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Abstract

In recent years the social networks are widely used the way of connecting people, interact with each other and share the information. The
social network data is rich in content and the data are published for third party users such as researchers. The social interaction between
individuals changes rapidly as time changes so there is a need of privacy preserving in dynamic networks. An adversary can acquire some
local knowledge about individuals in the network and can easily breach the privacy of a few victims. This paper mainly focus on preserving
privacy in sequential published network data where the adversary has some knowledge about the number of mutual friends of the target
victims over a time period. The £"-Number of Mutual Friend Anonymization model is proposed to anonymize each sequential published
network. In this privacy model, k indicates the privacy level and w is the time interval taken by the adversary to acquire the knowledge of the
victim. By this approach the adversary can not identify the victim by acquiring the knowledge of each sequential published data. The

performance evaluation shows that the proposed approach can preserve many characteristics of the dynamic social networks.

Keywords: social network, privacy, dynamic, anonymize, mutual friend.

1. Introduction

Social Network sites like Facebook, Linkedin and Twitter are mostly
used for connecting, interacting, communicating with each other and
as well as share their information on the web. Due to the enormous
growth of social network data from many applications and services,
it is published for various research purposes. This leads to a lot
of privacy issues as it can leak highly sensitive data of many indi-
viduals and groups. When the network data have to be released it
should be anonymized and published for various purposes. Different
anonymization techniques are used for preserving the social network
data publication on various background knowledge attacks[1][2].
Liu and Terzi in [5] proposed k-degree anonymity based on the de-
gree knowledge to defend the vertex identification. Zhou and Pei
[6] proposed k-neighborhood anonymity based on the knowledge
of victims one-neighbor graph. Lei Zou et al. in [7] proposed k-
automorphism based on the knowledge of subgraph of an arbitrary
size. Hay et al.[4] proposed clustering technique to group vertices
and edges to protect the vertex identification. Tai and Yu in [8]
proposed the friendship attack model, where an adversary knows the
vertex degree pair of two individuals and their friendship relation. In
this, they solved friendship attack problem based on the degree of
two concerned nodes. Chongjing Sun et al. [15], proposed a rela-
tionship model taking the number of mutual friends of the connected
nodes into account and proposed an algorithm in which they ensure
that at least k — 1 other friend pairs that share same number of mutual
friends by preserving the original vertex set. These works mainly
focus on issues in the static network data. Network data changes
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Figure 1: Sequential published dynamic network.

dynamically with time and is valuable for research purpose. As there
is a high demand for the dynamic social network analysis, privacy
issues of each sequential release of dynamic social network data
become important. Bhagat et al. [9], demonstrated the procedure
on how to protect the association of labels between vertices which
are directly connected but the identity protection of these vertices
are not addressed. Medforth and Wang extended [10] the degree
attack model for dynamic networks and has mentioned the privacy
breach in sequential releases but they did not build models for pri-
vacy preservation. Suppose a network is published sequentially and
anonymized on each release still there is a possibility to intrude
privacy.

Example 1. Motivation: Figure 1 shows a sequentially published
dynamic friendship relation naive anonymized network in which each
vertex represents a user. The value on the edge connecting two end
vertices represents the number of mutual friends they have. Suppose
that user’s friends count is known to attacker (degree attack), the
attacker cannot uniquely re-identify the user in the released network

Copyright © 2016 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.




International Journal of Engineering & Technology

at time t and ty. Now, suppose user knows the common friends count
of the two end vertices which is known as Mutual Friend Attack then
the adversary has difficulty to re-identify anyone from sequentially
published dynamic social network. From the above sequentially
published data there are two problems where the adversary can
trace the user. In the first case, if an adversary knows that both
Bob and Carl are friends and recently Alice and Carl have become
friends. An adversary cannot uniquely identify the victims from
these sequentially released networks. From the static networks the
adversary cannot identify the edges that are newly added but, he can
easily find that (v3,v7) is the newly added edge by comparing two
sequentially released networks. The new edge represents both Alice
and Carl’s friendship relation. With this background knowledge
the adversary can also confirm that one more mutual friend for
Bob and Carl is added i.e Alice. An adversary cannot identify the
edge which got changed in the published static networks. Instead
by observing the combination of two releases, the problem will be
easier because (v4,v7) is the only edge changing from 1 to 2 and
Alice i.e vy is the new common friend for Bob and Carl. Hence
an adversary can reveal the relationships of the individuals from
sequentially published network data.

Example 1 illustrates that anonymization of the current network
should be based on the present information as well as the previous
released network data. The existing k-NMF anonymization algo-
rithm cannot ensure the privacy in dynamic releases. To protect
against such attack a model called dynamic k"-NMF is proposed
with the probability of an edge disclosure is limited to 1/k where
the adversary can monitor a victim within a continuous time period
w. The proposed model anonymizes the current network based on
the previous w — 1 releases and minimizes the graph alternations.
The results show that the proposed method can preserve most of
the characteristics of the original graph with limited information
distortion.

2. Problem Formulation

Generally a Social Network is modeled as a simple undirected graph
G(V,E), where V is a set of vertices representing individuals, and
E CV xV is the set of edges representing the relationship of indi-
viduals. ”We formulate dynamic network as time-stamped graph, as
time varies, new individuals will be participating in dynamic network
and the relationship between individuals also changes”. Let t be
time instance and G' (V! E") is denoted as a dynamic network at any
given time ¢, where V' is the set of vertices at ¢ instance representing
the users, E' is the set of edges at time instance ¢ representing the
relationship between users. G’ is a dynamic network and the pub-
lished or released graph of G will be denoted as G’ in the remainder
of this paper.

Definition 1. (Number of Mutual Friends of an Edge): The mutual
friends count of two connected vertices V1 and Vy of an edge e in a
graph G' (V! E") at time t, i.e V1,0, € V!, e € E' and e = (v1, 1),
the mutual friends count of the edge e is the number of common
neighbors of both V| and v; i.e., nmf(e) = Neigh(v;) N Neigh(v,)

Definition 2. (NMF Sequence): Let Y denote the number of mutual
friends at time t instance then the number of mutual friend sequence
for G',where entries are sorted based on decreasing order i.e. Y >
Y2 > ...%. Let ¢ represent the edge list corresponding to V' i.e. Y
is the mutual friends count of the edge ;. at time instance 1.

For example, in Figure 1a, ' = {2,2,1,1,1,1,1,1,1,1,1,1,1} and
= {(v1,s), (Vv11,v7), (V2,01), (V1,08), (Vs,V2), (Vg,Vs),

(v2,03), (Vs, 2), (V3,V6), (V10,V7), (Va,V7), (011, V10), (Va, V11) }-

The mutual friend count distribution follows a power law property
[13] which is similar to the power law distribution of the vertex
degree [11].
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Figure 2: Example of dynamic 22-no. of mutual friend anonymity

Adversary Knowledge. Like previous works, the adversary has a
knowledge of the mutual friends count of two connected individuals
in social networking sites like Facebook, Twitter and LinkedIn. Let
w be a time period where the attacker can monitor an edge e that:

1. Each release of graph during the time period w i.e.,
G—wtl G-w+2 Gt

2. NMF Sequence IV = ¢+ ¢2=w+2 9% of an edge e dur-
ing the time period w.

Now, we consider the base case (w = 1) where the adversary has
the background knowledge of a released graph G and mutual friends
count of an edge 7., which is similar to mutual friend attack ad-
dressed in [15] and consider k-anonymous sequence for protecting
the identities in which each edge in the group will have same number
of mutual friends then we extend the concept to general case (w > 1)
for protecting edge identities in sequential releases of network data.

Definition 3. (k-anonymous sequence): Let 9;, be a sequence vector
group which consists of set of edges with equal number of mutual
friends 7y at time t. For example, consider Fig 2a the value on
each edge is the number of mutual friends of the two connected
individuals. The group 65 ={(1,5),(1,3),(1,4), (3,4),(3,5)} is 5-
anonymous group because number of mutual friends of all edges
in this group is 3. A k-anonymous sequence group 9{, contains at
least k edges having the same number of mutual friends y. Therefore,
given a number of mutual friends 7, the probability of an edge being
re-identified from 6}, is limited to 1/k.

For dynamic releases (w > 1) case, we extend the k-anonymous
sequence to the sequential releases where the adversary cannot dis-
close the identity. To prevent from privacy breach, the graph G is
anonymized based on the previous releases G' !, G'=2, ... G+,
So the adversary no longer has the knowledge of previous releases.
In other words, to protect the number of mutual friends between two
vertices at any given time instance, it can be extended to the number
of mutual friend sequences of over a time period w. Similar to the
base case, there can be many edges having similar number of mutual
friends during the period w to preserve the identity of an edge against
I'. Based on these considerations, first k-anonymous sequence con-
sistent group is defined and then a privacy model £"”-NMF anonymity
for dynamic networks is proposed.

Definition 4. (k-anonymous sequence consistent group): Let O be
a consistent group which contains set of edges that always share the
same number of mutual friends Y at each time instance t during a
period w.

Example 2. Figs (2a) and (2b) are the sequential releases at t| and
tp time respectively. Consider a mutual friend sequence T'=(3,3).
The consistent group @‘(’3’3) is 5-anonymous because there is an edge
subset {(1,5),(1,3),(1,4), (3,4),(3,5)} of size 5. Similarly, ®EV2’3)
is 2-anonymous because there is an edge subset {(1,2),(2,3)} of
size 2. The k-anonymous sequence consistent group ®p. contains at
least k edges sharing same number of mutual friend sequence T
to ensure that the probability of an edge being identified from OF. is
limited to at most 1/k.
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Algorithm 1: Pseudo code of the GS-Table Construction
Data: G'(1 <1 <w), GS-Table
Result: GS-Table
foreach edge e(u,v) € G' do
| GS-Table[e] = neigh(u) Nneigh(v)
end

foreach O~ ¢ GS-Tubie do

| SortEdges (@1 i)
end
return GS-Table

Definition 5. (Dynamic k"-NMF Anonymity): Let’s consider
sequential released graphs within the time span w defined as
Gwtl G=w+2 G dynamic k"-NMF if for every edge e € EJ,
J € [t —w+ 1,1] and the consistent group @)iﬁ;, of number of mutual
friend sequence 7, is k-anonymous sequence.

Example 3. From Example 2, it can be noticed that ®EV3 3) is 5-
w

anonymous and ®EV2’3),®‘(”272), ®EV1,2)’ ®E”1’1) and ®(6’1) are all 2-
anonymous sequence. Therefore, the sequential release networks
satisfy dynamic 22-NMF anonymity.

3. Anonymizaton Approach

3.1. Overview

Dynamic k"-NMF anonymization is more challenging than
anonymization of static networks because anonymization of dy-
namic k"-NMF have to consider the w — 1 previous releases. One
solution is to first consider current network alone to generate a
release, then based on each previous release modify the current
anonymized release to eliminate each possible privacy breach. But
this method consumes more time because for every time instance,
it should search for all possible attacks through the w releases. For
better performance, each previous release number of mutual friend
sequences of edges are gathered and summarized in a table called
the GS-Table. Now, before every anonymization we incrementally
update the GS-Table and generate the current network based on the
GS-Table. Dynamic k"-NMF efficiently based on w — 1 previous
releases are generated by avoiding the need to search all possible
privacy breaches through the releases.

This method contains three parts, GS-Table construction, updating
and the anonymization. k"-NMF requires every edge belonging to
a k-anonymous sequence consistent group. First, the GS-Table is
constructed and then the edges are sorted according to their prefix
of the number of mutual friend sequences and i.e, in the GS-Table,
edges are sorted according to the number of mutual friends at a time
spanofr —w+1,# —w+2,...,¢. So the sequence groups which share
a similar prefix of the number of mutual friend sequences will be
adjacent and the edges will belong to most closest consistent group.
When current graph information is attached small sets of edges are
resorted and GS-Table is maintained incrementally. After updating
GS-Table with respect to the current network at each time instance,
the edges are anonymized according to their number of mutual
friends ranking in GS-Table. The GS-Table quickly finds the edges
with a similar number of mutual friend sequences in anonymization
process. Suppose an edge e has to be anonymized first check whether
e belongs to an existing k-anonymous sequence consistent group.
If so, e is merged with nearest k-anonymous consistent group of
GS-Table. Otherwise a new k-anonymous sequence consistent group
with e and other k — 1 edges with the same consistent group is
created.

Table 1: Example of the GS-Table

@n (b) 1,

(1,3),(1,4), . (1,3),(1,4), -
(1,5),(3,4),(3,5)
(1,2) 23
2 (4,5),(2,3), P
2,5) (2,5)
1,7) 1-3

)

)

(1,5),(3,4),(3,5)

(1,2),(4,5)

@3),
(1,7),(4,7)

1 (4,7),(4,6),(3,6) 151
),(3,6) X

,2),(
2.3),(
1,7).(
4.6),(

(4,

(CVS]

(3.5) 354
(1,3),(1,4),(1,5)
(1,2),(2,3) 253 (3,4),(1,2),(2.3),
(4,5),(2,5) 252 (3,6),(1,7)
(1,7) 153 (4,5),(2,5)

(4.7),(4,6), (4,6),(2,6) 152
(3.6) (47,(2,7)

(2,7),(2,6) 01 (5.6) 03

©n

(1,3),(1,4), 33
(1,5),(3,4),(3,5)

23

11

Algorithm 2: Pseudo code of the GS-Table Incremental Update
Data: G'(w <r), GS-Table
Result: GS-Table
Remove_Info(t — w, GS-Table)
Sort_Groups(I';; _y,4-1,,—1])
foreach edge e(u,v) € G' do
| GS-Table[e] = neigh(u) Uneigh(v)
end

foreach ©/ """~ ¢ GS-Tuble do

‘ SortEdges ( ®¥7W+1’t71]71"["’] )
end
return GS-Table

3.2. Construction of GS-Table

The GS-Table is constructed based on the number of mutual
friend sequences of two individuals. The table consists of two
columns: edge e, e€E, the number of mutual friend sequence
W=y wtl of=wt2 4 The GS-Table cannot be constructed
at once because anonymizaton of dynamic graph is a continuous
process. The GS-Table is constructed together with anonymization
of w releases. Algorithm 1 shows the pseudo code for constructing
GS-Table. Let G! be a given graph at time 7; before anonymizing
them GS-Table contains the edges of G! and the common neighbors
of edges. Sort all the edges in decreasing order of their common
neighbors. The GS-Table will be modified simultaneously when
G! is anonymized. After anonymization of G!, each edge is in a
k-anonymous sequence group. Later information of G is appended
to the corresponding records. The edges of the same sequence group
are sorted. Thus the sorting time can be reduced. After anonymiza-
tion of G2, each edge is in a k-anonymous sequence consistent group
of ®%. This is continued until G* is anonymized.

Example 4. Consider the GS-Tables in 1 with time period w = 2.
The edges will be in the the first column of the table and the num-
ber of mutual friend sequence will be in the second column. Table
Ia shows GS-Table at time t| after anonymizing G'. Suppose that
the common friends of edges (1,2),(1,7) and (2,7) are changed
to 3, 3 and 1 respectively, at time t, then we need to re-sort the
edges in each 3-anonymous sequence consistent group @{} '1], ie.
{(1,2),(4,5),(2,3),(2,5)} and {(1,7),(4,7),(3,6),(4,6)} respec-
tively, to have the edges in decreasing order of the no. of mutual
[friend sequences. Table 1b shows the table after the re-sorting. After
the edges are anonymized in the 2-anonymous sequence consistent

1.2

group O’ are close by in the GS-Table as shown in Table Ic.
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Algorithm 3: Pseudocode for Graph Anonymization

Data: G', GS-Table
Result: G', GS-Table
if 1 <w then
| GS-TableConstruction(G',GS-Table)
end
else
| GS-TableIncrementalUpdate(G',GS-Table)
end
while |L| # 0 do
GP={xlxe G' and TI—14) = {1y o U™
if |GP| > k then
| Mark all edges as anonymized, Update L and I
end
while |GP| < k do
Mark all Edges in GP as anonymized, Update L and I"
if gy ) ==T} " and 0 <T", < g[¢'] then
Cand_Edges={x|x € G'andl~1] = F[ltfl’t]}
Find Cand_vertices for each edge (u,v)e
Cand_Edges.
Add Edges between (u,v) and £ € CV to increase
the nmf of (u,v).
if nmf{u,v)=g then
| GP=GPU{(u,v)},Update Land I".
end

1]

end
if |CV| = 0 then

| Specialcase()
end
UpdateGS-Table()

end

end
return G’, GS-Table

3.3. Incremental Updating of GS-Table.

When a new release of graph G' comes, the GS-Table has to be
updated and in every time period w, the GS-Table should be updated
accordingly. So before attaching the edge information of G’ to
the table, the edge information of G'~" has to be removed and
the edges will be re-sorted based on the number of mutual friend
sequences I~ = y=wF1 4=l instead. After this removal,
each edge will be in a k-anonymous sequence consistent group
@if*l. Therefore, there is no need to re-sort all edges and only the
k-anonymous sequence consistent groups G){f*l need to be. This
can reduce the sorting time. After that, the newly released graph G’
edge information will be appended to the GS-Table. The resorting of
edges in each consistent group is also reduced. Hence, the appended
GS-Table can be efficiently and incrementally updated. Fig 2 shows
the pseudo code for incrementally updating of the GS-Table.

Example 5. An illustration about update of the GS-Table follows.
Considering Example 4, suppose a new edge i.e (5,6) is added at
time t3 then the edges (3,5),(4,6),(2,6) are changed to 4,2,2 re-
spectively. Now, remove the information corresponding to time t|
before attaching the yet to come information then re-sort the groups
of edges, i.e. {(1,3),(1,4),(1,5),(3,4),(3,5)}, {(1,2),(1,3)},

(45,25} {(17).(3,6)}, {(4,7).(4.6)} and {(2.7),(2,6)}
according to the number of mutual friend sequence T'>2. Therefore,
the order of {(4,5),(2,5)} and {(1,7),(3,6)} are changed. After
that, the t3 time edge information is added to t, information. Fi-

. Lo . 2,2
nally, the edges in the similar sequence consistent groups G)}-' | are

re-sorted according to the mutual friend sequence 331, Tuble 1d
shows the resulting table.

Table 2: Anonymization Process

@1 (b) 1,
(1,3),(3,8) 6 (1,3),(3,8) 66
(5.8) 556
CRERE2 5 (4,8),(3,5),(3,4),(1,8) 525
(3:4).(1,8) (3,7),(1,2),(4,5),(1,4), v s
(3,7),(1,2),(4,5),(2,3), . (2.3).(6,8).(1,7),(7.8)
(6,8),(1,7),(1,4),(4,5),(7,8) Gl 304
(,7),(2,8),(2,5),(3,10), g
(5,6),(4,7),(2,8), (2.5), 3 (3,6),(1,10), (4,6),(7,10) C
(3,10),(3,6),(1,10),(4,6),(7,10) (8,9) 23
(8.9),(7,9). (2, 10) 2 (7,9),(2,10) 22
(6.9) 152
(6:9),(10,11), 10,12) 1 (10,11),(10,12),(9,10),(11,12) 11
(9,10),(11,12) (5.9) 052
©n @
(1,3),(3,8) 66 (1,3),(3,8) 66
(5.8),(4,8),(3,4) 56 (5.8),(4,8),3,4) 526
(3,5),(1,8) 555 (3,5).(1,8) 55
(2,3),(1,2),(4,5),(1,4), 45 (2.3),(1,2),(4,5).(1,4), 4-5
G.7):(6.8), (1,7),(7.8) 4 (3.7),(6.8),(1,7),(7,8) 454
(5.6),(2,8).(2.5) 34 (5:6),(2,8),2,5) 34
(4.7),(3,10),(3.6),(1,10), (4,6),(7,10) 33 (4 7),(3,10),(3,6), (1,10), 4,6), 7, 10) 373
(8.9),(2,10) 253
(8.9) 253
(7,9) 252
7.9),(2,10) i (6.9),(10,12) -2
(©.9) -2 (10,11),(9,10), (11,12) 151
(10,11),(10,12),(9,10),(11,12) 11 2.4 054
(2,4) 04 (5,9) 02
(5.9) 02 (2.12) 01
(OF3 ®n
(1,3).3.8) 66 (1,3),(3,8) 66
(5.8).(4,8), (3.4) 556 (5.8). (4,8), (3,4) 556
(3,5).(1,8) 55 (3,5),(1,8) 55
(2,3),(1,2),(4,5),(1,4), 455 (2,3),(1,2),(4,5),(1,4), 455
(3.7).(6,8).(1,7),(7.8) 454 (3.7).(6,8),(1,7),(7.8) 44
(5.6).(2,8),(2,5) 354 (5,6).(2,8),(2,5) 354
(4,7).(3,10),(3,6),(1,10),(4,6),(7,10) 353 (4.7),(3,10),(3.6),(1,10),(4,6),(7,10) 353
(8,9),(2.10),(7.9) 253 (8.9),(2,10),(7.9) 253
(6,9),(10,12) 152 (6,9),(10,12) -2
(10,11),(9,10),(11,12) 1—1 (10,11),(9,10),(11,12) 11
(2,4) 0—4 (2,4),(5,9) 04
(5.9) 02 (9,14),(7,14) 02
(2.12),(7,14),(9, 14) 01 (2,12),(5,14),(7,13),(9,15),(5,15), (13,14 0 —1

3.4. Anonymization Process

In this subsection, the current release of graph can be anonymized
only by edge addition. The edges are added but not deleted be-
cause removing an edge severely destroys the structural information
of a graph than adding edges. Two approaches are introduced for
anonymizing each edge of a graph. In the first approach, let e belong
to an existing k-anonymous sequence consistent group by adjusting
(increasing nmf value of edge ¢). The second approach is creating
a new k-anonymous sequence consistent group by increasing the
NMF value of other k — 1 edges such that these edges can form a
k-anonymous consistent group with edge e. As specified in [15]
anonymization of mutual friend attack is more challenging than k-
degree anonymity model. In the k-degree anonymity model, an addi-
tion of an edge can just increment the degree of the nodes connecting
this edge. In mutual friend attack anonymization model, adding an
edge can increment the number of mutual friends of many edges.
So when for anonymizing the dynamic graph, Anonymized Triangle
Preservation Principle is used. When adding new edge it should not
affect the number of mutual friends of already anonymized edges.
Algorithm 3 describes proposed algorithm.

Example 6. Consider the dynamic release network in Table 2 with
both w and k set as 2. Table 2a is the privacy preserving release at
t1. Now consider anonymizing the sequential release at t; in Table
2b First, select the highest number of mutual friends edge from GS-
Table i.e. (1,3), the only way is, to create a new two-anonymous
sequence consistent group ®(26,6)' The edge (1,3) is anonymized

together with edge (3,8) without additional edges as shown in Table
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Figure 3: The no. of vertices and edges in each snapshot of (a) Email (b) Gnutella (c) AS-733 Datasets

2b. Next for edge (5,8), the only way to anonymize is to create a
new 2-anonymous sequence consistent group 6%5’6) with candidate
edge set Cand_Edges={(4,8),(3,5),(3,4),(1,8)}, since no existing
2-anonymous sequence consistent groups 6%5_’ w > 6. Now we
select the best candidate edge from the edge set, Cand_Edges to
increase the number of mutual friend value which is equal to the
edge (5,8). By adding (2,4) edge, the number of mutual friend
values of (4,8),(3,4) will be changed and the value is equal to the
number of mutual friend value of the edge (5,8). So the edge (5,8)
along with (4,8),(3,4) will create a new 2-anonymous sequence

consistent group @%5 6) 95 shown in Fig 2c. After that edge groups

®(25“,5) ’ @)%4*5) ’ ®(24“,4) ’ ®%3A4)
way as edge group ®%6,6)‘ For edge (8,9), a new edge will be added
i.e. (2,12) to increase the number of mutual friend value of (2,10)
which is shown in Table 2d. The edge (7,9) can be anonymized by
merging already existing 2-anonymous sequence consistent group
@%273) since no existing 2-anonymous sequence consistent groups

%)
of (7,9) by adding edges to fake vertex to form a new triangle as
shown in Table 2e. Similarly the edge (2,4) will be anonymized by
adding fake vertices to increase the number of mutual friends of
an edge (5,9). Finally, all the edges are anonymized in the similar

case of edge group ®(26 6) The anonymized release of G* and the

and ®%3 3) are anonymized in the same

a < 2. We then increase number of mutual friend value

corresponding final resulting GS-Table is shown in Table 2f.

4. Experimental Results

In this section, the performance of the proposed model is examined
over the three real data sets [19] i.e. Email communication network
from Enron, Gnutella peer-to-peer network and Autonomous system
graphs (AS-733). The data sets are preprocessed into simple
undirected graphs with out self loop and multiple edges.

Email communication network: This data set consists of
email addresses posted to the web by the Federal Energy Regulatory
Commission during its investigation. In this network, each node
represents an email address and an edge represents a communication
between nodes i.e. if at least one email was sent from one node to
another node. In this 1,133 nodes and 5,452 edges are considered
and the graph is divided into six partitions. The first partition is
considered as the initial network and at every time stamp we add
each partition to previous partition. So, there will be 6 sequential
publications of this data set. The data size in terms of number of
vertices and edges in each publication is shown in Fig. 3a.

Gnutella: This data set is a peer-to-peer file sharing network
which contains total of 9 snapshots collected in August 2002. Nodes
represent hosts in the Gnutella network topology and edges represent
connections between the Gnutella hosts. Fig. 3b shows the number
of nodes and edges in each snapshot.

Autonomous systems AS-733: This is a communication net-
work from the BGP (Border Gateway Protocol) logs. The data set
contains 733 daily instances which span an interval of 785 days
from November 8 1997 to January 2 2000. To conduct experiment
we consider one day as time unit and have 23 daily instances from
November 8 1997 to November 31 1997. Fig. 3c shows the detailed
information in each snapshot. The AS data set exhibits both the
addition and deletion of the nodes and edges over time.

The data sizes of email, Gnutella and Autonomous systems graphs
are varied over time as shown in Figures (3a), (3b), (3c) respectively.
The email network, number of vertices and edges are grow at each
time instance but for Gnutella graphs the data sizes increase at
some time instances and decreases in some other time instances.
For autonomous systems, the increasing rate of vertices and edges
slightly vary because this data exhibits both the addition and deletion
of vertices and edges over time. Now we can observe the differences
the way the graphs will evolve over a time will result in different
efforts in anonymizing sequential networks for preserving the data
utility. So the differences of data utility are plotted for anonymized
graphs with respect to original graph. The performance results for
email data set show a smooth curve while the curves of remaining
two data sets will cross over each other at sometimes.

When the sequential released dynamic network is shared among
third party sources it is difficult to monitor the release and who
are accessing. The number of attackers and details of the attacker
who accessed past releases is difficult. To predict the best value
of w for compromising the level of the privacy and the data utility
assumption is also impractical. We also need to consider whether
the information disclosed in the past releases could be used to
compromise the new releases or not in the privacy of dynamic
sequential released networks. Therefore, the w value should depend
on relevance of content over time. If the content relevance between
the past and current releases are known and if it becomes small
after w time units then the information disclosed in that very old
version cannot be used to compromise the newly released version
so the value of w could be set as w < w and w < t. To preserve the
better data utility, the current snapshot is anonymized only with the
content relevant network releases. But if the content relevance is
high and rarely decays over time, the value of w will be increased
and the anonymization of sequential releases will be the initial steps
as specified in the proposed algorithm i.e., 1 < ¢ < w. This means
the current snapshot is anonymized based on all previous releases.
So there is a little chance that privacy leakage would happen if the
value of w is larger but more the data utility in some cases which
is shown in experimental results. Therefore, the data owner has to
observe the content relevance over time and would take a decision
on data utility and privacy guarantee.

The performance of proposed algorithm is evaluated in terms of the
clustering coefficients (CC), average shortest path lengths (ASPL)
and graph modifications under different protection mechanism



International Journal of Engineering & Technology

—— orig —¥— orig

370 {—®— w=2 —— w=1

355 {—A— 60 {7 w=2

1340 4 A ye

8325 g s w=s
2310 2 50

295
2.80
265
2.50

—— orig —% w=5

4 5
Time instances

4 5 6

(a)

8 9
Time instances

8 10 12 14 16 18 20 22 24 26 28 30
Time instances

24 25 30 31

(b) (c)

Figure 4: The effect of w on the average shortest path lengths (ASPLs) for a fixed k value: (a) Email (b) Gnutella (c) AS-733 Datasets

—%— orig % w=3 —¥— orig

R w=5 0080 {— w=1

—a— w=2

034 0,065 -3

0032 o —A—w=
O o030 0 0.050

0.28
0.26
024
0.22

0.035

0.020

0.005

—%— orig — w=5
- w=l & w=10

3 4 5
Time instances

4 5 6

(a)

8

Time instances

(b)

8 10 12 14 16 18 20 22 24 26 28 30
Time instances

9 24 25 30 31

(c)

Figure 5: The effect of w on the clustering coefficients (CCs) for a fixed k value: (a) Email (b) Gnutella (c) AS-733 Datasets

New edges(%)

3
Time instances

4

(a) No. of edges added in Email dataset

| ]
sz
i
N

30%

15%

New vertices(%)

o L—— B ws B - mm

4 5 6 8 9 24

Time instances

25

(¢) No. of vertices added in Gnutella dataset

9% | W w=1
= w=3
§ @ w=5
Z 6%
L
]
2
ngx 3%
] |:|
oo B HE OB B .
1 2 3 4 5 6
Time instances
(b) No. of vertices added in Email dataset
60%
. 50%
g
E’ 40%
S
B 30%
H
2 20%
10%
0%

14

16 18 20 22
Time instances

(d) No. of edges added in AS-733 dataset

Figure 6: The Graph Modifications with respect to different w settings

values i.e. w (different information hysteresis) and k (different
protection level requirements). In all figures, the x-axis represents
the time stamps of the new snapshot of the anonymized dynamic
network with respect to the previous releases.

Protections against different information hysteresis (w): The
performance results based on different w values under fixed k value
are shown. For email data set, the k value is fixed as 5 and 2 for
both Autonomous systems and Gnutella data sets. Figures 4a, 4b
and 4c shows the average shortest path lengths (ASPL) for the
anonymized and original graphs on three datasets. When w = 1, the
ASPL values of anonymized graph are very close to original and
changes in a similar trend to the original value. Because w = 1 is the
base case to protect the privacy of the publication when it is static
and the anonymization is based only on the current graph.When
w > 1, the ASPL values of an anonymized graph biased some what
more from the original graph values. Although, variations on ASPL
values of the anonymized graphs are more stable compared to the

base case of w = 1. Generally larger w leads to more information
distortion. But, anonymization algorithm is based on not only
the current graph, but also the w — 1 predecessors. So, larger
w does not lead to the high distortion of information on ASPL values.

The performance result of clustering coefficients (CCs) of the
anonymized graphs with the original graphs are shown in Figures
Sa, 5b and 5c. We can see similar observations on CC values to the
plots of ASPL. The CC values for anonymized graphs are close
to the values of original graphs for the base case of w = 1. When
w > 1, the anonymized graphs CC values deviates a bit more when
compared with original graph CC values. Similar behavior is shown
in both scale-free networks of anonymized graphs CC values. As
the case of ASPL values, the information distortion on CC values
need not be more when the w is larger. These results show that
relation of content is also an impact factor for sequential networks
so the setting of w has an impact, but does not govern the data utility
preservation in anonymizations of sequential releases.
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Figure 6 shows the how many graph modifications are involved.

Dynamic k”-NMF is an edge anonymization algorithm in which
mostly we anonymize by adding edges between vertices not by
deletion of edges and vertices. Figures 6a and 6d represents
the number of new edges added for anonymizing email and
Autonomous Systems data sets respectively. Figures 6b and 6¢
represent the number of new vertices added for anonymizing email
and Autonomous Systems data sets respectively. The number of
new vertices and edges added are almost zero for initial values of w
because anonymization of sequential releases are based on previous
releases. When w is varied from 1 to 3 and w = 3, for email data set
and w = 10 when varied from 8 to 16 for Autonoumous systems
the modifications involved keep increasing at the initial stage. After
that, the graph modifications involved may increase or decrease as
only the most recent w — 1 previous releases are considered. Thus, a
larger w does not necessarily lead to more graph modifications.

Different protection levels requirement (k): The performance studies
under different k values with fixed w value set as 2 for all the data sets
are presented in this section. Figures 7a, 7b and 7c shows the ASPL
values of the original and anonymized graphs. Generally a small k
leads to less amount of information distortion. When the k value
increases the information distortion also increases. But sometimes
the ASPL values under large k value show less information distortion
compared to smaller k values because the anonymization depends
on previous releases not only the current graph. Figures 8a, 8b and
8c shows the CC values of the original and anonymized graphs. The

CC values also show the similar observation i.e a larger k does not
necessarily deviate more as of ASPL values, due to the previous
sequential releases content dependency. Figures. 9a, 9b and 9c
represent the graph modifications under different k£ values. The
number of new vertices added are zero for all instances. As the
k value increases, the number of graph modifications are needed.
Generally, the above results show that the preservation of data utility
is better when the value of k is small but the content dependence in
sequential anonymized networks also has to be considered.

5. Conclusion

It has been shown that study of privacy preservation in dynamic
networks should be focused. A privacy model, dynamic k£"-Number
of Mutual Friend anonymity (k" -NMF anonymity) algorithm for pro-
tecting edge identities sequentially released networks is proposed. To
solve this problem, a heuristic technique is designed for anonymiz-
ing sequential released networks on three different data sets and
developed a Group Sequence Table, the GS-Table, to summarize the
edge information of sequential releases to improve the efficiency
and the utility of the graph. The experimental results show that the
proposed model can ensure the privacy of the dynamic network with
very less distortion while preserving much of the characteristics of
social networks.
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