

International Journal of Engineering & Technology, 7 (2.20) (2018) 350-356

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Detecting Meta-Patterns from Frameworks Using Hybrid

Genetic Algorithm

Tapan Kant
1
*, Manjari Gupta

2
, Anil Kumar Tripathi

3
, Meeta Prakash

4

1Department of Computer Science, Banaras Hindu University, Varanasi, India
2Department of Computer Science, Banaras Hindu University, Varanasi, India
3Department of Computer Science and Engineering, IIT BHU, Varanasi, India

4Infosys Ltd. India

*Corresponding author E-mail:tapan.kant@gmail.com

Abstract

Meta-patterns are a sort of basic object-oriented constructs that have been used to design an object-oriented framework. It has been used

to precisely describe possible design pattern of a framework at meta-level to manifest framework hot-spots and its corresponding adapta-

bility. The present study is an attempt to develop a genetic algorithm approach for detecting the types and numbers of meta-patterns. For

this purpose we have converted the UML class diagram of object-oriented framework and meta-patterns into directed graph and applied

hybrid genetic algorithm. The obtained results from the proposed algorithm are further validated manually with the recall and precision

percentage of 86.20 and 80.64 respectively. Overall the study demonstrates the utility of the uniquely proposed algorithm for the near

accurate identification of meta-patterns for high reusability. This can be applied on frameworks for assessing the evolution process, doc-

umentation of hot-spots and reducing the customization effort.

Keywords: Genetic Algorithm; meta-patterns; Object-oriented framework; Sub-graph.

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The main aim of object-oriented software engineering is to improve

the quality of the software through reuse. Among the reuse tech-

niques, the object-oriented framework provides flexible architecture

and reusable design for specific domain and thus is widely accepted

as a dominant technique in software development. It offers prede-

fined adaptation point that is known as hot-spots [1]. Hot-spots

consist of small structures to acquire object-oriented reusable de-

sign. These small reusable structures are often termed as meta-

patterns [2]. Template and hook methods can be grouped into a

single class or group of classes together with their interaction often

termed as meta-patterns.

Meta-pattern [2] is as an approach to develop framework independ-

ent to specific domain and can also be used to precisely describe

possible design pattern of a framework at meta-level, to manifest

framework hot-spots and its corresponding adaptability. Schauer et.

al. [3] detected the meta-patterns and described that a set of hook

methods together with their associated template methods, in which

all the hook methods that are called by same set of template meth-

ods are captured into one single hot-spot. Further, Thummalapenta

and Xie [4] also detected and utilized the meta-patterns for the hot-

spots detection. These reports suggested that the meta-patterns can

be utilized for the hot-spots documentation, assessing the evolution

of the framework, and framework based application development.

However, these techniques are based on source code and limited to

particular programming language. Therefore, there is requirement to

develop a technique which is more direct and language independent

for enhanced reusability Graphs are increasingly being used as

dominant technique to model data representation such as chemical

structures, computer networks, digital circuits, etc. The work in

[5][6][7][8]

uses graphs to represent UML class and object diagrams. Further,

there are several reports which usage sub-graphs isomorphism to

detect design patterns from object-oriented software. Sub-graph

isomorphism may be formulated as a decision problem where input

is a pair of graphs G and G1, and the output is yes if G1 is isomor-

phic to a sub-graph of G and no otherwise. Finding sub-graph of G

that is isomorphic to G1 is corresponding optimization problem and

NP-Complete. Ullmann [9] proposed backtracking procedure to

solve sub-graph isomorphism problem in exponential time com-

plexity. Further, two algorithms, the Durand-Pasari algorithm [10]

and McGregor algorithm [11] are proposed to solve maximum

common sub-graph [12][13]. A Hybrid genetic algorithm was pro-

posed to solve the sub-graph isomorphism problem [14]. Genetic

Algorithms (GA) are inspired from the processes of natural evolu-

tion. GA is an adaptive heuristic search algorithm which uses evolu-

tionary facts of natural selection and genetics. GA makes use of

historical information to perform the search into a region of better

performance within the search space. To solve a problem, GA simu-

lates the survival of the fittest among individuals over several gen-

erations. The chromosomes of each generation comprises of a popu-

lation of character strings. Each individual correspond to a point in

a search space and a possible solution. The individuals in the popu-

lation are then made to go through a process of evolution.

Therefore in the present study, we propose a unique hybrid genetic

algorithm for detection of meta-patterns. The problem of meta-

pattern detection is mapped into the problem of sub-graph isomor-

phism. The process of obtaining meta-patterns of a framework

through sub-graph isomorphism has been shown in this work by : i)

converting a system design UML diagram into a graph and ii) ap-

plying hybrid genetic algorithm to solve the problem of sub-graph

isomorphism

http://creativecommons.org/licenses/by/3.0/

In the process of application of hybrid genetic algorithm, we have

modified the fitness function so that it can be applied for meta-

pattern detection. This is being demonstrated through Java imple-

mentation of the proposed hybrid genetic algorithm for detecting

meta-patterns for four widely used open source frameworks. We

have manually validated our result to measure the performance of

our approach.

The rest of the paper is organized as follows. Section II establishes

the background of our work. We explain the graph representation

of UML diagrams of meta-patterns as well as of framework design

in section III. In section IV, we explained how to apply the hybrid

genetic algorithm to sub-graph isomorphism problem. In the next

section V we discuss the results and scope of future works. Relat-

ed work in this area is described in detail in section VI. The last

section VII covers the conclusion.

2.Background

This section describes meta-patterns and their corresponding

graphs to establish the background of our work.

2.1 Meta-Pattern an Overview

The core concept of meta-patterns manifest framework design and

adaptability. The fine grain structures of meta-patterns are tem-

plate and hook methods. The classes which contain template

methods are known as template class whereas the classes which

contain hook methods are called hook class. According to Pree [2]

patterns are elegant and powerful approach to describe framework

centred design patterns at meta-level. Meta-patterns can be used as

an approach to develop frameworks independent of specific do-

main. The fundamental of meta-pattern is based on Open-closed

principle. The Open-closed principle states that a software module

should be opened for extension and closed for modification. The

object-oriented frameworks follow the Open-closed principle and

provides flexible and reusable design. The object-oriented frame-

works provide predefined extension point known as hot-spots.

Hot-spots consist of small structures to acquire object-oriented

reusable design. These small reusable structures are often termed

as meta-patterns. Template and hook methods can be grouped into

either in a single class or group of classes together with their inter-

action often termed as meta-patterns. Stating this more objectively,

we can say that:

(i). Template methods are concrete, reckoned as complex and

determine generic behaviour between objects by calling hook

methods. Hook methods act as proxy, usually considered as muta-

ble part (in framework); it could be concrete or abstract invoked

by a single template method or group of template methods.

(ii). Template methods call hook methods, template and hook

classes are combined in particular fashion to form meta-patterns

either through association relationship or through inheritance rela-

tionship.

(ii). In association relationship between template and hook classes,

a single object of template class could be associated with a single

object or more than one objects of the hook class. In inheritance

relationship, template class and hook class have parent and child

relationship where hook class is parent and child is template class.

Moreover, there are seven different types of meta-patterns as de-

fined by Pree in [2]. The interaction among template & hook

methods either within a class or group of classes is shown in Fig-

ure 1. The basis of meta-pattern interaction can be either through

unification, abstract coupling or recursive structures [2]. The ex-

amples of meta-patterns having template and hook methods in a

same class is known as Unification meta-patterns shown in figure

1e, 1f & 1g. The meta-patterns which rely on abstract coupling is

known as connection patterns in which an object of template class

refers either exactly one object or any number of objects, of hook

class and represented as 1:1 Connection Pattern (Fig. 1a) a 1:N

Connection Pattern (Fig. 1b), respectively. The example of meta-

patterns which are based on recursive structures is known as re-

cursive connection pattern in which template class is a descendant

of hook class also maintains one or any number of reference(s) to

its ancestor class and represented as 1:1 Recursive Connection

Pattern (Fig. 1c) and 1:N Recursive Connection Pattern (Fig. 1d),

respectively. In Recursive Connection Pattern, the template and

hook methods have usually the same name. The following exam-

ple (Fig. 2) is helpful to better understand meta-patterns.

(a) 1:1 Connection Pattern

(b) 1:1 Connection Pattern

(c) 1:1 Recursive Connection

Pattern

(d) 1:N Recursive Connection Pat-

tern

(e) Unification

Pattern

(f) 1:1 Recursive

Unification Pattern

(g) 1:N Recursive Unifica-

tion Pattern

Fig. 1: UML diagram of meta-pattern as in [2]

In figure 2, we describe strategy design pattern and composite

design pattern which is concrete example of abstract coupling and

recursive structure, respectively. In the given example of strategy

design pattern (Fig. 2a); the Context class contains a reference to

an abstract class (Strategy). Here, the applyStrategy() method of

Context class is template methods and the execute() method of

Strategy class is the hook method. Context class is abstractly cou-

pled with Strategy class that allows hard-wiring between these

classes. The example of composite pattern is given in figure 2b,

the operation() method of Composite class is template and the

operation() method of Component class is hook. The recursive

structure enables Composite class (the descendant class) to contain

the reference of Component class (super class).

(a) Abstract Coupling

(b) Recursive Structure

Fig 2: Example of meta-patterns based on abstract coupling & recursive

structure

In case of unification meta-pattern adaptation is done at compile

time since a subclass is required to be created and hook method is

overridden there. While in case of connection meta-patterns

adaptation is done at run-time since subclasses of hook class are

need to be defined, instantiated and plugged into template objects

at run time.

2.2. Class Relationship Representation through Graph

The class diagram of an object-oriented design under study can be

represented through graph. Pande et. al. [15] shows that how class

diagram can be represented through digraph. Classes are repre-

International Journal of Engineering & Technology 351

352 International Journal of Engineering & Technology

sented by nodes and relationships (i.e. generalization, aggregation

or association) are represented by labelled directed edges.

2.3. Graph Representation of System Design and Meta-

Patterns

In this approach, the UML class diagrams of system design and

meta-patterns are converted into digraphs. We use the term target

graph for digraph of framework design and pattern graph for di-

graph of a meta-pattern. A node of the graph represents a class in

the UML class diagram and relationships among classes are repre-

sented by edges. Each node and edge is labelled. The label of each

node is abstract/concrete. More labels of classes can be taken to

include more other attributes of a class that will improve the

method of meta-pattern detection. In this preliminary effort, the

attributes (abstract/concrete) are only considered for a class. The

edges which represent the relationships generalization, aggrega-

tion, & one-to-many association, among classes are labelled 1, 2,

or 3 respectively. In additional to this, important information con-

cerned to meta-patterns is classes having template and hook meth-

ods. We are incorporating this information in the graph representa-

tion by adding one more edge from a class having temple method

to a class having hook method. The label of this edge is 4. In fig-

ure 3, the design of JUnit framework (a de facto standard unit

testing framework for Java) is represented by UML class diagram,

is shown. The graph corresponding to the framework is shown in

figure 4. Similarly, the graph corresponding to the meta-pattern

(Figure 1) is shown in figure 5.

Fig. 3: UML Diagram - JUnit Framework

Fig. 4: Model Graph

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 5: Model Graph of Meta-pattern as Shown in Figure 2

3. Hybrid Genetic Algorithm Based Solution of

Sub-Graph Isomorphism Problem

The proposed Hybrid genetic algorithm (HGA) has been used for

the problem of sub-graph isomorphism is described here. HGA

generates a set of initial solutions that evolve over generations and

terminates on stopping condition. This genetic algorithm outputs

the set of possible meta-patterns in a framework. These identified

meta-patterns are verified using the following rules [16].

1. The identified unification (and recursive unification) meta-

patterns in which hook method are overridden in subclasses is true

unification meta-patterns and the remaining meta-patterns not

satisfying this condition are discarded. This implies that in case of

true unification meta-patterns hook methods are pure abstract

methods.

2. The identified connection (connection and recursive-connection)

meta-patterns in which subclasses of hook class are defined, in-

stantiated and plugged into template objects at run time are true

connection meta-patterns and the remaining not satisfying this

condition are discarded.

The tool we developed based on this proposed approach would

correctly identify unification meta-patterns but the identified con-

nection meta-patterns need to be further cross-checked manually

since few of the identified connection meta-patterns may not be

true meta-patterns.

3.1. Hybrid Genetic Algorithm

The HGA approach that we have applied in our work is represent-

ed below. As explained above, two graphs are taken such that one

corresponds to the framework and other corresponds to the meta-

pattern. A large number of random populations are generated and

mapping between these two graphs are performed. Different map-

pings are corresponding to different possible solutions. In order to

obtain best mapping on the basis of their fitness function genetic

algorithm is applied over these random mapping. The termination

condition of our hybrid genetic algorithm is number of generation.

The results in this paper consider 500 generations. A population of

size 1000 is considered.

International Journal of Engineering & Technology 353

Fig. 6: Hybrid Genetic Algorithm

3.2. Chromosome Representation

A chromosome represents node to node mappings of pattern graph

to target graph. Nodes of both graphs are numbered. The proposed

chromosome is a one dimensional array of length two: C(2).

Length of this array is corresponding to number of nodes in the

pattern graph. As described in section 2, the graph corresponding

to any meta-pattern has only two nodes hence the size of a chro-

mosome is two. The value at the first index of chromosome is the

node of the target graph mapped to the first node of the pattern

graph. Similarly the value at the second index of chromosome is a

node in the target graph mapped to second node of the pattern

graph.

3.3. Fitness Function

The state-of-the-art of evolutionary or heuristic algorithms to

solve a problem is optimal. In order to find an effective search

path we have chosen appropriate fitness function. In this algorithm,

fitness function has been used to map the number of different

edges between two graphs to solve the sub-graph isomorphism

problem [17]. Let () , () , where
 , and () be a sub-graph of mapped to .

Then

 ∑ () ∑ () (1)

where,

 () {

If the value of is , it means that is a complete sub-graph

of . For meta-pattern detection only the part of this fitness

function is useful. The second component we cannot include

since there may be some edges in the sub-graph of model graph

but may not be there in the pattern graph and even then this pat-

tern graph may exists in the target graph. Thus the first compo-

nent of our fitness function that we use in this work is

 ∑
() (2)

The number of different edges as a whole is computed by the first

component of the fitness function. One can exclude the unattrac-

tive candidate permutations in a heuristic by taking advantage of

the degrees of nodes. For example, if the degrees of the two nodes

are unequal then the node of one graph cannot be mapped onto the

node of the other graph. This property has been extended in [17].

A pair of nodes, each from one of the two graphs is improbable to

match if the node from the larger graph has a lower degree than

the one from the smaller graph. Therefore, the comparison of de-

grees of any two nodes which are mapped to each other can be

used differently to measure the fitness of a solution. Thus for

 () () we include function described below as a se-

cond component of our fitness function.

 ∑ () () (3)

where,

 () {
 (()) () (()) ()

The graph considered in the both of these papers [14][17] are not

labelled graph. They give fitness function for simple directed

graph. We have represented framework design and meta-patterns

by labelled graphs. Thus for our problem only the above defined

two components of fitness functions are not sufficient. Fitness

function must include labels of vertices as well as labels of edges.

Edge labels can be matched with fitness function itself. The

definition of is little bit changed from the definition of first

part of . Here, to match edge we will consider label of that edge.

That is () for all will give the value and

labels of these two edges are also same. Vertex labelling is another

important information that must also be compared to match the

mapped nodes. To incorporate labels of vertices we propose an-

other component of fitness function: The function measured

differently by comparing the labels of any two nodes that are

mapped to each other.

 ∑ () () (4)

where,

 () {
 (()) ()

Thus our fitness function is

4. Results and Discussion

This section discusses the analysis of the results obtained by our

approach and also describes the impact of our approach on object-

oriented frameworks. We have not found any earlier reported

work in detecting meta-patterns. Therefore, we have developed a

tool for detection of meta-patterns.

4.1. Analysis of Results

Table 1 shows four widely utilized open source object-oriented

frameworks which have been used as experimental subjects in our

experiment. The columns of the table are subject, version, the total

numbers of classes, the total number of methods and the URL of

the frameworks.

Table 1: Subject used in experiment

Subject Version

Total

Number of

Classes

Total

Number of

Methods

URL

JUnit 3.4 31 319 www.junit.org

JHotDraw 7.0.6 196 2386
www.http://jh

otdraw.org

BCEL 5.2 335 2935

jakar-

ta.apache.org/

bcel

Open-
JGraph

0.9.0 181 1084

open-

jgraph.sourcef

orge.net

The Table 2 shows our results on the above described object-

oriented frameworks. The columns of table 2 are subject, tech-

nique used, types of meta-patterns and total number of meta-

patterns. There are three rows per subject. The first row shows

meta-patterns identified by genetic algorithm. The second row

shows meta-patterns identified after applying rule 1 & 2 (as dis-

cussed in section 3) which are used to refine the output of genetic

algorithm. The third row shows manually identified meta-patterns

to validate the results obtained by our approach (shown in row 2).

We have performed manual validation for Junit framework only.

354 International Journal of Engineering & Technology

The numbers of classes in other three frameworks are very high

thus we could not perform manual validation of these frameworks.

The symbol "-" in manually row indicate that manual validation is

not performed.

However, we have also identified 6 false positive and 4 false nega-

tive meta-patterns. The false positive and negative meta-patterns

fall in the template and hook class are shown in table 3. These

results can be purposefully utilized in hot-spot detection and doc-

umentation of frameworks as well as in design pattern detection.

The documentation of hot-spots with different types of meta-

patterns would be helpful for application developers in under-

standing the design and structure of frameworks. This will reduce

the customization effort made by application developers. Further,

these results can also be applied in assessing the evolution of a

framework. As the number of connection and recursive-

connection meta-patterns increase clearly reflect that the frame-

work is growing towards maturity [2].

The reason behind false positive identification of meta-pattern is

indirect hierarchical relationship among classes. Further due to the

implementation and language limitation in Junit 3.4, the tool has

detected false negative. The Junit version 3.4 was developed using

Java programming language of version 1.3. This version of Java

does not support generic programming. Therefore in order to

check the accuracy of the tool we have also applied this tool on

Junit version 4.10 on which our approach does not found any false

negative. The Junit version 4.10 was developed using Java pro-

gramming language of version 1.4 that supports generic program-

ming therefore the tool does not detect false negative. The recall

percentage of our algorithm is 86.20 and the precision percentage

is 80.64. The obtained results clearly indicate that the proposed

tool can be applied for correctly identification of meta-patterns.

The impact of our approach on object-oriented application frame-

works has been discussed in following subsections.

4.2. Impact of Our Approach on Object-Oriented

Framework

Meta-patterns are elegant and powerful approach which helps in

developing object-oriented frameworks independent to a specific

domain. Meta-patterns play important role in the construction of

frameworks hot-spots and also in frameworks adaptation. We have

obtained different types of meta-patterns, i.e. 22, 2, 1, connection,

unification and recursive connection meta-patterns from Junit-3.4

framework. Moreover, the results obtained by our approach can be

utilized for assessing the evolution of the framework, hot-spots

documentation and reducing the customization effort made by

application developers, which have been discussed below.

4.2.1. Assessing Evolution of Framework

A framework is a collection of abstract classes and their collabora-

tors. Frameworks are larger in size therefore development cost is

high. The management has to keep tracking to assess, the evolu-

tion of framework from historical information. Nowadays, histori-

cal information is being used to assess the evolution-proneness of

application frameworks [18]. According to Mattsson and Bosch

[18], historical information gathered from the framework versions

can be used to assess the framework's evolution in terms of size,

growth and change rate. Application framework tends to evolve

from white-box to black-box [19]. Frameworks are instantiated

either through inheritance or by composition mechanism. The

framework that uses inheritance mechanism for instantiation is

white-box framework and composition mechanism is used in

black-box [2]. The author also described that the unification meta-

patterns are involved in white box frameworks and connection and

recursive connection meta-patterns are involved in black box

framework.

The detection of type of meta-pattern is necessary to evaluate the

maturity level of the framework. In this regard we have developed

a tool to identify the types of meta-patterns and detected 25, 5, 1

connection, unification and recursive connection meta-patterns.

This depicts that our approach can be used to assess the evolution

of framework.

4.2.2. Design Pattern Identification

The design patterns describe the general solution to a commonly

occurring problem [20]. The meta-patterns detection process can

be useful in identification of design pattern. According to Pree the

design patterns Abstract Factory, Command, Interpreter, Observer,

Prototype, Builder, State and Strategy are based on connection

meta-patterns. Moreover, the design patterns that are based on

recursive connection meta-patterns are Composite, Decorator and

Chain-of-Responsibility. Thus, identification of connection and

recursive connection meta-patterns using proposed approach will

lead to the identification of design patterns used in the frameworks.

4.2.3. Framework documentation

Frameworks are designed to solve large-grain problem therefore it

is larger in size and highly complex. The learning curve of the

framework is very high. A good documentation is needed for

framework to easily understand and use it. The framework docu-

mentation should describe the purpose or domain, for which it has

been developed; a description – how to use the framework; and

structural design and its behaviour of the framework. These de-

scriptions are broadly categorised as Purpose, Usages and Design

[21]. The architectural design of the frameworks were the primary

focus of many works [20][22][23][24]. Only some report [25][26]

which deals in the intended use and the purpose of the frameworks.

Another similar approach has been proposed in [27] - a method to

document the design of the frameworks by means of “Hooks”. It

provides an alternative view of the design which shows how and

where changes can be made to adapt a framework. The report in

[28] detected hot-spots through UsageMetrics and shown total of

14 classes (8 template classes and 6 hook classes) involved in hot-

spots hierarchy. The proposed algorithm also identifies those clas-

ses as template and hook. This indicates that our tool can be used

to documentation of the framework and can also be used in detect-

ing hot-spots.

4.2.4 Customization effort

Framework instantiation is a process of creating application

through framework. In this process, the flexible parts (called hot-

spots) of the framework are adapted according to specific need. In

order to instantiate a framework, an application developer has to

learn the steep instantiation process [18], usually it takes 6 to 12

months to become productive [29]. The flexible architecture of the

framework makes hard to comprehend and the lack of high-level

documentation to developers make difficult to instantiate. In order

to instantiate a framework easily, the design hints of flexible parts

should be available to the developers. An approach presented by

Froehlich et. al. [27 to instantiate a framework through “hooks”.

Each hook is an explicit solution described in different sections of

structured and textual language. By combining several hooks on

can achieve the solution for a large problem. Our proposed algo-

rithm can be used to describe hooks. The hybrid genetic algorithm

have been proven to be useful for the detection of maximum

common sub-graph or chemical structure matching [30][31]. We

have implemented our algorithm in java programming language

and applied on four different open source frameworks shown in

table 1.

International Journal of Engineering & Technology 355

Table 2: Types of meta-patterns identified in different types of frameworks

Type of Meta-patterns

Subject
Technique

Used

Number of

1:1 Con-

nection

Number of

1:N Con-

nection

Number of

1:1 Recur-

sive Con-

nection

Number of

1:N Recur-

sive Con-

nection

Number

Unification

Number

1:1 Unifi-

cation

Number of

1:N Unifi-

cation

Total

Junit GA 27 1 1 1 0 1 0 31
Rule 1 & 2 27 1 1 1 0 1 0 31

Manually 22 0 1 1 0 1 0 25

JHotDraw GA 199 12 8 6 9 3 3 240
Rule1 & 2 192 12 3 6 8 3 2 226

Manually - - - - - - - -

BCEL GA 115 26 22 5 1 3 1 173
Rule1 & 2 112 26 18 4 1 2 1 164

Manually - - - - - - - -

OpenJGraph GA 74 8 6 2 0 4 2 96
Rule1 & 2 74 8 4 1 0 4 2 93

Manually - - - - - - - -

Table 3: Meta-patterns identified as false positive and false negative

Classes Involved

Reason Template Class Hook Class

False Positive

junit.awtui.TestRunner junit.extensions.TestDecorator

junit.extensions.TestDecorator junit.framework.Test

Indirect

Hierarchical

Relationship

junit.framework.TestFailure junit.framework.TestSuite

junit.swingui.TestBrowser
junit.extensions.TestDecorator
junit.extensions.TestDecorator

junit.framework.TestResult
junit.swingui.TestTreeModel

junit.framework.TestFailure

False Negative

junit.awtui.TestRunner junit.framework.Test Language

Limitation and

Implementation in code

junit.framework.TestSuite junit.framework.Test

junit.framework.TestListener

5. Related work

Many researchers are working in the field of design pattern mining.

Pande et. al. [15] used graph theoretical approach to model design

patterns into graph and applied decomposition algorithm to detect

design patterns. Bernardi et al. [32] proposed an approach by trac-

ing systems’ source code components with the roles they play in

the patterns in which design patterns are modelled based on their

high-level structural properties. Their approach has limitation in

detecting complex designs and architectural patterns. On the basis

of similarity scoring between graph vertices a design pattern de-

tection methodology was proposed in [33]. The design patterns

that are modified from their standard representation are also rec-

ognized by this approach. The attributed relational graph is used to

describe design patterns and system design and sub-graph isomor-

phism approach is applied for the detection process of design pat-

terns in [34]. Machine learning techniques are also being used for

mining design pattern. Ferenc et. al. [35] used machine learning to

enhance pattern mining by filtering out as many false hits as pos-

sible, by providing true and false pattern instances of a learning

database. Zanoni et. al. [36] also used machine learning methodol-

ogy for design pattern detection. Design patterns and meta-

patterns both are essential parts of a framework. We could not find

any work to detect meta-patterns from framework or in general

from an object oriented software.

There are few works on hot spots detection from frameworks. A

reverse engineering technique to model framework reuse interfac-

es from implementation is introduced in [37]. Further, an Eclipse

plug-in (called FrUiT) [38] is developed to extract reusable pat-

terns from existing framework instantiation. In this approach the

data mining techniques has been used. This report also presents a

first assessment by mining parts of the Eclipse framework. A tool

to recover hot-spots automatically from the source code of the

frameworks have been proposed by Schauer et al. in [3] and de-

scribed hot-spots as composition hot-spot \& inheritance hot-spot.

Moreover, A tool called SpotWeb has been proposed in [28] to

detect hot-spots and cold-spots in a given framework. This tool

usages code-search-engine-based approach to detect hot-spots and

cold-spots by mining code examples from open source repositories

available on the web. The problems in instantiating frameworks

through explicit contract by means of meta-patterns which require

development environment and vocabulary of code of meta-

patterns has been addressed in [39]. Likewise, the problems con-

cerned with framework augmentation and techniques to explicit

framework reuse has been presented in [40][41][42][43].

6. Conclusion

This paper proposes a unique meta-pattern detection mechanism

based on a hybrid genetic algorithm for sub-graph isomorphism

problem by specifying a new fitness function. The observed re-

sults with the recall and precision percentage of 86.20 and 80.64

respectively, clearly reflect that the proposed algorithm can be

utilized for the detection of meta-patterns. The approach we used

for meta-pattern detection can be extended for framework based

application development where application developers can easily

identify the possible structure of classes and glue codes specific to

their domain. This approach can be used in the object-oriented

software engineering to minimize the framework customization

effort and improve the quality of documentation. The further work

and future expansion of this topic will involve more extensive

experiments on the various types and size of frameworks.

References

[1] W. Pree, “Hot-spot-driven framework development,” in Summer School
on Reusable Architectures in Object-Oriented software Development,

pp. 123-127, ACM, 1995.

356 International Journal of Engineering & Technology

[2] W. Pree, “Meta patterns - a means for capturing the essentials of reusa-

ble object-oriented design,” in Object-Oriented Programming (M.

Tokoro and R. Pareschi, eds.), vol. 821 of Lecture Notes in Computer

Science, pp. 150-162, Springer Berlin Heidelberg, 1994.

[3] R. Schauer, S. Robitaille, F. Martel, and R. Keller, “Hot spot recovery in
object-oriented software with inheritance and composition template

methods,” in Software Maintenance, 1999. (ICSM ’99) Proceedings.

IEEE International Conference on, pp. 220-229, 1999.

[4] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework

hotspots and coldspots via mining open source code on the web,” in Au-

tomated Software Engineering, 2008. ASE 2008. 23
rd

 IEEE/ACM Inter-
national Conference on, pp. 327{336, Sept 2008.

[5] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer,

“Attributed graph transformation with node type inheritance,” Theoreti-

cal Computer Science, vol. 376, no. 3, pp. 139 -163, 2007. Fundamental

Aspects of Software Engineering.

[6] R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer, “Integrating meta-
modelling aspects with graph transformation for efficient visual lan-

guage definition and model manipulation,” in Fundamental Approaches

to Software Engineering (M. Wermelinger and T. Margaria-Steffen,

eds.), vol. 2984 of Lecture Notes in Computer Science, pp. 214{228,

Springer Berlin Heidelberg, 2004.

[7] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski, “An integrated

semantics for uml class, object and state diagrams based on graph trans-
formation,” in Integrated Formal Methods (M. Butler, L. Petre, and K.

Sere, eds.), vol. 2335 of Lecture Notes in Computer Science, pp. 11-28,

Springer Berlin Heidelberg, 2002.

[8] A. Maraee and M. Balaban, “Efficient reasoning about finite satisfiabil-

ity of uml class diagrams with constrained generalization sets,” in Mod-

el Driven Architecture- Foundations and Applications (D. Akehurst, R.

Vogel, and R. Paige, eds.), vol. 4530 of Lecture Notes in Computer Sci-
ence, pp. 17-31, Springer Berlin Heidelberg, 2007.

[9] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol.

23, pp. 31-42, Jan. 1976.

[10] P. J. Durand, R. Pasari, J. W. Baker, and C.-c. Tsai, “An efficient algo-

rithm for similarity analysis of molecules,” Internet Journal of Chemis-

try, vol. 2, no. 17, pp. 1-16, 1999.

[11] J. J. McGregor, “Backtrack search algorithms and the maximal common

subgraph problem,” Software: Practice and Experience, vol. 12, no. 1,

pp. 23-34, 1982.

[12] F. P. Conte Donatello and V. Mario, “Challenging complexity of maxi-

mum common subgraph detection algorithms: A performance analysis

of three algorithms on a wide database of graphs.,” Journal of Graph
Algorithms and Applications, vol. 11, no. 1, pp. 99-143, 2007.

[13] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, “A

comparison of algorithms for maximum common subgraph on randomly

connected graphs,” in Structural, Syntactic, and Statistical Pattern

Recognition (T. Caelli, A. Amin, R. Duin, D. de Ridder, and M. Kamel,

eds.), vol. 2396 of Lecture Notes in Computer Science, pp. 123-132,
Springer Berlin Heidelberg, 2002.

[14] K. Kim and B.-R. Moon, “Malware detection based on dependency

graph using hybrid genetic algorithm,” in Proceedings of the 12th An-

nual Conference on Genetic and Evolutionary Computation,

CO ’10, (New York, NY, USA), pp. 1211{1218, ACM, 2010.

[15] A. Pande, M. Gupta, and A. Tripathi, “A new approach for detecting
design patterns by graph decomposition and graph isomorphism,” in

Contemporary Computing (S. Ranka, A. Banerjee, K. Biswas, S. Dua, P.

Mishra, R. Moona, S.-H. Poon, and C.-L. Wang, eds.), vol. 95 of Com-

munications in Computer and Information Science, pp. 108-119,

Springer Berlin Heidelberg, 2010.

[16] W. Pree, “Hot-spot-driven framework development,” in Summer School

on Reusable Architectures in Object-Oriented software Development, pp.
123-127, ACM, 1995.

[17] J. Choi, Y. Yoon, and B.-R. Moon, “An efficient genetic algorithm for

subgraph isomorphism,” in Proceedings of the 14th Annual Conference

on Genetic and Evolutionary Computation, GECCO ’12, (New York,

NY, USA), pp. 361-368, ACM, 2012.

[18] M. Mattsson and J. Bosch, “Observations on the evolution of an indus-
trial oo framework,” in Software Maintenance, 1999. (ICSM ’99) Pro-

ceedings. IEEE International Conference on, pp. 139-145, 1999.

[19] M. Mattsson and J. Bosch, “Characterizing stability in evolving frame-

works,” in Technology of Object-Oriented Languages and Systems,

1999. Proceedings of, pp. 118-130, Jul 1999.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
elements of reusable object-oriented software”. Boston, MA, USA: Ad-

dison-Wesley Longman Publishing Co., Inc., 1995.

[21] R. E. Johnson, “Documenting frameworks using patterns,” in

OOPSLA ’92: conference proceedings on Object-oriented programming

systems, languages, and applications, (New York, NY, USA), pp. 63-76,

ACM, 1992.

[22] R. Campbell and N. Islam, “A technique for documenting the frame-
work of an object-oriented system,” in Object Orientation in Operating

Systems, 1992., Proceedings of the Second International Workshop on,

pp. 288-300, Sep 1992.

[23] K. Beck and R. E. Johnson, “Patterns generate architectures,” in Pro-

ceedings of the 8th European Conference on Object-Oriented Pro-

gramming, ECOOP ’94, (London, UK, UK), pp. 139-149, Springer-
Verlag, 1994.

[24] D. B. Lange and Y. Nakamura, “Interactive visualization of design pat-

terns can help in framework understanding,” in Proceedings of the

Tenth Annual Conference on Object-oriented Programming Systems,

Languages, and Applications, OOPSLA ’95, (New York, NY, USA), pp.

342-357, ACM, 1995.

[25] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented

Program., vol. 1, pp. 26-49, Aug. 1988.

[26] I. ParcPlace-Digitalk, VisualWorks: Cookbook. ParcPlace-Digitalk, In-

corporated, 1995.

[27] G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson, “Hooking into ob-
ject-oriented application frameworks,” in ICSE ’97: Proceedings of the

19th international conference on Software engineering, (New York, NY,

USA), pp. 491-501, ACM, 1997.

[28] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for

reusing open source code on the web,” in Proceedings of the Twenty-

second IEEE/ACM International Conference on Automated Software

Engineering, ASE ’07, (New York, NY, USA), pp. 204-213, ACM,
2007.

[29] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, “Implementing applica-

tion frameworks: objectoriented frameworks at work.” New York, NY,

USA: John Wiley & Sons, Inc., 1999.

[30] R. D. Brown, G. Jones, P. Willett, and R. C. Glen, “Matching two-

dimensional chemical graphs using genetic algorithms,” Journal of
Chemical Information and Computer Sciences, vol. 34, no. 1, pp. 63-70,

1994.

[31] M. Wagener and J. Gasteiger, “The determination of maximum common

substructures by a genetic algorithm: Application in synthesis design

and for the structural analysis of biological activity,” Angewandte

Chemie International Edition in English, vol. 33, no. 11, pp. 1189-1192,

1994.

[32] M. Bernardi, M. Cimitile, and G. Di Lucca, “A model-driven graph-

matching approach for design pattern detection,” in Reverse Engineer-

ing (WCRE), 2013 20th Working Conference on, pp. 172-181, Oct 2013.

[33] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis, “De-

sign pattern detection using similarity scoring,” Software Engineering,

IEEE Transactions on, vol. 32, pp. 896-909, Nov 2006.

[34] L. Qing-hua, Z. Zhi-xiang, and B. Ke-rong, “Design pattern mining us-

ing graph matching,” Wuhan University Journal of Natural Sciences,

vol. 9, no. 4, pp. 444-448, 2004.

[35] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern mining

enhanced by machine learning,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE International Conference on,
pp. 295-304, Sept 2005.

[36] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine learning

techniques for design pattern detection,” Journal of Systems and Soft-

ware, vol. 103, pp. 102 -117, 2015.

[37] J. Viljamaa, “Reverse engineering framework reuse interfaces,” in Pro-

ceedings of the 9th European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, ESEC/FSE-11, (New York, NY, USA),

pp. 217-226, ACM, 2003.

[38] M. Bruch, T. Sch¨afer, and M. Mezini, “Fruit: Ide support for frame-

work understanding,” in Proceedings of the 2006 OOPSLA Workshop

on Eclipse Technology eXchange, eclipse ’06, (New York, NY, USA),
pp. 55-59, ACM, 2006.

[39] T. Tourwe and T. Mens, “Automated support for framework-based

software,” in Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, pp. 148-157, Sept 2003.

[40] G. Kiczales and J. Lamping, “Issues in the design and specification of

class libraries,” in Conference Proceedings on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’92, (New

York, NY, USA), pp. 435-451, ACM, 1992.

[41] J. Lamping, “Typing the specialization interface,” in Proceedings of the

Eighth Annual Conference on Object-oriented Programming Systems,

Languages, and Applications, OOPSLA ’93, (New York, NY, USA), pp.

201-214, ACM, 1993.

[42] M. Mezini, “Maintaining the consistency of class libraries during their
evolution,” SIGPLAN Not., vol. 32, pp. 1-21, Oct. 1997.

[43] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt, “Reuse contracts:

Managing the evolution of reusable assets,” in Proceedings of the 11th

ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’96, (New York, NY, USA), pp.

268-285, ACM, 1996.

