 19, 1, 20]. 
The chaotic behavior is undesirable in any system, and it degrades 
entire system performance. Therefore, chaos of any dynamical 
system should be controlled or synchronized as much as possible.  
   The chaotic phenomenon often appears in the financial system 
during the economic crisis and it was first found in 1985 [21]. In 
2007, the U.S. subprime mortgage crisis triggered the global 
economic crisis, which also shows the existence of the butterfly 

effect and chaos in the finance system [16]. If chaotic 
phenomenon occurs in the economic system or economic crisis 
happens, the macroeconomic operation can face uncertainty and 
indefiniteness [21]. Even though the government can adopt macro-
control measures such as revising financial policies or the 
monetary policies to interfere, but the effectiveness of the 
interference is very limited. The instability and complexity make 
the precise economic prediction greatly limited, and the 

reasonable prediction behavior can become complicated as well 
[22]. Thus, chaos control of financial systems imposes a great 
impact on the research. It is an interdisciplinary area of research 

and has become a hot topic for many researchers within 
engineering, mathematical and economist communities. The 
classical goal of chaos control is to force a given financial system 
to show robustly a stable behavior. Controlling the chaos is more 

efficient and significant rather than synchronizing the chaos in 
many chaotic financial systems due to the sensitivity of economics 
chaos to the initial value. Several studies attempted to develop the 
control framework for chaotic financial systems [23, 24, 25, 26, 27, 
28, 16]. Linear feedback, speed feedback, selection of gain matrix, 
revision of gain matrix controllers [21], time-delayed feedback 
controllers [29] and single controller scheme [30] were used for 
the control of the chaotic financial system. The robust stabilization 
concept for a non-linear chaotic financial system with uncertain 

parameters via adaptive control scheme was not discussed in any 
of the literature. In this work, an analytical investigation on the 
robust stabilization of the nonlinear chaotic financial system is 
explored. The simulations result of this paper indicate that 
proposed control scheme is efficient way to adjust and control the 
interest rate, investment demand and price exponent when chaotic 
phenomenon appears in the non-linear financial system. 
   The rest of the paper is organized as follows: In section 2, three-

dimensional non-linear chaotic financial system is briefly 
explained, and chaotic behaviors of non-linear finance system are 
also demonstrated via basic system theory concept. Stabilization 
methodology for non-linear chaotic financial system is described 
in section 3 and section 4 deals with numerical simulation 
experiments and its results analysis to verify the effectiveness of 
the present study. The paper concludes in section 5.  
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2. Illustration of Non-linear Chaotic Financial 

System Model 

This section briefly describes a non-linear chaotic financial system 
model. The contents presented in this section are self-explanatory 
and that help to illustrate the chaotic behavior of a non-linear 
financial system model.  

2.1. State Space Model of Chaotic Finance System  

  Consider the following three-dimensional autonomous non-linear 
chaotic financial system model which consists of production, 

currency and labor force [23, 21, 27, 22]:  
 

{

𝑥1̇ = 𝑥3 + (𝑥2 − 𝑎)𝑥1

𝑥2̇ = 1 − 𝑏𝑥2 − 𝑥1
2#                                                                           (1)

𝑥3̇ = −𝑥1 − 𝑐𝑥3

 

 

where x1, x2 and x3 represent the interest rate, investment demand 

and price exponent or index respectively in the model.  

 
Fig: 1: 3D phase plane of x3, x1 and x2 in the non-linear chaotic finance 

system 

 
Fig. 2: 3D phase plane of 𝑥1, 𝑥2 and 𝑥3 in the non-linear chaotic finance 
system 

The model describes the time-variation of three state variables 
x1, x2 and x3. The constants a, b and c  are the uncertain 

parameters, but all are non-negative. The parameter a  denotes the 
saving. b is the cost per investment and c denote the elasticity of 
demands of commercial markets. The factors which are 
responsible for changing the interest rate x1 mainly come from 

two aspects: first, disequilibrium from the investment market, i.e. 
the surplus between investment and savings and second, structural 
adjustment from goods price. The changing rate of x2 is in 
proportion to the rate of investment, and in proportion to an 

inversion with the cost of investment and interest rates. Changes 
in x3, on the one hand, are controlled by the disequilibrium 
between supply and demand in commercial markets, and on the 
other hand, are influenced by inflation rates. Besides these aspects, 
the average profit margin also influences the changes of interest 
rate x1. The changes of x1 is in proportion with the rate of average 
profit margin dx1, where d  is a proportionality constant and its 
value can vary within a certain range. Therefore, based on the 

system (1), a new chaotic finance system can be generated by 
adding the average profit margin dx1, then the new three-
dimensional autonomous equations for chaotic financial system 
model has the following form [23, 21, 27]:  
 

{

x1̇ = x3 + (x2 − a)x1 + dx1

x2̇ = 1 − bx2 − x1
2

x3̇ = −x1 − cx3

                                                         (2) 

 

 
Fig. 3: 3D phase plane of 𝑥2, 𝑥3 and 𝑥1 in the non-linear chaotic finance 
system 

2.2 Dynamical Behaviors of the Chaotic Finance 

System 

Chaotic systems are ultimately bounded [ 31, 22, 32, 33] and the 
phase portraits of the systems will be ultimately trapped in some 
compact sets. When the parameter values are taken as 
a  = 0.9, b  = 0.2, c  = 1.2 and d  = 0.5, non-linear financial system 

model (2) exhibits chaotic behavior. The 3D phase planes of the 
non-linear chaotic financial system (2) under the initial conditions 

x1(0) = 1, x2(0) = 3 and x3(0) = 5 are demonstrated in Fig.1-3 and 
the three-dimensional view of the chaotic strange attractors can be 

seen in Fig. 1-3. The time series response plot is also presented in 
Fig. 4.  

 
Fig. 4: State response of the non-linear chaotic finance system 
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The Lyapunov exponents spectrum are depicted in Fig. 5. For the 

system parameters a  = 0.9, b  = 0.2, c  = 1.2 and d  = 0.5 and the 

initial conditions x1(0) = 1, x2(0) = 3 and x3(0) = 5, we obtained 

Lyapunov exponents λ1 = 0.048103, λ2 = − 0.055407 and 

λ3 = − 0.61829. 

   One can observe that there is a positive Lyapunov exponent over 
a wide range, which implies that the system is chaotic over a 
broad range. Now, we also consider the fact that the solutions of 
chaotic system (2) are bounded. This can be justified by the 
following theorem:

 
Fig. 5: The Lyapunov exponents spectrum 

Table 1: Analysis of equilibrium points for non-linear financial system 
Existence of stability conditions Existence of equilibrium points Stability of equilibrium points 

c − b − abc + bdc < 0,  
c + a − 1/b − d > 0 

P0(0,1/b, 0) Stable convergence 

c − b − abc + bdc < 0, 
 c + a − 1/b − d < 0 

P0(0,1/b, 0) Saddle 

c − b − abc + bdc = 0,  
0 < c < 1 

P0(0,1/b, 0) Unstable point of the non-hyperbola 

c − b − abc + bdc > 0 P0(0,1/b, 0), 
P1,2(±r, (1 + ac − dc)/c, ∓r/c) 

where r = √(c − b − abc + bdc)/c  

P0 is stable,  

P1,2 are unstable 

Theorem 1: All solution of the non-linear chaotic finance system 
(2) with parameters are globally bounded for time t 

 
Proof: Consider the Lyapunov function candidate  

V(x1, x2 , x3) =
1

2
(x1

2 + x2
2 + (x3

2 − a)2) 

The derivative of V(x1, x2 , x3) along the trajectory of (2) is given 

by 
 

V̇ = x1x1̇ + x2x2̇ + (x3 − a)x3̇ 

= x1(x3 + (x2 − a)x1 + dx1) + x2(1 − bx2 − x1
2) 

+(x3 − a)(−x1 − cx3) 

= −(a − d)x1
2 + ax1 − bx2

2 + x2 − cx3
2 + cax3 

⇒ V̇ = −ex1
2 + ax1 − bx2

2 + x2 − cx3
2 + cax3 (here e = a − d) 

Hence, one can construct the following inequality  

a (x1 −
1

2
)

2

+ b (x2 −
1

2b
)

2

+ c(x3 − a)2 >
1

4b
+

e

4
+

ca2

4
 

for any sufficiently large k0 to satisfy V̇(x1, x2 , x3) < 0 provided 
that (x1, x2 , x3) satisfy V(x1, x2 , x3) = k with k > k0 .    

   Consequently, on the surface  

{(x1 , x2 , x3)|V(x1 , x2 , x3) = k} 

where k > k0 , one has V̇(x1, x2 , x3) < 0, which implies that the 
set 

{(x1, x2 , x3)|V(x1, x2 , x3) ≤ k}  is a trapping region, so that the 

solutions of chaotic system (2) are globally bounded. 

2.3.  Equilibrium Points for Non-Linear Financial 

System  

The equilibrium point for autonomous system is defined in 
following way: 
Definition 1. A point 𝑥 = 𝑥∗ is said to be an equilibrium point of 

autonomous system if it has the property that whenever the state of 
the system starts at 𝑥∗ it will remain at 𝑥∗ for all future time. For 

the autonomous system defined by �̇� = 𝑓(𝑥),  the equilibrium 

points are the real roots of the equation 𝑓(𝑥) = 0. 

The existence of equilibrium points and its stability 

conditions for a non-linear chaotic financial system (2) are 

summarized in the Table (1) 

3. Stabilization Methodology for a Non-linear 

Chaotic Financial System 

   Chaos control is more important than synchronization especially 
when the economic system appears in chaos, because control is an 
important way to restore system from chaotic state to a stable 

state.  This section discusses about stabilization method via 
adaptive control law for a non-linear chaotic financial system. The 
effect of the proposed control method for stabilizing is mainly 
reflected in the sooner convergence of the chaotic system at 
equilibrium point. At first, the section describes controlled system 
formulation and then illustrate some theorems that help to 
streamline the main results of this article. Consider the 
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transformation of system (2) at the equilibrium point 

P1 (r,
1+ac−dc

c
, −

r

c
) via: 

 

{

𝑋1 = 𝑥1 − 𝑟

𝑋2 = 𝑥2 − (
1+𝑎𝑐−𝑑𝑐

𝑐
)

𝑋3 = 𝑥3 +
𝑟

𝑐

                                                                (3) 

 
Using (3) in (2), the following expressions are obtained: 

X1̇ = (X3 −
r

c
) + (X2 + (

1 + ac − dc

c
) − a) (X1 + r)

+ d(X1 + r) 
On simplifying and rearranging, 

⇒ X1̇ =
X1

c
+ rX2 + X1X2 + X3 

Now 

X2̇ = 1 − b (X2 + (
1 + ac − dc

c
)) − (X1 + r)2 

       = 1 −
b

c
− ab + bd − bX2 − X1

2 − 2rX1 − r2 

⇒ X2̇ = −X1
2 − 2rX1 − bX2   (since r = √

c − b − abc + bdc

c
) 

Again, 

X3̇ = −(X1 + r) − c (X3 −
r

c
) 

⇒ X3̇ = −X1 − cX3 
Thus, non-linear chaotic financial system defined by (2) is 
transformed as 
 

{

𝑋1̇ =
𝑋1

𝑐
+ 𝑟𝑋2 + 𝑋1𝑋2 + 𝑋3

𝑋2̇ = −𝑋1
2 − 2𝑟𝑋1 − 𝑏𝑋2

𝑋3̇ = −𝑋1 − 𝑐𝑋3

                                                     (4) 

 
The equilibrium points of transformed system (4) is computed as 
follows: 

E0(0,0,0), 𝐸1 (−𝑟,
𝑟2

𝑏
,
𝑟

𝑐
) , 𝐸2 (−2𝑟, 0,

2𝑟

𝑐
) 

The following controlled system formulation is considered to 
suppress the chaotic behavior of a non-linear financial system (4): 
 

{

𝑋1̇ =
𝑋1

𝑐
+ 𝑟𝑋2 + 𝑋1𝑋2 + 𝑋3 + 𝑢1

𝑋2̇ = −𝑋1
2 − 2𝑟𝑋1 − 𝑏𝑋2 + 𝑢2

𝑋3̇ = −𝑋1 − 𝑐𝑋3 + 𝑢3

                                              (5) 

 
where ui  (i = 1,2,3)  are external control inputs. By selecting 

suitable control function 𝑢𝑖  (𝑖 = 1,2,3), the chaotic trajectory of 

system (4) will be steered to the equilibrium point E0(0,0,0). 
 

The control function 𝑢𝑖  (𝑖 = 1,2,3) is formulated by applying 
Lyapunov stability theorem based adaptive control law. 

Theorem 2 (Lyapunov stability for autonomous system): For 
autonomous system, let 𝒟 ⊂ ℛ𝑛  be a domain containing the 

equilibrium point of origin. If there exists a continuously 
differentiable positive definite function 𝒱: 𝒟 → ℛ such that 

�̇� =
∂𝒱

∂x

dx

dt
=

∂𝒱

∂x
f(x) = −𝒲(x)                                                     (6) 

is negative semi-definite in 𝒟, then, the equilibrium point origin is 

stable. Moreover, if 𝒲(𝑥)  is positive definite, the equilibrium 

point origin is asymptotically stable. 
In addition, if 𝒟 = ℛ𝓃 and 𝒱 is radially unbounded, i.e., 

‖𝑥‖ → ∞ ⇒ 𝒱(x) → ∞                                                                 (7) 

Proof of this theorem can be found in [34]. 

The control function ui (i = 1,2,3)  can be constructed via 

following theorem using Lyapunov stability theory. 

Theorem 3: The controlled system (5) together with adaptive 
control law  

𝑢𝑖 = −𝑘𝑖𝑋𝑖 ,   𝑘𝑖
̇ = 𝛾𝑖𝑋𝑖

2,   𝛾𝑖 > 0 (𝑖 = 1,2,3)                               (8) 

is asymptotically stable at equilibrium point 𝐸0(0,0,0). 

Proof: On applying control law (8) into (5), the controlled system 

(5) can be expressed as follows: 

{

𝑋1̇ =
𝑋1

𝑐
+ 𝑟𝑋2 + 𝑋1𝑋2 + 𝑋3 − k1X1

𝑋2̇ = −𝑋1
2 − 2𝑟𝑋1 − 𝑏𝑋2 − k2X2

𝑋3̇ = −𝑋1 − 𝑐𝑋3 − k3X3

                                         (9) 

The Jacobian matrix of the system (9) is given by 

𝐽 = [
𝑋2 − 𝑘1 +

1

𝑐
𝑟 + 𝑋1 1

−2𝑟 − 2𝑋1 −𝑏 − 𝑘2 0
−1 0 −𝑐 − 𝑘3

]                                   (10)  

Now, the Jacobian matrix J is evaluated at the equilibrium point 

E0(0,0,0) and it is given by 

𝐽|(X1=X2=X3=0) = [
−𝑘1 +

1

𝑐
𝑟 1

−2𝑟 −𝑏 − 𝑘2 0
−1 0 −𝑐 − 𝑘3

]                   (11) 

We want to show that the trajectory of the controlled system 
approaches this equilibrium set as t → ∞, which means that the 

adaptive controller succeeds in regulating Xi,  (i = 1,2,3) to zero. 

Consider the Lyapunov function candidate 

V =
1

2
(X1

2 + X2
2 + X3

2) +
1

2
[

(k1−k1̂)
2

γ1
+

(k2−k2̂)
2

γ2
+

(k3−k3̂)
2

γ3
]       (12) 

where k1̂ , k2̂  and k3̂  are the estimates of k1 , k2  and k3 , 
respectively by virtue of (11).  

The derivative of V with respect to time along the trajectory of the 

system is given by 

V̇ = X1X1̇ + X2X2̇ + X3X3̇ + (k1 − k1̂)X1
2 + (k2 − k2̂)X2

2 +

         (k3 − k3̂)X3
2  

     = X1 (
X1

c
+ rX2 + X1X2 + X3 − k1X1) + X2(−X1

2 − 2rX1 −

          bX2 − k2X2) + 𝑋3(−𝑋1 − 𝑐𝑋3 − 𝑘3𝑋3) + (𝑘1 − 𝑘1̂)𝑋1
2 +

          (𝑘2 − 𝑘2̂)𝑋2
2 + (𝑘3 − 𝑘3̂)𝑋3

2  

       =
X1

2

c
− rX1X2 − bX2

2 − cX3
2 − k1̂X1

2 − k2̂X2
2 − k3̂X3

2  

= − (k1̂ −
1

c
− 1) X1

2 − (X1 +
rX2

2
)

2

− (k2̂ + b −
r2

4
) X2

2

− (k3̂ + c)X3
2 

⇒ V̇ ≤ − (k1̂ −
1

c
− 1) X1

2 − (k2̂ + b −
r2

4
) X2

2 − (k3̂ + c)X3
2  (13) 

When k1̂ >
1

c
+ 1, k2̂ >

r2

4
− b  and k3̂ ≻ −c , the inequality (13) 

can be evaluated as 

V̇ ≤ − (k1̂ −
1

c
− 1) X1

2 − (k2̂ + b −
r2

4
) X2

2 − (k3̂ + c)X3
2 < 0 

Since the Lyapunov function candidate (12) is positive definite 
and its time derivative is negative definite in the neighborhood of 
the equilibrium point E0(0,0,0), therefore the equilibrium point 

E0(0,0,0)  of controlled system (9) is asymptotically stable via 

Lyapunov stability theorem.  In other words, the trajectory of 
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controlled system (9) asymptotically converges to the equilibrium 
point E0(0,  0,  0)  with the adaptive control scheme via the 

parameter estimation. 

Remark 1. The Lyapunov function candidate (12) is dependent on 

a constants k1̂ , k2̂ and k3̂ which are required to satisfy k1̂ >
1

c
+

1, k2̂ >
r2

4
− b  and k3̂ ≻ c.  Since in this theorem, the constants 

a, b, c  and d  are uncertain parameters, therefore, we may not 

know the constants k1̂ , k2̂  and k3̂  explicitly but we know that it 

always exists. This highlights another feature of Lyapunov's 
method, namely, in some situations we may be able to assert the 
existence of a Lyapunov function that satisfies the conditions of a 
certain theorem even though we may not explicitly know that 
function. 

4. Numerical Simulation and Results Analysis 

In this section, numerical simulations are demonstrated to verify 
the effectiveness of the investigated method. To verify the 
robustness of control scheme against uncertain parameters, two 
sets of system's parameters: 

(a = 0.9, b = 0.2, c = 1.2, d = 0.5) 
and 

(a = 0.6, b = 0.2, c = 0.9, d = 0.5) 
are selected in this simulation such that non-linear chaotic 
financial system model (2) exhibits chaotic behavior in the 

absence of control. 

 
Fig. 6: Stabilized state response of Interest rate 

The initial states of controlled system (5) (for both model's 

parameters) are chosen as 

 (x1(0) = 1; x2(0) = 3; x3(0) = 5)  
and 
 (x1(0) = 2; x2(0) = 1; x3(0) = 4)  respectively. The gain 

parameters for adaptive control scheme (8) are selected as 
γ1 = 1, γ2 = 2.5 and γ3 = 1.5. 

 
Fig. 7: Stabilized state response of Investment demand 

The time response of interest rate (x1) of the controlled chaotic 

financial system is shown in Fig. 6. The Fig. 7 and Fig. 8 illustrate 
the time response of investment demand (x2) and price exponent 
(x3) respectively. It can be clearly seen from the Fig. 6, Fig. 7 and 

Fig. 8 that the adaptive control scheme successfully steer the non-
linear chaotic financial system from initial states (perturbed states) 

to desired states i.e. [35]equilibrium point (0,0,0). Thus controlled 

system for non-linear chaotic financial system is asymptotically 
stable and finally, it can be concluded that the investigated 
adaptive control scheme is able to control the chaos in non-linear 
financial system in presence of uncertain parameters. 

 
Fig. 8: Stabilized state response of price exponent 

5. Conclusion  

This paper presents an analytical approach for robust stabilization 
of nonlinear chaotic financial system in the presence of uncertain 
parameters. The paper first demonstrates the three-dimensional 
non-linear chaotic financial system model, and its chaotic 
behaviors via basic system theory concept and then stabilization 
method are briefly illustrated using Lyapunov stability theory and 

adaptive control scheme. The numerical simulation in 
MATLAB/SIMULINK is then provided to show the effectiveness 
and feasibility of the proposed method. The simulation results of 
this paper indicate that proposed control scheme is efficient way to 
adjust and control the interest rate, investment demand and price 
exponent when chaotic phenomenon appears in the non-linear 
financial system or economic crisis happens. The proposed control 
method in this paper is easy to implement and can be extended to 

other similar systems. It is believed that the chaos control and 
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application of chaotic finance system will be studied further in 
future.[36][37] 
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