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Abstract 
 
As the genome sequencing cost becomes more affordable, genomics studies are extensively carried out to empower the ultimate 
healthcare goal which is the precision medicine. By tailoring each individual medical treatment through precision medicine, i t will poten-
tially lead to nearly zero occurrence of the drugs side effects and treatment complications. Unfortunately, the complexity of the genomics 
data has been one of the bottlenecks that deter the advances of healthcare practices towards precision medicine. Therefore, based on the 

extensive literature review on the data driven genomics challenges towards precision medicine, this paper proposes two new contribu-
tions to the field; the conceptual framework for the genomics-based precision medicine and the architectural design for the development 
of hybrid depositories as the initial step to bridge the gap towards precision medicine. The genomics big data hybrid depositories archi-
tecture design is composed of few components; storage layer and service layer interconnected system such as visualization, data protec-
tion modeling, event processing engine and decision support, to carry out their purpose of merging the genomics data with the healthcare 
data. 
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1. Introduction 

Personalized medicine or now coined better as precision medicine, 
intends to ensure precise medical treatment can be delivered to 
each patient [1]. The accuracy on the customization of the medical 
treatment is believed to achieve a level in which it could eliminate 

any pre-incidences of any drugs’ side effects, drugs complications, 
incorrect drugs dosage and to accurately determine the individu-
al’s disease predisposition [2]. The concept of precision medicine 
arises from the knowledge of human genetic variation. Three bil-
lion DNA base pairs that make up the whole human genome con-
tain more than 20 000 protein coding genes [3]. Thus, genetic 
variation on these protein coding genes could be responsible for 
the different pharmacological responses despite a similar treat-

ment regime. In addition, sequencing of the whole human genome 
yielded more than 100 gigabytes of data [4]. Thus, we can expect 
more than petabytes of genomics data to be generated as we are 
paving our way towards precision medicine [5], [6]. 
[7] claimed that the genomics study has now progress better with 
the advances in computational biology (also known as bioinfor-
matics). Bioinformatics tools have allowed for easier genetic anal-
ysis, annotation, comparison, data interpretation and visualization 
of analyzed data. For example, Next Generation Sequencing major 

service provider (Illumina) has integrated cloud computing to aid 
sequencing projects [8]. Unfortunately, the outburst of genomics 
big data within a short span of time has surpass the capability of 
the currently available software and tools as many are developed 
to best suit the typical genomics data [9].  
As the cost to sequence genome decreases, numerous extensive 
research are conducted to help understand the disease genomics 
leading to an exponential deluge in the genomics data. Genomics 

big data can be distinguished from the common data based on the 

5V’s parameter; volume, variety, velocity, veracity and value [10], 
[11]. The amount of genomics big data may reach petabytes and 
beyond in volume, surpassing the typical computational power for 
data processing. The second parameter, variety, defined that ge-

nomics big data accumulates from different data structures and 
sources; to which standardizing the data becomes a challenge.  
Moreover, the speed of genomics big data accumulation (velocity) 
is also exponentially increasing in real time and continuous man-
ner. Eventually, biological scientist is unable to keep up with the 
current and recent findings of genomics research without the help 
of big data tools. Veracity, another parameter of genomics big data, 
ensures data trustworthiness to eliminate bad data from the system 

as it may affect the downstream application of the genomics big 
data. Last but not least, genomics data comes with a value that 
must be statistically relevant before the data can be considered to 
guide the clinical decision making [12].  
Upon the completion of Human Genome Project in 2003, new 
knowledge on human diseases and new challenges are unveiled 
concurrently [13]. For instance, patients were more exposed to 
their health information which will indirectly impact the lifestyle, 

health decision and treatments. Despite the extensive growth of 
genomics big data and advances of technology, we are still far 
from making precision medicine a reality. Thus, the objectives of 
this paper are to identify the challenges of the genomics big data 
towards precision medicine and discuss the framework to unify 
the concepts and ideas of genomics-dependent precision medicine 
system, focusing on the hybrid depositories as the first step to 
bridge the gap towards precision medicine. 

http://creativecommons.org/licenses/by/3.0/
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2. Literature review 

The literature review was conducted to collect and analyzed all the 
relevant papers in the field by the means of a structured search for 
literatures. The last search for papers was conducted in February 
2018. In addition, the scope mainly was cross-fields studies, ma-

jorly in ICT, genomics, and big data but were not limited to these 
fields. Precision medicine, by definition, is a genetic-based ap-
proach that assess the individual health risk with the intention to 
design a precise, customized health plan to accurately manage a 
patient's medical treatment [14]. In line with this definition, sever-
al related keywords were used to search the online databases to 
facilitate the preparation of the groundwork for the subsequent 
literatures. These include data driven genomics, big data analytics, 

genomics data challenges and healthcare decision making. Main 
databases from major publishers were used to search for the relat-
ed publications, such as Scopus (www.scopus.com), Science Di-
rect (www.sciencedirect.com), Springer (www.springerlink.com), 
IEEE (http://ieeexplore.ieee.org/Xplore) and PubMed database 
(https://www.ncbi.nlm.nih.gov/pubmed). Initially, a total of 306 
papers were identified. Through a quick check on the papers’ con-
tents, the journal articles were included or excluded from the anal-

ysis. To obtain a manageable number of papers for literature anal-
ysis, filtration through several criteria was performed. Some of the 
criteria include (i) removal of paper that were published before 
2013 (however, several papers were included later to emphasis on 
the development of initial research), (ii) categorization of papers 
according to the issues such as challenges of genomics in the path 
of precision medicine, the technological advances of genomics 
and the healthcare data management and (iv) papers from cited 

references were also included as a secondary literature source.  
Hence, as we are paving the steps towards precision medicine, 
there are many challenges that we need to overcome such as issues 
with the incompetent genomics big data storage, difficult trans-
formation of the complex genomics big data into an understanda-
ble form, ineffective genomics big data management and high 
concern on the genomics big data privacy and protection.  

2.1. Incompetent genomics big data storage 

[6] Mentioned that data storage is one of the major restriction to 
having reliable collections of genomics big data. The cost to store 
the genomics data is higher when compared to the cost to se-
quence the genomics [15] due to the fact that genomics data stor-
age require massive computing power, advanced software tools 
and feasible computational algorithms to support many down-
stream applications such as genomics data assembly, data com-
pression and data analysis [16]. In addition, typical localized serv-

ers are no longer sufficient to handle the genomics big data as they 
lacked capacity, flexibility as well as mobility. This situation led 
to many genomics scientists resorting to the solution of storing the 
actual biological sample and performs re-sequencing of the ge-
nomes rather than storing the data itself. Therefore, there is a great 
likelihood that these practices are contributing to the endless gaps 
in understanding the genomics and diseases. In other words, un-
kempt genomics data will easily result into potential data loss 

[17].  
Moreover, genomics data storage problem is also caused by the 
lack of depositories [18]. For instance, by 2018, at least 15 
petabytes of genomics big data will be generated from 450 thou-
sand individual genomes [19] solely from International Cancer 
Genome Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA) research projects. This depicts the growth of the ge-
nomics big data in the near future and highlighted the strong need 

to fully equip the genomics big data storage with competent de-
positories, advance technology and compatible supporting tools 
before we can make sense of the genomics big data [20].  
Although cloud computing has been the best storage solution to 
address the lack of depositories [21], we still encounter problems 
that contributed to the ineffective genomics big data storage [22]. 
Some of the problems were the accumulation of data in different 

data formats [23], imposed rules to restrict the access the deposito-
ries [24], data duplication and redundancy [25] as well as data 
standardization. In 2017, [25] suggested a deduplication frame-
work to eliminate the data redundancies. This framework was 
based on three components; client, network and server, in which 
the client layer eliminate the duplication occurring from a client 
input while the network layer utilizes redundancy elimination 
devices to remove the redundancies from multiple clients. Next, 

the server layer exclude redundant data that comes from the 
different networks. However, the efficiency of eliminating data 
duplication and redundancy were depending on several factors 
such as the design of system capacity, characteristics of data sets, 
processing power and deduplication time [26]. Hence, there is 
yet to be any optimally best solution to address this issue.  
In addition, another essential issue that correlated to the incompe-
tent genomics data storage was application of the suitable data 

compression method. For now, we may have general algorithms 
such as Lempel-Ziv [27] and GDC2 algorithm [28] to name a few. 
For instance, GDC2 claimed to be able to compress 1092 human 
diploid genomes almost 10,000 times with the speed of 200 MB/s. 
In other words, 1K human genome file size was only about 
700MB after compression compared to 6.7 TB file size when un-
compressed. Nevertheless, we may need to deploy customized 
algorithms to speed up the compression time and minimize the 

storage footprint of potential zettabytes worth of genomics big 
data in the future. 

2.2. Difficult transformation of the complex genomics 

big data 

Another challenge of data driven genomics is the complexity of 
genomics data [29]. Genomics data is not straightforward, harder 
to define and often involve numerous interacting variables [30]. A 
simple example can be explained in breast cancer genomics. We 
need to analyze and make sense of the (i) genomics data (for ex-

ample, involving BRCA1 or BRCA2 genes mutations) which are 
responsible for increased risk of breast cancer [31], (ii) expression 
of HER2 protein [32] which are often associated with a greater 
risk of breast cancer recurrence, (iii) analysis of gene regulatory 
network to determine the expression of other related oncogenes 
and tumor suppressor genes, (iv) analysis of pharmacogenomics 
datasets to depict the suitability for the drug therapy and (v) de-
tailed family histories, to name a few, before a conclusive decision 

can be made for precision medicine treatment of breast cancer.  
To portray the genomics data complexity, several parameters are 
discussed. Among them are the scale of genomics data, the forms 
of genomics data and the information relatedness of the genomics 
data [33]. The parameters need to be embraced to ensure precise 
clinical prognostics can be made possible. The first parameter, 
which is the scale of genomics data, involves many dimensions 
such as genes expression, interacting proteins, gene copy numbers, 
and metabolic pathways. For instance, cancer disease has often 

linked to the abnormal expression of multiple oncogenes (cancer-
ous genes) and repression of tumor suppressor genes, affecting the 
critical pathway of genes regulations that kept the cell in its nor-
mal state [34]. When combined together with other external fac-
tors such as environmental exposure and lifestyle, this may con-
tribute to tumor aggressiveness and disease complexity. To add, 
[10] claimed that by 2025, up to 40 Exabyte is required just to 
store human genome data. Hence, it is possible that the genomics 

big data may reach beyond zettabytes in this 4IR era.  
The second parameter which is the forms of genomics data are 
divided into four common types: sequencing data, annotations, 
quantitative data and read alignments [35]. In addition, these four 
types of genomics data come in different data formats. These 
many types and formats are responsible for the genomics data 
complexity, justifying why the conventional approaches tend to 
oversimplify and focus on individual data rather than the whole 

datasets [36]. Genomics sequencing data consists of the nucleotide 
sequence of the complete set of genes, contigs and transcript, and 
are usually in FASTA (unindexed) or 2bit format (indexed). 

http://www.scopus.com/
http://www.sciencedirect.com/
http://www.springerlink.com/
http://ieeexplore.ieee.org/Xplore
https://www.ncbi.nlm.nih.gov/pubmed
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Meanwhile, annotation data encompasses the description to known 
features in the genome such as the conserved regions, coding 
genes, start codons, transcription activation factors and many more. 
Annotation data format is in BED, GTF2, GFFF3, PSL (unin-
dexed) or BigBed (indexed). The quantitative data, on the other 
hand, is genomics data with numerical value in relation to the 
chromosomal locus (position). As example, there are some regions 
within the genome that are conserved across different organisms at 

certain degree. This kind of data is available in bedGraph or wig-
gle unindexed format and BigWig indexed format. Meanwhile, 
read alignment data consists of short sequences data that match 
identical sequence in the genome records using mapping. Read 
alignment data formats are bowtie, SAM, PSL (unindexed) and 
BAM (indexed). 
In addition, although most of the genomics data is made available 
in the electronic health reports (EHR), the data is not readily ac-

cessible by the clinical decision system (CDS). Castaneda et al. 
(2015) also highlighted that the current system experienced diffi-
culties such as the inability to store raw genomics data, the nonex-
istent link between the genetic abnormalities/mutations data with 
the pathological/clinical syndromes and the incomplete patients 
health data that deter the speed of clinical decision making.  
Next parameter, the information relatedness of the genomics data, 
is often overlooked and viewed as an obstacle since it is difficult 

to explore, understand and describe the multiple, interacting and 
conflicting data among genetics, gene expression, clinical markers 
and variation patterns. The potentially relevant data must be exam-
ined in depth to uncover patterns and trends that can distinguish 
subtle phenotypes in the disease genomics. Describing genomics 
data using inconsistent terms is one of the factors that discourage 
the understanding of the relations between genetics and diseases 
phenotypes [38]. This can simply be seen from the different way 
biology scientists and clinicians classify diseases and describe 

symptoms. The situation of semantic irregularity tends to make it 
difficult and tedious to populate the required data [39]. For exam-
ple, types of cancer such as carcinoma or sarcoma are not tagged 
as cancer without the standardization of data ontologies. Due to 
that, specific ontologies standards have been developed to support 
the growth of many genomics databases. Examples of the stand-
ardized ontologies include Gene Ontology (GO), Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Medical Subject Head-

ings thesaurus (MESH). In addition, the usefulness of biological 
ontologies is not only focused for better data classification [40], it 
also portrays biological data in a more understandable form, en-
sure effective data organization, supports statistical analysis and 
web simple search [41]. Therefore, it is essential that the data 
input followed the standardized ontology to minimize the gap in 
understanding genomics diseases.  

2.3. Ineffective genomics big data management 

Another major challenge towards precision medicine is genomics 
data management. This includes genomics data integration, data 
processing and data analysis. Difficulty in data integration mainly 
occurred due to the different data types [42]. Although the data 
may be in the form of digital data, the unavailability of tools to 
easily unify and incorporate these different data types becomes a 
restriction. To accomplish the objective of precision medicine, we 

need to be able to effectively integrate the genomics sequencing 
data with the electronic medical records [43], [44]. 
Moreover, genomics data integration is deterred when the data are 
kept isolated and enclosed from research purposes, data is man-
aged poorly as well as data is not updated [45]. These practices 
discourage the application of precision medicine in healthcare 
practices and needs to be addressed in priority to ensure precision 
medicine vision is achieved [46]. An attempt using web-based 

ODMedit has successfully created more than a thousand data 
models with uniform semantic annotations from large public 
metadata repository [47]. In principal, ODMedit is practical tool to 
facilitate the data integration. However, there were some draw-
backs of the tool such as the application was not fully automated, 

it worked only on structural metadata and not on raw genomics 
data and data completeness was not considered. In addition, 
ODMedit needed supportive effort by the scientific community to 
fully achieve its aim due to the semantic richness of patients’ 
metadata. Unlike ODMedit, p-medicine, a medical informatics 
platform, was able to work with variable format of heterogenous 
patients data [48]. These data types which include imaging, ge-
nomic and clinical records data can also be assembled, linked and 

subjected to the analytics tools to better understand the data. [49]. 
Besides that, the genomics data processing and analysis are de-
pendent on the compatibility and effectiveness of the available 
analytical tools and expertise [50]. Laboratory scientists mainly 
focused on getting the data from their research while bioinformat-
ics software developers mostly lacked the experience in under-
standing the hands-on part [51]. This eventually led to the emer-
gence of software, tools and computational infrastructures that did 

little to solve biological problems [52]. To make it worse, data 
analysis rarely becomes a priority as majority of the funds are 
spend to generate the data. This condition will eventually dampen 
collaborations, innovative development of software and also deters 
the potential to fully explore and unlock the personalized ge-
nomics data and use them to our advantage. 
Subsequently after obtaining genomics data, the data will undergo 
more downstream processes such as genome assembly, annotation 

and alignment. These processes will generate different types of 
data in different formats. Genome assembly contains fragmented 
genome reads that requires very large memory capacity to assem-
ble and arrange the genome sequences. The unavailability of suffi-
cient computing power limits the progress of many genomics re-
search [15]. This led to initiatives by few genomics sequencing 
service providers such as Pacific Biosciences (PacBio) and Oxford 
Nanopore to come up with long-read sequencing technologies [53] 
that allow for a maximum of 100-fold fragmented genome assem-

bly without compromising the quality and quantity of data and at 
an affordable computational cost [54].  
The assembled genome is then aligned with the reference genome 
to facilitate the genes annotation and comparison. Previously, the 
alignment requires comparison and alignment of the two sequenc-
es directly; however this takes longer time and more memory 
space. To overcome this problem, new tools [55] such Basic Local 
Alignment Search Tool (BLAST), Spliced Transcripts Alignment 

to a Reference (STAR), Burrows-Wheeler Aligner (BWA) and 
Bowtie are adopted to increase the speed to align genomes. The 
adoption of these new tools utilizes a two-step seed-and extends 
strategy [56]; generating indexes according to the query sequences 
or organize the database into compact binary files for quicker 
alignment time [57]. It is foreseen that there will be a greater need 
in the future to develop new algorithms as a game changer to exe-
cute the genomics data processing in a much practical way.  

As the demand to have more innovations and transformative tools 
to maximize and drive the integration of big data and data science 
into genomics, the National Institutes of Health (NIH) launched 
Big Data to Knowledge Initiative (BD2K) to ensure improvement 
in many genomics analysis tools is parallel to having trained biol-
ogist [58]. It is hoped that this initiative will encourage collabora-
tion of many experts to address genomics big data issues and its 
solutions. Therefore, we must encourage more interactions, net-

working, knowledge and expertise sharing among the genomics 
scientists, bioinformaticians, data scientists, clinicians and IT ex-
perts, potentially through cloud collaborating platform [59] as the 
answer to understanding disease genomics sometimes are revealed 
from viewing the diseases from different angle.  

2.4. High concern on the genomics big data privacy and 

protection 

Addressing the concern on the genomics data security, certain data 
depositories such as the Biobank applied a different approach to 

prevent data loss and data corruption. Biobank contained data 
from nearly 200 000 donors which include data from personal 
health, genomics, proteomics and bio-specimens. Involvement of a 

http://bowtie-bio.sourceforge.net/manual.shtml
http://samtools.github.io/hts-specs/
http://genome.ucsc.edu/FAQ/FAQformat.html#format2
http://samtools.github.io/hts-specs/
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massive scale of data will definitely led to potential privacy threat 
which will interfere with the data security [60]. Therefore, Bi-
obank utilizes Bio-PIN or ‘Biological Personal Identification 
Number’ is generated by the individual’s unique non-genotypic 
single nucleotide polymorphisms (SNPs). The bio-specimen will 
be registered only with Bio-PIN and did not include the general 
donor identity data (to ensure confidentiality). Although the result-
ing PIN code cannot be linked back to the individual, the samples 

can still be distinguishable from each other [61].  
In addition, [62] also highlighted that despite using either public 
or private cloud computing platforms, there will still be concerns 
on data privacy and security. This is because the advances in tech-
nology will always create opportunity for data manipulation [63] 
and integrative data requires broader security spectrum which will 
exert more pressure on data security components in the cloud [64].  
Besides that, [65] mentioned that the genomics data protection is 

badly needed to encourage data sharing prior to the enactment of 
precision medicine. This is because concerns are raised over the 
fact that the genomics data can reveal more than just an individu-
al’s genetic information such as the health status, drug responses 
and disease predisposition, but also exposed the information on 
related family members [66]. Another extra measure such as hav-
ing data protection policies must be derived to prevent any bio-
crime or data abuse that will endanger the safety of each individu-

al. [66] described GeneCloud, a secure cloud computing as an 
alternative to public cloud computing with the added data security. 
Data is secured through the execution inside a secure sandbox that 
prevents any disclosure of sensitive data [67]. Similarly, an added 
data control and security can also be found in Bionimbus, a cloud 
computing platform [68] used to study the acute myeloid leukemia 
sequencing with data comparable to the 12 hours alignment-time 
using 8 CPUs. 
In addition to that, data security may also be achieved through 

common approaches such as encryption [69], multiple-factors 
authentication [70], authorisation limits and blockchain 
monitoring [71], [72]. Moreover, there is also a need to implement 
policies to protect genomics data. The unavailability of these 
policies discourages voluntary genomics data capture, leading to 
insufficient data collection [73]. Without sufficient data, the 
findings will not be significant and relevant to be applied into a 
medical practise. These policies will also protect the individual 

rights on health related matter such as insurance to stop the 
insurance provider from using the genomics data to deny the 
insurance claims and entitlements [74].  

3. Conceptual framework to bridge the gap 

towards precision medicine in the genomics 

context 

[75] described the 4th industrial revolution (4IR) as an impactful 

fusion of the advanced technologies with the physical, digital and 
biological worlds. 4IR heavily relates to the genomics big data in 
terms of the utilization of the increasing volume, variable data that 
merge not only the genomics data, but include the clinical, envi-
ronmental, and lifestyle information from individuals to larger 
populations. This had change the landscape of the precision medi-
cine from hypothesis driven to data driven approach. As we are 
pacing our way in the 4IR era, the advances in technologies and 

bioinformatics have given rise to many important tools for data 
capture and storage, collaboration, analysis and decision purposes. 
Fig. 1 showed the conceptual framework to bridge the gaps to-
wards precision medicine in the genomics context: (i) improve 
tools and pipelines, (ii) expand the cloud collaboration platform, 
(iii) create hybrid depositories and (iv) develop automated preci-
sion medicine system [76]. The following section will discuss 
more on the architectural design of the hybrid depositories as the 

main focus of this framework. 
 

 
Fig. 1: Framework to Bridge the Gap Towards Precision Medicine in 

Genomic Context [76]. 

3.1. Improve tools and pipelines 

Technology breakthrough has encouraged new, innovative devel-
opments and improvements to make data acquisition, manage-
ment, sharing, analysis and application much easier and robust. It 
is best if we are able to improve the current tools and pipelines in 

these important areas; big data capture and storage, collaboration, 
predictive analysis and decision support. With respect to realizing 
precision medicine, the genomics big data capture and storage 
tools ensure efficient storage of genomics big data and related 
medical records to which the data can be shared openly among 
experts through collaboration tools, analyzed using fully-equipped 
predictive analysis tool before the clinical decisions can be guided 
using the decision support tools available in the healthcare institu-

tions.  
Precision medicine will just be a pipeline if we are still struggling 
with the basic requirements that involve small-scale data. There-
fore, it is best to improve the currently available tools and pipe-
lines rather than building new ones from scratch. In addition, we 
should avoid having so many tools that functions similarly as we 
should be focusing to develop tools that are missing and are cru-
cially needed to manage the genomics big data [77]. For examples, 

there are yet to be any tools that are able to track the pattern or 
trends between the genomics big data and corresponding medical 
records or development of algorithm that can determine the effica-
cy of drug dosage based on the genomics data [78]. 
[79] mentioned that the health-related datasets were derived from 
three important sources which were health information systems 
(HIS), clinical decision support system (CDSS) and medical body 
area networks (MBANs). The raw data generated from these sys-

tems is a need to improve and optimize all the necessary tools that 
perform the query processing, data synchronization, real-time data 
accumulation and determination of automatic cloud storage capac-
ity, despite the availability of these tools at this point of time.  
In agreement to the need in improving the tools and having robust 
pipelines, National Cancer Institute in the United States initiate the 
NCI Cancer Research Data Commons (NCRDC) to improve the 
preventions, diagnostics, treatments on cancer diseases through 
open science efforts [80]. NDRDC is a cloud-based infrastructure 

consisting of multiple nodes that house processed data, raw data, 
metadata and analyzed data from cross-domains. It also supports 
data sharing and improve collaboration among researchers since 
NDRDC is accessible to all its users. Moreover, NCI also came 
out with more initiatives including the Genomics Data Commons 
(GDC), and three Cloud Resources [81]. GDC functioned as both 
the data repository and a system that applies bioinformatics pipe-
lines to ensure data quality and allow utilization of user-dependent 

applications.  
Other than that, the importance of precision medicine is distinctly 
shown by many vigorous efforts conducted including the recently 
initiated Bio-Nepresso Project [82]. This project was based on the 
success of the monoclonal antibody treatment strategy to treat 
cancer. However, the current strategy was costly and standardized 
to a point that variable responses resulted from the treatment. This 
condition gave rise to the Bio-Nepresso concept which focused on 
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producing a small-scale, lower cost and customized antibody. 
Nonetheless, since this machine eliminate the need for the phar-
macist to have prerequisite knowledge on antibody production, the 
efficiency of Bio-Nepresso in aiding the personalized cancer 
treatment remains questionable. 

3.2. Cloud collaboration platform 

[83] stated that delivering the ultimate healthcare treatment to the 

patients requires the work and support from many parties as one 
could never have sufficient knowledge that can address the many 
variables arising from the clinical and genomics data. This justi-
fies the need for the cloud collaboration platform, to ensure the 
objective of precision medicine can be met. The data obtained in 
this ever-expanding genomics big data research is increasing ex-
ponentially that it is impossible to keep up with the data using 
traditional approaches.  

Implementation of cloud collaboration platform will allow for 
real-time knowledge sharing among many groups of experts 
worldwide. This platform will also be an interactive medium to 
solve the issues of genomics deadlock that block the road towards 
precision medicine. The traditional approach of knowledge and 
expertise sharing are often limited by several factors such as time, 
distance and availability. The progress has been slow with this 
typical approach, leading to more data losses and obsolete data.  

Few of the well-known genomics based cloud collaboration plat-
forms were CAVATICA, Cancer Genomics Cloud Pilot and 
OpenGeneMed. Each of this platform served the main purpose to 
engage data sharing and encourage new discoveries. For instance, 
CAVATICA, a cloud-based analytic platform provided an open 
access environment, focusing on large pediatric brain tumor big 
data (inclusive of raw genomic data, whole genome, RNA se-
quencing data, annotations and specimen data) to allow collabora-

tion among its users [84] This platform also allow access to public 
datasets such as The Cancer Genome Atlas (TCGA) and other 
National Cancer Institute (NCI) datasets, provide additional sup-
ports such as pipelines, computation storage power and visualiza-
tions. 
Besides that, Cancer Genomics Cloud Pilot, a project by NCI, 
aimed to improve cancer genomics data sharing by enabling re-
searchers to incorporate their own datasets and tools in addition to 
the available datasets and in-house analytic tools. This feature was 

favored by the researchers as it solved most of the common data 
sharing issues such as the need to download, store and secure the 
large-scale datasets locally. In other words, fusion of technological 
advances in big data analytics will support meaningful collabora-
tion among team science to reveal new knowledge that benefited 
the cancer research, thus realizing precision medicine [85]. 
In addition, [86] described OpenGeneMed as an informatics hub 
with automated flexibility to manage next-generation sequencing 

datasets to support the precision medicine clinical trials. One of 
the key feature of this system is that it allowed different research 
team involved in daily management of a clinical trial (sequencing 
lab, treatment review team, clinical team, statisticians to name a 
few) to communicate in an open access cloud environment. This 
feature was advantageous as it minimized the data transferring 
error between groups and support clear documentations to ensure 
data integrity. Another important feature of OpenGeneMed was 

automation. Incorporated tools and pipelines assisted the genera-
tion of summarized reports that present the mutation findings from 
the sequencing result in a timely manner. This information is then 
used by the team to assign patients to different arms based on their 
detected mutations.  
Therefore, it could be clearly seen that genomics big data requires 
big infrastructure to support the steps towards precision medicine. 
Since the abovementioned cloud collaboration platforms have 

proven to work in encouraging the data sharing and expertise 
transfer through cloud computing within the genomics field, the 
proposed framework suggesting expansion of cloud collaboration 
platform is deemed reasonable and achievable. The aim is similar, 

only to cover a broader scale of data types inclusive of not only 
the genomics big data, but healthcare big data as well.  

3.3. Automated precision medicine system 

On the road to 4IR epoch, the healthcare facilities will not be ef-
fective to tackle precision medicine without any reliable system. 
The precision medicine system needs to incorporate many infor-
matics technologies [87] such as artificial intelligence, augmented 

reality, machine learning, simulations and visualization to expe-
dite the individualized treatment decisions based on the genomics 
big data. Moreover, flexibility of the systems is required to ensure 
continuity of the real-time data accumulation. Another criterion to 
be fulfilled by this system is automation. This helps to minimize 
the human error in determining unbiased and accurate individual-
ized treatment to patients. Nonetheless, precision medicine system 
should be heavily protected with cyber security approaches to 

prevent typical digital abuse such as data corruption, data loss and 
data hack [88]. A successful implementation of automated preci-
sion medicine system will be able to improve diagnosis, classifica-
tion and treatment at a larger scale beyond the capability of the 
existing practices.  
[89] highlighted two key areas that will enhanced the precision 
medicine system which are to build a precision medicine 
knowledge base (KB) and enhance electronic health records 

(EHR). A decent precision medicine KB need to fulfill these crite-
ria; contains fruitful information on the diseases (subtypes, preva-
lence, diagnostics, prognosis and treatment) gained from the data 
analytics, flexible in terms of supporting different data types that 
came from genomics research and clinical datasets, scalable as the 
data will continue to grow and may reach beyond petabytes, ex-
tensible to allow modification and addition of modules to the cur-
rent KB system and readability that encompasses human and ma-

chine. The reason behind these criteria is that the currently availa-
ble KBs were mostly focused on a field such as genomics, re-
mained inaccessible, not connected to each other and fail to exe-
cute merged querying. Therefore, new architectural design of pre-
cision medicine KBs must be developed to enable clinical deci-
sion-making support based on the most recent genomic discover-
ies and clinical evidences. In addition, electronic health records 
will be one of the main data sources incorporated into the auto-
mated precision medicine system to assist the clinical decision. 

This is because EHR has been isolated from the genomics data so 
far. Improvement to the currently available EHR include better 
structure, improved collection and data display to allow users to 
obtain meaningful patient information.  
To address the issue with regard to the isolation of EHR from the 
genomics data, an ontology-based system named ONTOFUSION 
was developed to facilitate the biomedical database integration. It 
carried out two important processes of mapping and unification. 

The versatility of ONTOFUSION that differs from p-medicine 
would be the methodologies used for ontological unification 
which were top down (existing ontology), bottom-up (build new 
domain ontology) and hybrid combination [90]. Nevertheless, 
despite the promising use of ONTOFUSION, the system was only 
semi-automated since there is a need for human input for to link 
the database schema with the virtual schema.  
Other than that, the importance of integrating the genomics data 

with EHRs was also supported by IGNITE (Implementing Ge-
Nomics In pracTicE). These projects strategized multiple data 
extraction using data warehousing to integrate the data into a cen-
tral repository. However, at the moment, IGNITE experience sev-
eral drawbacks similar to ONTOFUSION, in which certain extent 
of the data extraction was subjected to manual curation [91].  

3.4. Hybrid depositories 

Until now, the genomics data still remained isolated from the 
medical records, personalized genetics screening data and many 
more [92]. In the long run, this will be a detrimental factor that 
discourages the progress towards precision medicine. Hybrid de-
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positories can simply be defined as data storage places to ensure 
safekeeping of multiple forms [93] of health related data, compris-
ing of structured data (e.g. genomics data), semi-structure and 
unstructured data (e.g. electronic health records, lifestyle tracks, 
environmental exposure health records and medical imaging) [94]. 
Therefore, the hybrid depositories is visualized with the capability 
to manage different data types ranging from the genomics data 
from sequencing, personalized genomics data from genetic screen-

ing, laboratory test result information, health medical records, and 
family health history data. These depositories will expedite the 
tracking of the required information, from individual to communi-
ty to whole population.  
The reason behind the nonexistent integration between the ge-
nomics data and the health records is due to the complexity of the 
genomics data [95]. Thus, we are continuously dealing with gaps 
between these related data such as limited data scope, under-

utilized data and missing information. Without reliable data com-
parison and integration, the information to understand the genetic 
mechanism or molecular interaction of the disease remained latent 
and unexplored. Genomics data mainly contains data from person-
al genetics, DNA sequencing from service providers and public 
genome data while healthcare data comprises of medical records, 
health screening test and data from hospitals’ laboratory infor-
mation system (LIMS).  

In addition, a simple model to portray the benefit of data integra-
tion as intended by these hybrid depositories is proven through 
Framingham Heart Study. This Heart Study intended to determine 
the risk factors for coronary artery diseases [96]. The predictive 
model [97] combined variable data such as demographics (age, 
gender), lifestyle factor (tobacco use), clinical data (diabetes, hy-
pertension, body mass index, Low Density Lipoprotein/High Den-
sity Lipoprotein - LDL/HDL ratio, cholesterol) and family history 
data. In other words, this demonstrated that to achieve maximum 

power to understand disease phenotypes, all relevant data, ge-
nomic or otherwise, should be considered. Other similar data inte-
grative benefit is also mentioned by [98]. An approach under Initi-
ative in Precision Medicine was hoped to progress the individual-
ized concept of medical treatment by harnessing various types of 
data such as the clinical data, genomic evaluations, environmental 
factors, lifestyle activities to name a few to depict a wide perspec-
tive of the patient's health state and its future path.  

Hybrid depositories come with a potential to elevate the outcome 
of getting reliable and accurate disease risk predictors as all data 
will be taken into consideration. This is not the case with the tradi-
tional clinical approach. A breast cancer study by [99] that utilizes 
70-genes predictor as the prognostic markers in breast cancer was 
found to be not unique, probably due the similarity in the dataset 
samples. Therefore, integrating multiple data from greater scale of 
data sets will diminish this problem [33] and other consequences 

such as having misleading strategy for disease treatment.  
In other words, it is impractical to utilize genomics big data with-
out the support of big data technology. In the following section, 
the proposed genomics big data hybrid depositories system will be 
discussed based on the work by [100]–[102]. 

4. Genomics big data hybrid depositories sys-

tem architecture 

Since many of the challenges mentioned earlier (genomics big 
data storage, data complexity, management and security) are ma-
jorly reflecting on the lack of depositories that can house different 

types of related data, this is where the hybrid depositories are of 
importance. The architectural design of hybrid depositories must 
address these issues such as linkage of data from multiple sources, 
elimination of data duplication, improved data compression 
through customized algorithm, versatility to deposit many types 
and data formats as well as automated integration of genomics and 
EHR data.  
Hybrid depositories’ basic function is to provide an integrative 
view that considers all forms of data, emphasizing on making use 

of full spectrum of clinical and demographic data in conjunction to 
the genomics data. This integration is hoped to provide a sense of 
data completeness that may help to unveil the relation between the 
disease genomics and phenotypes and identify not only the link 
but the potentially conflicting disease risk predictors that defined 
the disease. The importance of integrating data from healthcare 
and genomics was also greatly highlighted by the Electronic Med-
ical Records and Genomics (eMERGE) network [103]. This net-

work has successfully demonstrated the usability of linking ge-
nomics and medical records data through the identifying the ge-
nomics association on age-related cataract diseases from the 
linked biobanks-EHRs data [104].  
Fig. 2 depicted the general architecture of the potential genomics 
big data hybrid depositories system. The system consists of cross-
layered integration of different components. The data model is 
based on the ontological-relational approach; in which it offers 

flexibility and logical inference for accurate and high quality data 
steering while integrating the use of relational databases and stores 
of triples. However, this paper will not elaborate more on the sys-
tem development of the proposed system (via the depicted archi-
tectural design) since that will come in the next stage of the study.  
 

 
Fig. 2: General Architecture of Genomics Big Data Hybrid Depositories 

System. 

 
The genomics big data hybrid depositories incorporate several 
components; which include storage layer and service module. 
Heterogeneous forms of data; structured, semi-structured and non-
structured, will be stored in the hybrid depositories’s storage layer. 
As there is variety of data structures involved, this depositories 
combines the facility of relational storage, triplestore and XML–

based storage. Since many of the genomics data came from public 
databases, sequencing projects databases and personalized ge-
nomics service providers’ databases, this suit the purpose of the 
relational storage. Relational storage works best with the struc-
tured data through a relational database management sys-
tem (RDBMS). In addition, triplestore will function as a data-
base built for the storage and retrieval of triples through semantic 
queries. Another storage layer of the hybrid depositories is XML-

based storage. It allows data to be stored in XML format, queried, 
transformed, exported and returned to a calling system. This type 
of storage also minimizes the need for extraction or entry of 
metadata to support searching and navigation. 
Moreover, the second part of the hybrid depositories will be the 
services module. Hybrid depositories service layer permit com-
munication between the components of the system and extraction 
of relevant data through three modules which are data access con-
trol, system configuration, security process. The data access con-

trol module interpret enquiries for data retrieval and grant access 
right according to the defined permissions in the depositories 
while the system configuration module manages information for 
systems, networks, applications and services. Next, the security 
processes module aims to detect, log and resolve system problems. 
The hybrid depositories will also be of support for other inter-
related system such as visualization, data protection modeling, 
event processing engine and decision support. Visualization sys-

tem depicts the relevant data to aid the understanding of data in 
the context of disease genomics. Meanwhile, data protection mod-
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eling system focuses on preventing any vicious threat to ensure 
safekeeping of data in the hybrid depositories. Event processing 
engine executes end-to-end processes from filtering, capturing, 
enrichment, formatting, and importing data from multiple, hetero-
geneous sources. Finally, data clustering through application of 
machine learning approach will guide the decision support system.  
The need to have a reliable hybrid depositories was strengthen 
when [105] mentioned that the drawback towards accurate diagno-

sis in healthcare was due to the lack of available system that can 
provide decision making through big data analytics approach. 
However, his proposed framework was more focused towards 
improving the current diagnosis approach and was based hugely 
on the health data rather than integrating the genomics data with 
the health data to define individualized treatment for precision 
medicine. At the moment, there were no examples of the imple-
mented and used hybrid depositories solely on genomics-

healthcare big data with respect to personalized medicine. There-
fore, for the purpose of this study, we adapt the concept for the 
architecture design of the genomics big data hybrid depositories 
from the work done by [100].  
The issues that led to the designing of the hybrid ontological-
relational data repository to enhance computer network security 
[106] were almost similar to the challenges that led to the need for 
genomics big data hybrid depositories. As such, the availability of 

security data in variable types (including vulnerabilities databases, 
attacks databases, platforms databases, weaknesses databases) and 
format as well as no integration between the different security 
data. Their study also highlighted that in order to determine the 
relationship between various, related data, we need to consider as 
many data sources as possible. Other than that, since [100] work 
addressed security issue, this is also in par with the concern on the 
designing of the genomics hybrid depositories.  

5. Conclusion 

Precision medicine can be potentially materialized with the under-
standing of knowledge derived from the integrated genomics data 
and other related health data such as the clinical data, personalized 
genetic screening, laboratory DNA test, gene expression analysis 
and health reports. Without this, we will be left clueless especially 

in transforming the future of healthcare treatment from the current 
approach of ‘one size fits all’ to the personalized medicine plan.  
From this study, we had identified the major gaps that deter the 
progress towards precision medicine. Despite an exponential in-
crease in the genomics data, we were still facing challenges such 
as inefficient genomics big data storage, the difficult integration 
between the genomics data with electronic health records and 
more as well as the lack of versatile depositories that can house 

the complex genomics-healthcare data. As the data remained iso-
lated from each other, we were unable to make full use of data that 
may hold the key to unveil the knowledge towards understanding 
disease better or the link between genetic-dependent individual 
response on drug or treatment. Although this paper discussed part 
of findings from larger studies which aims to build the actual big 
data hybrid depository, this paper is the first of its series (the ini-
tial work of the larger research).  

Based on the conceptual framework to bridge the gap towards 
precision medicine in the genomics context, we put emphasis on 
the hybrid depositories. This is due to the potential ability of the 
hybrid depositories to address the major problems listed earlier. 
Hybrid depositories will be of importance as it can capture, link, 
organize and perform analysis from different types of data that 
will feed the automated precision medicine system. The design of 
this hybrid depositories will take into account on the ability to 

correlate events in cross-domain manner with high scalability. The 
function is supported by two depository’s layers; which are stor-
age layer and service module, to carry out these basic require-
ments of data storage, metadata storage, different level of data 
management, simultaneous data access, data integrity support, 
data privacy and support of multi-version management.  

To begin, development of the hybrid depositories could be done in 
a smaller scale, using mock data before we attempt on large-scale 
data in the hybrid depositories. From here, we will be able to iden-
tify the interactions, complementarities and conflicts that occurred 
among the genes expressions, genetics, clinical markers and other 
risk factors. This outcome can again be validated using the availa-
ble medical records. Other than that, the hybrid depositories need 
to be able to assist the data migration and allow efficient data ac-

cessibility. Once this is proven to work, we can apply this plat-
form using real genomics big datasets and health informatics data. 
In addition, the materialized hybrid depositories could be extended 
in the future into the adaptation of hybrid depositories into a mo-
bile-size application for more flexibility and mobility.  
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