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Abstract 
 

The idea in this paper is to develop a voice recognition system that can recognized five commands to control a robotic car. The focus area 

is mainly on voice identification and recognition system. The aim of the system was not recognizing sentences but only isolated a word 

then demonstrates the action on a simple built robotic car. The system allows user to deliver voice commands through a microphone for 

control the movement of the car. Voice command is sent to computer and the process to compare the signal with signal stored in database 

using Vector Quantization (VQ) technique. Mel-wrapping filter bank in feature extraction was used to reduce the root mean square am-

plitude noise amplitude and also improve signal to noise ratio. Result showed that the robotic car can be controlled by 5 basic voice 

command which is stop, forward, reverse, turn left and turn right by integrating source code in MATLAB with Arduino UNO microcon-

troller. 

 
Keywords: Voice Recognition; Vector Quantization; Arduino. 

1. Introduction 

Nowadays, vehicles are very important in order to ease daily job 

and improve the quality of life. Most of the vehicles are not 

friendly for physically disabled or handicapped user. Besides that, 

some operation such as police, military, rescue operation need 

unmanned vehicle to do the job as the situation they face daily is 

dangerous and sometimes inaccessible by human [1-4]. Such job 

with high risk needs control in distance like voice control instead 

of hand control, so that job can be done without risking human life 

or limb. 

Living in this century full of development, world‟s economy, mili-

tary, healthcare, entertainment and transportation has been 

changed by the advanced technology which exists among all of us. 

With today technology, there are different ways to control appli-

ances and devices without going near to the controlling button on 

the devices such as using remote control. One of the ways of con-

trolling devices is by using voice recognition technology.  

When voice control is mentioned, speech recognition is the first 

word to be considered. The term "voice recognition" is used to 

refer as speech recognition where the recognition system is trained 

to a particular speaker, hence there is an element of speech recog-

nition, which attempts to identify the person speaking or to recog-

nize what is being said [5]. However, there are differences be-

tween voice recognition and speech recognition. Voice recognition 

is a system relates to identifying voice of a particular user based 

on his or her unique vocal sound. On the other hand, speech 

recognition identifies almost anybody‟s spoken words in the cor-

rect sense and then converting them into machine-readable lan-

guage.  

In voice recognition system, although different recordings of the 

same words may include more or less the same sounds in the same 

order, the precise timing or the durations of each sub word within 

the word will not match. Therefore, the efforts to recognize words 

by matching the speech to pre-recorded speech templates will give 

inaccurate results because there is no temporal alignment. Besides 

that, noise that occurred in a sample of speech would affect the 

accuracy of recognizing a voice signal. As noise energy in a signal 

is more than the energy of a signal, the signal to noise ratio (SNR) 

is decreased. Once SNR is lower, the accuracy of recognizing 

words can be degraded. 

2. Related Work 

Speech is a natural source of interface for human–machine com-

munication, as well as being one of the most natural interfaces for 

human–human communication [6]. Speech recognition or voice 

recognition technology promises to change the interaction be-

tween human and machines (robots, computers, etc.) in the future. 

This technology is still improving and scientists are still working 

hard to cope with the remaining limitation. Nowadays, this tech-

nology has been introduced to many important areas.  

There are two categories of speech recognition, which are speaker 

dependent and speaker independent. Speaker dependent is a sys-

tem that trained by the user who will use the system. This system 

only responds accurately to the user that trained the system. The 

advantage of speaker dependent system is that it can achieve high-

er command count and better accuracy than speaker independent 

system. Meanwhile, system independent is a system that responds 

to a word regardless of who is the one that speaks. Due to this 

reason, the system needs to respond to different kind of speech 

patterns, inflection and enunciation‟s of the target word. Com-

mand count for speaker independent system is usually lower than 

speaker dependent system, but the accuracy can be maintained 

within processing limits. Normally, in the field of industry, speak-

er independent voice system is required compare to speaker de-
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pendent because more people‟s speech can be identified instead of 

limits it down to the one who trained the system.  

The most general form of voice recognition can be done through 

feature analysis, which usually leads to "speaker-independent" 

voice recognition. This method processes the voice input using 

Linear Predictive Coding (LPC) or Fourier Transform technique 

and then will try to find the characteristic similarities between the 

expected input and actual voice input. These similarities will be 

present for a wide range of speakers, so the system need not be 

trained by each new user. This method will not waste time on 

finding the match between the actual voice input and a previously 

stored voice template. Speaker independent method can easily 

deal with types of speech difference but fail to handle pattern 

matching which including speaking accents of different nationali-

ties and varying speed of delivery, volume, pitch and inflection 

[7].  

Besides the types of recognition, there are some approaches of 

statistical speech recognition. The most popular technique is the 

Hidden Markov Models (HMM) [8]. There are others technique 

that used for speech recognition system such as Artificial Neural 

Network (ANN) and Dynamic Time Warping (DTW). In HMM- 

based speech recognition, the audio signal could be viewed as a 

piece-wise stationary signal. This allows assumption that speech is 

approximately a stationary process in a short duration of time. 

Thus, speech can be thought as a Markov Model for many states.  

In addition, HMMs are popular because they can be trained auto-

matically and computationally feasible to use. In speech recogni-

tion HMM provide the simplest setup possible by outputting a 

sequence of n dimensional real-valued vectors every 10 millisec-

onds with n value is more than 10. The vectors would consist of 

Cepstral coefficients, which are obtained by taking a Fourier trans-

form of a short-time window of speech and de-correlating the 

spectrum using a cosine transform, then taking the most signifi-

cant (first) coefficients [7].  

Dynamic Time Warping (DTW) is an algorithm that measures 

similarity between two sequences, which may vary in time or 

speed [9]. Dynamic Time Warping (DTW) gives a temporal 

alignment, while comparing pre-recorded sample with the input 

speech signal. This will increase the accuracy of the recognition 

process as the distance of these signals has been reduced to the 

minimum, which eased the matching of the voice signal. The 

technique, Dynamic Time Warping (DTW) was introduced to the 

data mining community by Berndt and Clifford in 1994. 

Vector Quantization (VQ) is a process of mapping vectors from a 

large vector space to a finite number of regions in that space [10]. 

Each region is called an acoustic vector and can be represented by 

its center called a VQ codeword. The collection of a group of 

codeword was also called a codebook.  

In the training phase, using the LBG algorithm can be used to 

generate speaker-specific VQ codebook for each known speaker 

by clustering his/her training acoustic vectors. The result code-

words or centroids are shown in Figure 1 by black circles and 

black triangles for speaker 1 and 2 respectively. The distance from 

a vector to the closest codeword of a codebook is called a VQ-

distortion. In the recognition phase, an input utterance of an un-

known voice is “vector-quantized” using each trained codebook 

and the total VQ distortion is computed. The speaker correspond-

ing to the VQ codebook with smallest total distortion is identified 

as the speaker of the input utterance [11]. 

 

 
Fig. 1: Example illustration of vector quantization technique [11] 

From the research by [12] in analysis of speech recognition tech-

nique has been made to show the comparison of HMM, ANN and 

DTW in terms of relevant variables, input and output. However, 

these techniques can only recognize the speech instead of recog-

nizing the speaker. Therefore, Vector Quantization (VQ) tech-

nique was needed as this technique is more efficient in recogniz-

ing speaker than recognizing speech. 

Adaptive Wiener Filter (WF) is a two-input technique, which pro-

vides a baseline for the performance of the in-line schemes [13]. 

The technique has a separate input for the noise and can provide 

complete noise cancellation, through the adaptive filtering pro-

cess. Clearly, the scheme cannot be applied directly to the in-line 

noise reduction process. The design and performance of the filter 

depend on the complexity and speed of the adaptation algorithm.  

A block diagram of the Adaptive Line Enhancer (ALE) was pro-

posed by [14]. This is a modification of the standard line enhancer 

that removes narrowband noise from a broadband signal. In this 

implementation, the pitch detector provides a reference signal for 

voiced sounds and by applying a delay of one pitch period, the 

noise signal can be extracted as an error signal and used to charac-

terize the filter parameters. The output of the filter provides the 

speech output. 

The implementation proposed by [15] require a speech detector to 

decide, which of the two adaptive stages should be used at any 

particular time. The look-direction adaptation is used when speech 

is detected; otherwise the noise cancelling section is applied to 

adapt to the noise. This system thus relies on a speech detector for 

good performance. The ability of the system to perform limited 

dereverberation is claimed to be an asset for LPC-based speech 

recognizers [14]. 

Spectral Subtraction operates by making an estimate of the spec-

tral magnitude during periods of no speech and subtracting this 

spectral estimate of the noise is from the subsequent speech spec-

tral magnitude [15]. In common with the other techniques, spectral 

subtraction requires a speech detector. Because of its limitations, 

as noted above, leading and following frames are treated as 

speech. The technique is computationally expensive compared 

with the other techniques, due to the need to transform to and from 

the frequency domain. The technique is enjoying considerable 

attention, including the possible use of non-linear subtraction 

modifications have been proposed.  

Based on the experiment conducted by [16] clearly show that the 

adaptive Weiner Filter provides the best noise reduction perfor-

mance; the output signal-to-noise ratio for each speech sample 

approximates closer to the maximum possible value for that sam-

ple. The in-line processes do not perform as well, although the 

Spectral Subtraction method provides significant improvement for 

the lower input SNR values. As noted earlier, this method is 

somewhat more complex than the Adaptive Line Enhancer.  

3. Methodology 

There are two phase for the basic structure of the system, which is 

the training and testing phase. First and foremost, five command 

speech signals were recorded in .wav format as MATLAB can 

only read this format. Duration of each recorded speech was set to 

be constant which is 3 seconds for more efficient in comparing the 

distance for recognition. After speech was recorded, speech sig-

nals were read into MATLAB for feature extraction. Following 

steps after feature extraction was done was feature matching by 

applying vector quantization technique to determine the centroid 

or mean of the speech signals in acoustic vector form. Once the 

mean was determined, the mean was used to compare with the 

mean of the input speech signal from microphone. Euclidean dis-

tance was calculated and the speech signal was recognized based 

on the shortest distance calculated. These steps were described in 

details in the following section. Figure 2 shows the basic structure 

of the software and workflow of the software. 
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3.1. Feature Extraction 

Feature extraction was done to obtain acoustic properties and 

speech data that used to define speaker individuality. Mel Fre-

quency Cepstral Coefficients (MFCC) technique [17] was chosen 

to extract the feature of speech signals. Several steps in MFCC 

feature extraction was done and detailed in following section. All 

of the speech signal plotted in time domain was a raw data and has 

a great amount of data. It was difficult to analyze the voice charac-

teristics and therefore feature extraction of the signal is needed. 

 

Basic Structure for the software

T
e
st

in
g

T
r
a
in

in
g

Record sound in.wav 

format and read into 

MATLAB

Feature Extraction

Feature matching 

using Vector 

Quantization

Distance comparison

Speech signal for Training

Speech signal for Testing Recognized speech signal

 
Fig. 2: Basic structure for the software 

3.1.1. Step 1: Frame Blocking and Windowing 

Command shown below was used in MATLAB to read the signal 

in order to plot. 

 

[s  fs  nb] = wavread(„'Folder1\voice'.wav‟) 

 

The signal data was blocked in to frames of N samples. After 

framing speech signal, windowing was performed. The purpose of 

this step was to minimize speech signal‟s discontinuities at the 

beginning and end of each frame of speech signal. The concept 

was to minimize the spectral distortion as much as possible at the 

beginning and end of each frame. Window was defined as: 

 

10),(  Nnn   

 

where N is the number of samples and with the Hamming window 

in (1). 
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Frame of speech signal were then multiplied with Hamming win-

dow.  

3.1.2. Step 2: Fast Fourier Transform (FFT) 

Fast Fourier Transform (FFT) was done to convert framed speech 

signal‟s properties from time domain (linear) to frequency domain 

(logarithmic). A comparison was made between the energy level 

that plotted in linear and logarithmic. Power spectrum was com-

puted using imagesc command and colorbar command to display 

the value in MATLAB. Figure 3 showed the linear and logarith-

mic power spectrum plot of one from the 5 signals. As shown in 

Figure 3, nothing obvious can be seen and analyzed in the linear 

power spectrum. It is a better view or more obvious by plotting 

power spectrum in logarithmic instead of linear as shown on the 

right hand side of Figure 3. Besides, the areas containing the high-

est level of energy were displayed in red and were located be-

tween 0.85 seconds to 1.30 seconds. The plot also showed that 

most of the energy was concentrated at lower frequency which is 

below 2000 Hz. 

 

 
Fig. 3: Linear and logarithmic power spectrum plot 

3.1.3. Step 3: Mel-Frequency Wrapping 

Frequency, f that usually measured in Hz was measured on a scale 

called „Mel‟ scale as properties of speech signals did not follow 

linear scale. For the reference of Mel scale, 1000Hz was defined 

as 1000 Mels. Approximated formula shown in (2) was used for 

the nonlinear transformation of frequency to Mel scale: 

 

700
1log*2595 10

F
Fmel                                              (2) 

 

 
Fig. 4: Mel-wrapping filter bank (K = 20) 

 

Figure 4 shows the Mel-wrapping filter bank which was the ap-

proach in simulating the speech signal. This filter bank was 

viewed as a group of filter in histogram that overlapped with each 

other in frequency domain. The number of Mel spectrum coeffi-

cients, K used in simulation was chosen to be 20. In addition, this 

filter bank has triangular band pass frequency response for each 

filter and the bandwidth was determined by constant Mel frequen-

cy interval as shown in Figure 4.  
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3.1.4. Step 4: Discrete Cosine Transform (DCT) 

For the last step, Mel spectrum in logarithmic was converted back 

to time domain using Discrete Cosine Transform (DCT) and re-

sults was known as Mel Frequency Cepstral Coefficients 

(MFCC). The cepstral representation provided a better representa-

tion of speech signal‟s properties for analysis. Therefore, Mel 

power spectrum coefficients was represented in (3) and (4). 

kkSk ,....,2,1,                                                                     (3) 

where the MFCC was calculated in MATLAB using 
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which n = 0 was excluded as the coefficients, only carried very 

few of the speaker‟s specific information. 

3.2. Feature Matching 

In feature matching of speech signal, Vector Quantization (VQ) 

technique that included plotting VQ codebook and also imple-

menting a well-known algorithm developed by Linde, Buzo and 

Gray which was called LBG algorithm was used. 

3.3. LBG Algorithm 

This algorithm was used to cluster acoustic vectors into codebook 

vectors. The procedure of how this algorithm works was shown 

below: 

1. One vector codebook was picked which represent the centroid 

of every acoustic vectors 

2. Size of the codebook was doubled and split based on the rule: 

 

  1nn yy  

  1nn yy  

 

where n starts from 1 to the chosen size of codebook and is a split-

ting parameter. 

 

3. Codeword that closest to the chosen codebook in terms of 

similarity measurement was picked and vector was assigned to 

corresponding cell. 

4. Codeword was updated by using the centroid of the acoustic 

vector assigned to the cell. This step also known as centroid 

update. 

5. Step 3 and 4 was repeated until the average distance falls be-

low preset range which is 10. 

6. Step 2 to 4 was repeated until desired codebook size was 

reached. 

 

The procedure was shown in Figure 5, where a clearer picture for 

the workflow of LBG algorithm. 

3.4. Experiment Design 

3.4.1. Repeatability Testing 

In this experiment, each recognized command was tried for 20 

times and then distance of each trial was recorded. Distance of 

each trials of recognition was then presented in a graph to evaluate 

the recognition system‟s repeatability. Figure 6 showed the work-

flow of this experiment 

 

Find Centroid

Split Centroid

m*2m

Cluster vectors

Find Centroid

Compute Distance, D

[(D’-D)/D]< ε 

m<M

D’≤ D

END

START

Yes

No

Yes

No

 
Fig. 5: Flow diagram of LBG algorithm 

 

Recognize one command for 30 trials

Distance was recorded in a table

Graph of Distance vs No. of trials 

was plotted

Discussion on repeatability of system

 
Fig. 6: Workflow of Experiment 1 

3.4.2. Signal-to-Noise Ratio (SNR) Comparison 

In this experiment, SNR for each speech signal stored in database 

was obtained using MATLAB. SNR before processed with Mel-

wrapping filter bank was then obtained and recorded in a table for 

each command. After the signal processed with Mel-space filter 

bank, SNR of each signal was obtained again and recorded in the 

same table. Figure 7 showed the workflow of this experiment. 
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Obtained SNR of 5 commands before filter

Data was recorded in a table

Graph of SNR vs No. of command 

was plotted

Discussion on SNR of system

Filtered?

Obtained SNR of 5 commands after filter

Data was recorded in a table

No

Yes

Calculation of SNR

 
Fig. 7: Workflow of Experiment 2 

4. Results and Discussion 

4.1. Experimental Setup 

The voice recognition system was integrated with a simple built 

robotic car, which controlled by Arduino UNO microcontroller as 

show in Figure 8 and 9. Once the system recognized a specific 

command in MATLAB, system printed an alphabet to Arduino 

and robotic car was controlled based on the programming code. 

The robotic car was built by two DC motor and using Arduino 

UNO microcontroller to control the movement. Once system 

recognized is “FORWARD” command, an alphabet “a” was sent 

to Arduino and following the condition where Arduino set 

motorLPin1 and motorRPin1 as HIGH. The following method was 

same as other commands for REVERSE, TURN RIGHT, TURN 

LEFT and STOP. 

 

 
Fig. 8: Arduino UNO and H Bridge 

 
Fig. 9: Simple built robotic car for demonstration 

 

Table 1 showed the reference of which speech signal is which 

command that was used in this project. Results of the recognition 

were shown in following figure using MATLAB. 

 
Table 1: References for speech signal 

Speech Signal Command 

#1 FORWARD 

#2 REVERSE 

#3 TURN RIGHT 

#4 TURN LEFT 

#5 STOP 

Figure 10 showed the result of recognition for this project. Menu 

was created to provide a button to start the recognition. Once but-

ton was clicked, recognition system asked for duration of the re-

cordings and 3 seconds was entered for better recognition as 

speech signal stored in database was all recorded in 3 seconds. 

The system took some time to compute MFCC coefficients and 

VQ codebook of the input utterance as shown in Figure 9. After 

the progress was completed, distance was obtained by comparing 

the input utterance with all speech signal stored in database. As 

shown in Figure 10, the shortest distance from comparison was 

speech signal #1 and from Table 1, speech signal #1 was FOR-

WARD command. Dialog function was added in source code to 

display the software simulation result. In Figure 11 to 14, the 

method of recognition is the same where speech signal with short-

est distance after comparison, was taken to be the recognized 

command. Table 1 was referred to determine which speech signal 

is which command. 

 

 
Fig. 10: Recognition of FORWARD command 
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Fig. 11: Recognition of REVERSE command 

 

 
Fig. 12: Recognition of TURN RIGHT command 

 

 
Fig. 13: Recognition of TURN LEFT command 

 

 
Fig. 14: Recognition of STOP command 

4.2. Repeatability Test 

Table 2 showed the distance recorded for 20 trials of recognition. 

Distance recorded in Table 2 was the shortest distance after com-

parison between speech signal in database and input utterance that 

reflected which command given.  

 
Table 2: Distance recorded for 20 trials of recognition 

No.  

of  
Trials 

Distance for recognition 

Speech 

signal #1 

Speech 

signal #2 

Speech 

signal #3 

Speech 

signal #4 

Speech 

signal #5 

1 6.0673 6.2449 5.8846 5.8982 5.6414 

2 6.0982 6.235 5.8923 6.1012 5.6387 

3 6.1104 6.2071 5.8822 5.9899 5.5998 

4 6.1055 6.1998 5.9908 6.0422 5.6072 

5 6.0587 6.214 6.0541 6.1288 5.5047 

6 6.0462 6.2981 6.0123 6.0573 5.6328 

7 5.9983 6.2573 5.998 6.0275 5.6332 

8 6.0158 6.1877 5.8808 6.2043 5.6871 

9 6.0873 6.2367 6.1203 5.9801 5.5989 

10 6.1027 6.245 6.0238 6.0273 5.6071 

11 6.1378 6.2755 5.7698 6.0586 5.6803 

12 6.1572 6.1979 5.8098 6.0375 5.5587 

13 6.0981 6.2654 6.0623 5.7929 5.5499 

14 6.0654 6.3091 6.1002 5.8012 5.6293 

15 6.0674 6.2733 5.9076 5.9099 5.6494 

16 6.0891 6.2496 6.0963 5.8982 5.5879 

17 6.0556 6.1769 5.8932 5.8849 5.5933 

18 6.0389 6.2337 5.9902 5.9989 5.4989 

19 6.1354 6.325 5.8803 6.0452 5.6328 

20 6.1298 6.2977 6.0511 6.1658 5.6053 

 

Figure 15 showed the result of that repeatability test presented in a 

graph. Different color of line represented different speech signal. 

Based on Figure 15, the graph showed that for 20 trials recogni-

tion of the command the shortest distance computed was con-

sistent. The distance computed for each trial did not deviated 

much where the range is small as shown for speech signal #1, #2 

and #5 in the graph. This reflected that the recognition‟s ability of 

this system processed high repeatability and can give consistent 

results. Speech signal #3 and #4 also had high repeatability but 

compared to the other 3 signal, the deviation is higher.  

The reason that speech signals #3 and #4 had higher deviation was 

that the signal is “TURN RIGHT” and “TURN LEFT” command. 

These two command contained same utterance of word which is 

“TURN”. The utterance of “TURN” might have affected the com-

putation of distance and eventually affected the repeatability of 

recognition. Therefore, the repeatability of recognition was not 

very consistent for signal #3 and signal #4 compared to repeatabil-

ity of recognition of other signals. 

This problem happened to signal #1 and signal #2 when “FOR-

WARD” command and “BACKWARD” command was decided to 

use. The recognition of these signals were unsuccessful as the 

system sometimes recognized “FORWARD” sometimes recog-

nized “BACKWARD”. This was due to the utterance or “WARD” 

which almost the same command that affect the computation of 

distance. “FORWARD” command was given but system comput-

ed the shortest distance for “BACKWRD” command. In order to 

cope with this, “REVERSE” command was used to replace signal 

#2 to avoid the uncertainty in recognition. 

In conclusion for this experiment, distance deviation for 20 trials 

was exponentially inverse proportional to the repeatability of the 

recognition. The larger the distance deviation, the harder the com-

parison can be made accurately, which affect the accuracy of the 

system indirectly. The shorter the distance, the easier the compari-

son can be made and system result in high repeatability of recog-

nition. Figure 16 showed the relationship of repeatability and dis-

tance that can be concluded from this experiment. 
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Fig. 15: Graph of distance versus number of trials of recognition 

 

 
Fig. 16: Relationship of repeatability versus distance deviation 

4.3. Signal-to-Noise Ratio (SNR) Comparison 

Table 3 showed the comparison of SNR before applying Mel-

wrapping filter bank and after Mel-wrapping filter bank. 

In order to calculate the SNR, assumption has to be made which is 

the signal and noise was measured in the same impedance as in (5) 

to (7). 
2

10log10 











Noise

Signal

dB
A

A
SNR                                             (5) 

 

where Asignal = Root Mean Square Amplitude of Signal,            

Anoise = Root Mean Square Amplitude of Noise and AT = Total 

Root Mean Square Amplitude. 

 

2
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T

A
A      

2

Speak

Signal

A
A                                         (6) 

 

Getting the peak amplitude to calculate the root mean square am-

plitude and then the root mean square amplitude of noise can be 

assumed that: 

 

SignalTnoise AAA                                                               (7) 

 

Figure 17 presents the graph of comparison of signal to noise ratio 

(SNR) for before and after applying the filter bank. Data was ob-

tained from Table 3 and speech signal of which command can be 

referred from Table 1. For a signal to consider good, the SNR 

must be the higher the better where it means that the noise energy 

inside the signal is lesser than the signal energy. As shown in Ta-

ble 3, the root mean square amplitude of every signal was in-

creased after Mel-wrapping filter bank was applied compared to 

before the filter bank applied. When the amplitude of signal was 

higher and the amplitude of noise it lower, the SNR was im-

proved. It is clearly seen that SNR was higher after the Mel-space 

filter was applied as shown in the graph. 

Table 3: Comparison of signal to noise ratio 

 
 

 
Fig. 17: Graph of comparison of signal to noise ratio (SNR) 

5. Conclusion and Recommendations 

In conclusion, the LBG algorithm used in VQ technique provided 

a simple and easy way for understanding and also to recognize a 

voice command. In addition, distance comparison for each trial of 

recognition provides consistent shortest distance and therefore, the 

system was concluded as provide high repeatability recognition. 

Possible error such as utterance of words had been solved by using 

different command with same meaning to avoid the uncertainties 

in recognizing each command. 

Furthermore, the findings through signal to noise ratio (SNR) 

comparison of this paper proved that SNR of the speech signal 

was improved after the Mel-wrapping filter bank applied to filter 

the speech signal. Comparison on a graph also showed that the 

SNR after the filtering technique for every signal was higher than 

the SNR before any filtering technique. Assumption was made for 

the analysis to cope with possible error in calculation as the power 

of signal and power of noise cannot be obtained to calculate SNR 

using theoretical formula. 

In future work, improvement can be made by implementing Arti-

ficial Neural Network (ANN) technique into the voice recognition 

system. The advantage of using ANN is that this technique can 

handle low quality, noisy data by training and testing the network 

for a couple of times. While, ANN can handle low quality or high 

noise power data, filtering technique can be removed from source 

code of the system to prevent code redundancy. However, this 

recommendation is optional and need to base on objectives set for 

a project. 

On the contrary, for the real-time comparison of distance, Dynam-

ic Time Warping (DTW) technique can be used. This technique 

function almost the same as Vector Quantization (VQ), where 

both technique compare signals and find the shortest distance to 

recognize the signal. However, for VQ technique data samples 

need to be convert to acoustic vector form in frequency domain 

for the comparison to be done but for DTW, comparison of dis-

tance can be made without converting signal  to frequency do-

main. DTW compare signal in time domain and also provide real-

time comparison. 
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Last but not least, instead of using cable, the serial communication 

between MATLAB programming code and Arduino UNO micro-

controller can be replaced with wireless connection so that the 

movement of the robotic car will not be limited. For this im-

provement, XBee wireless RF module was recommended. The 

communication between software and hardware will become less 

limitation and this XBee chip help to ease the movement of robot-

ic car. 
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