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Abstract 
 

Noise removal from the color images is the most significant and challenging task in image processing. Among different conventional 

filter methods, a robust Annihilating filter-based Low-rank Hankel matrix (r-ALOHA) approach was proposed as an impulse noise re-

moval algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix to decompose the sparse impulse noise 

components from an original image. However, in this algorithm, the patch image was considered as it was sparse in the Fourier domain 

only. It requires an analysis of noise removal performance by considering the other transform domains. Hence in this article, the r-

ALOHA can be extended into other transform domains such as log and exponential. In the log and exponential domain, the logarithmic 

and exponential functions are used for modeling the multiplicative noise model. But, this model is used only for positive outcomes. 

Therefore, wavelet transform domain is applied to the noise model that localizes an image pixel in both frequency and time domain sim-

ultaneously. Moreover, it separates the most vital information in a given image. Thus, it is feasible for obtaining a better approximation 

of the considered function using few coefficients. Finally, the experimental results show the performance effectiveness of the proposed 

algorithm. 
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1. Introduction 

Generally, noise is defined as any unwanted pixels in the original 

images that may be classified into two types such as blur noise and 

impulse noise. Mostly, images are corrupted by various types of 

noises during its acquisition or transmission [1]. The fat-tailed 

distribution or impulse noise or spike noise is the most well-

known among different noises. Impulse noise can occur as a mal-

function result of detector pixels in a digital camera or memory 

elements in imaging hardware. Impulse noise can be further classi-

fied into salt-and-pepper noise and random valued noise. A salt-

and-pepper noise matches an extreme dynamic range of a pixel 

value [2]. In this case, noisy pixels can be quite easily detected by 

an Adaptive Median Filter (AMF). An image containing salt-and-

pepper noise can have dark pixels i.e., pepper in bright regions and 

bright pixels i.e., salt in dark regions. Random-Valued Impulse 

Noise (RVIN) occurs within the dynamic range of an image pixel 

and it cannot be easily detected by AMF.  

In recent, removal of impulse noise is an active research area us-

ing image processing techniques. The main objective of noise 

removal technique is suppressing the noise. The filter can be ap-

plied successfully for reducing heavy noise with less computation-

al complexity [3]. The noise is removed gradually to preserve the 

information. When noise is non-additive, linear filtering tech-

niques are not effective in removing the impulse noise. This has 

led to the utilization of non-linear filter techniques [4]. Over the 

past decades, different techniques were applied for the noise re-

moval process. A sparse representation is a signal decomposition 

on a very small set of components which are adapted to the obser-

vational data. The sparse-decomposition based denoising is much 

better at the trade-off between the preservation of information and 

the suppression of noise. However, the sparse decomposition is 

adapted to a noisy image thus separating information from noise 

still has less efficiency.  

Among different techniques, sparse and low-rank decomposition 

of Hankel structured matrix was proposed for impulse noise re-

moval [5]. This approach was proposed based on the Annihilating 

filter-based Low-rank Hankel Matrix (ALOHA). Thus, it was 

known as robust ALOHA (r-ALOHA) according to the observa-

tion that an image corrupted with the impulse noise can be mod-

eled as sparse components whereas underlying image can be mod-

eled using a low-rank Hankel structured matrix. The sparse and 

low-rank matrix decomposition problem was solved by alternating 

direction technique of multiplier approach including initial factor-

ized matrices coming from a low-rank matrix-fitting algorithm. 

This algorithm was applied in a patch-by-patch fashion for adapt-

ing the local image statistics that have different spectral distribu-

tions. However, the spectrum of a noiseless image was assumed as 

sparse in the Fourier domain only whereas the other transform 

domains were not considered.  

Hence in this article, r-ALOHA is extended in some other transfer 

domains such as log and exponential domain. Image restoration in 

log domain may simplify the multiplicative noise model using 

logarithmic and exponential functions. But, log exponential trans-

form is only used for positive outcomes. Therefore, a wavelet 

domain is further introduced that localizes an image signal in both 

time and frequency with less computation complexity whereas 
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Fourier transform localizes only in frequency. Thus, the proposed 

noise removal in other transform domain can improve the perfor-

mance of noise removal.  

The rest of the article is structured as follows: Section II provides 

the previous researches related to impulse noise removal tech-

niques. Section III explains the proposed noise removal technique 

in brief. Section IV compares the performance of the proposed 

technique with the existing technique and Section V concludes the 

research work. 

2. Literature survey 

A weighted couple sparse representation model [6] was proposed 

to remove the impulse noise. In this method, the coding coeffi-

cients were provided by exploiting the complicated relationships 

between the reconstructed and the noisy images with more appro-

priate for recovering the noise-free images. Here, the image pixels 

were categorized into noise-free, slightly corrupted and heavily 

corrupted. After that, different data fidelity regularizations were 

applied to different pixels in order to further improve the de-

noising performance. By solving a weighted rank-one minimiza-

tion problem, the dictionary was trained directly on the noisy raw 

data. However, it requires a combination of non-local self-

similarity priors to preserve more noise-free images and texture 

information. 

A novel denoising scheme [7] was proposed to restore the noisy 

pixels by using non-uniform sampling and supervised piecewise 

autoregressive modeling based super-resolution. In this scheme, 

the noisy pixels were equivalently estimated in groups by resolv-

ing a well-designed optimization problem that assumes the image 

structure as an important constraint. The other objective was a 

piecewise autoregressive model to utilize all noise-free pixels for 

supervising the training model and solving the optimization prob-

lem. On the other hand, the computational complexity was high. 

A low-rank prior in small oriented noise-free image patches [8] 

was proposed to remove the impulse noise. In this method, a low-

rank matrix approximation was used to preserve the texture data in 

the optimally oriented path based on the consideration of an ori-

ented patch as a matrix. Based on this prior, a single-patch method 

was introduced within a generalized joint low-rank and sparse 

matrix recovery method to simultaneously detect and eliminate 

non-pointwise random-valued impulse noise. Also, a weighting 

matrix was added to encode an initial estimation of the spatial 

noise distribution. Moreover, optimal noise-free image patches 

were estimated by using an accelerated proximal gradient method. 

However, high-level information in the images was not considered.  

A novel Sparsity-Ranking Edge-Preservation Filter (SREPF) [9] 

was proposed to remove high-density impulse noise in images. 

The initial process of SREPF according to the sparse matrix repre-

sentation was used to predict the noisy candidates and decide the 

processing order of them via a ranking of noise-pixels sparsity in 

the working window. Then, a modified double Laplacian convolu-

tion was applied to confirm the truly noisy pixels and yield a di-

rectional mean for recovering them. Conversely, computational 

complexity must be maintained at a low level for the preservation 

of edges and removal of impulse noise. 

A two-stage quaternion switching filter [10] was proposed to re-

move the impulse noise in the color images. In this method, an 

effective color distance estimation method was proposed by using 

quaternion representation. Here, the directional samples along 

with four directions were utilized by this filter based on the new 

color distance measure to classify the image pixels into noise-free 

and noisy pixels. The principle of peer group was modified and 

extended to the directional samples to further detect the noisy 

pixels whether they were corrupted by impulse noise or not. At 

last, a weighted vector median filter was used only on the noisy 

pixels to remove such noises from the images. But, the computa-

tional complexity was high. 

A combination of adaptive Vector Median Filter (VMF) and 

weighted mean filter [11] was proposed to remove high-density 

impulse noise from color images. In this approach, the noisy and 

non-noisy pixels were classified according to the non-causal linear 

prediction error. The adaptive VMF was processed over the noisy 

pixel where the window size was adapted based on the availability 

of high-quality pixels. On the other hand, a non-noisy pixel was 

substituted with the weighted mean of high-quality pixels of the 

processing window. However, the computational complexity was 

high. 

3. Proposed methodology 

In this section, the proposed image modeling in the log, exponen-

tial transform namely e1-ALOHA and wavelet transforms namely 

e2-ALOHA is explained. Initially, the image is modeled by using 

sparse and low-rank decomposition model that constructs the 

Hankel structured matrix. Here, the proposed approach is used to 

obtain the noiseless image by considering the spectrum of that 

image is sparse in the log, exponential and wavelet domains i.e., 

the sparse components are derived by using log, exponential func-

tions and wavelet functions which are described in below. In addi-

tion, the Hankel structured matrix is determined by noise-free 

image size and related annihilating filter size based on the optimi-

zation method such as pixel-by-pixel soft thresholding approach 

[5]. 

3.1. Log exponential transform domain (e1-ALOHA) 

Based on the Hankel structured matrix ℋ, the image with impulse 

noise M can be modeled as: 

 

ℋ(M) = I + S(3.1) 

 

Equation (3.1), I refers to the noise-free image and S refers to the 

sparse matrix composed of impulse noise. By considering a sparse 

matrix, the image is modeled with minimum Total Variations (TV) 

which provides the following cost function: 

 
‖M − I‖1 + λTV(I)(3.2) 

 

Equation (3.2), ‖∙‖1 norm denotes the l1 norm related to the sum 

of absolute values of each matrix element for removing outlier and 

TV(I) refers the 2D TV penalty in the image modeling. The pro-

posed approach is nearly associated with an annihilating filter 

relationship from the sampling theory of signals with a Finite Rate 

of Innovations (FRI). When an image patch x[n] in the discrete 

domain has sparse spectral components in the log domain, a corre-

sponding annihilating filter exists in the image domain. The equa-

tion (3.1) can be modified by using a logarithmic transform on 

both sides as follows: 

 

log ℋ(M) = log I + log S(3.3) 

 

P = J + T(3.4) 

 

Equation (3.4), P, J  and T  are the element-wise logarithms of 

ℋ(M), I  and S,  correspondingly. The function S = eT  is strictly 

monotonic and the elements of S satisfy the independent and iden-

tically distributed (i.i.d.) Gamma distribution. The Probability 

Density Function (PDF) of the elements in T is given by: 

 

fT(T) = ∏
LL

Γ(L)
eL(Tx−eTx)N

x=1 (3.5) 

 

Equation (3.5), L refers to the positive integer used to define the 

noise level, Γ(∙) refers to the Gamma function denoted by Γ(L) =
(L − 1)! and Tx refers the elements of the vector T with the num-

ber of image patches x = 1,2, … , n. Thus, the log-likelihood func-

tion is represented as: 

 

log fP|J(P|J) = log fT(P − J) 
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= N log
LL

Γ(L)
+ L ∑ Px − L ∑ (Jx + ePx−Jx)n

x=1
n
x=1 (3.6) 

 

By maximizing the equation (3.6) with respect to J, the Maximum 

Likelihood (ML) estimation for J is achieved by following mini-

mization problem: 

 

Ĵ = arg min
J

∑ (Jx + ePx−Jx)n
x=1 (3.7) 

 

The optimal solution to the above problem is Ĵ = P. Due to an 

over-fitting problem, this solution is not suitable for the denoising 

process. Hence, regularization technique is used for encouraging 

the sparsity and smoothness prior correspondingly. By combining 

regularization parameters, the new formulation is written as: 

 

Ĵ = arg min
J

∑ ∑ (Jx,y + ePx,y−Jx,y)m
y=1

n
x=1 + λ1‖ΩJ‖1 +

λ2Gβ{R(J)}(3.8) 

 

Equation (3.8), ∑ ∑ (Jx,y + ePx,y−Jx,y)m
y=1

n
x=1  refers the data fidelity 

term which is estimated by using (3.7). The parameters λ1 and λ2 

are the multipliers for balancing the data fidelity term and regular-

izations. The first regularization term ‖ΩJ‖1  reflects the sparse 

property of the image patches with respect to Ω which is known as 

dictionary learned from the image patches. The second regulariza-

tion term Gβ{R(J)} is used for encouraging the smoothness of the 

entire image where the image patchJ is reshaped back to the com-

plete image by applying the operator R(∙)  and Gβ{∙}  refers the 

smoothness promotion function. For a given image  P ∈ ℝd×d , 

Gβ{P} is defined as: 

 

Gβ{P} = ∑ ∑ (√(∇hPx,y)
2

+ (∇vPx,y)
2

)

β

d
y=1

d
x=1 (3.9) 

 

Here, ∇hPx,y and ∇vPx,y are horizontal and vertical differences at 

pixelPx,y. The parameter β controls the degree of smoothing. If the 

parameter λ2 is zero, then the equation (3.8) can be rewritten as: 

 

Ĵ = arg min
J

∑ ∑ (Jx,y + ePx,y−Jx,y)m
y=1

n
x=1 + λ‖ΩJ‖1(3.10) 

 

Furthermore, the restored log-image Ĵ is obtained by applying the 

operator R(∙) to the solution to (3.8), and the denoised image Î is 

obtained by taking the exponential transform ofĴ. 

3.2. Wavelet transform domain (e2-ALOHA) 

Initially, the noisy image ℋ(M(t)) is differentiated for obtaining 

the image ℋd(M(t)) by using the central finite differences meth-

od with the fourth-order correction that minimizes the error as: 

 

ℋd(M(t)) =
dℋ(M(t))

dt
(3.11) 

 

Then, the wavelet coefficients (Wu,v)  are obtained at different 

dyadic scales u and displacements v by considering wavelet trans-

form of the dataℋd(M(t)). A dyadic scale is a scale whose nu-

merical magnitude is equivalent to 2 rises to an integer exponent 

and labeled by the exponent. Therefore, the dyadic scale u refers 

to a scale of size2u. So, a low value of u refers a finer resolution 

when high u analyses the image at a larger resolution. This trans-

form is the discrete wavelet transform and is given by: 

 

Wu,v = ∫ ℋd(M(t))ψu,v(t)dt
∞

−∞
(3.12) 

 

Where ψu,v(t) = 2j 2⁄ ψ(2jt − v)(3.13) 

 

Here, u, v are integers. After that, the power Eu in different dyadic 

scale u is estimated as: 

 

Eu(ℋ(M)) = ∑ |Wu,v|
2∞

v=−∞ , u = 1,2, …(3.14) 

 

By plotting the deviation of Eu with u, it is possible to identify a 

scale um at which the power due to noise falls off rapidly. This is 

significant since it provides an automated detection of the thresh-

old. Identification of the scale um at which the power due to noise 

demonstrates the first minimum that allows to rest all Wu,v up to 

scale index um to zero i.e., Wu,v = 0 for u = 1,2, … , um. Moreo-

ver, the denoised data ℋ̂d(M(t)) is reconstructed by taking the 

inverse transform of the coefficients (Wu,v) as: 

 

ℋ̂d(M(t)) = cψ ∑ ∑ Wu,vψu,v(t)∞
v=−∞

∞
u=0 (3.15) 

 

Where cψ =
1

∫
|ψ̂(ω)|

2

ω
dω<∞

∞

−∞

(3.16) 

 

Here, cψ  refers to the normalization constant and ψ̂(ω)  is the 

Fourier transform of the wavelet function ψ(t). At last, the ob-

tainedℋ̂d(M(t)) is integrated to yield the noise-free image Î(t) as: 

 

Î(t) = ∫ ℋ̂d(M(t))dt(3.17) 

 

Thus, the spectrum of a noiseless image patch is considered as a 

sparse in the log, exponential domain and wavelet transform do-

main efficiently.  

4. Result and discussion 

In this section, performance effectiveness of the proposed ap-

proaches named extended version-1 ALOHA (e1-ALOHA) and 

extended version-2 ALOHA (e2-ALOHA) are evaluated in 

MATLAB 2018a and compared with the existing approaches such 

as r-ALOHA and ALOHA. The comparison is carried out in terms 

of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index 

Metric (SSIM) and reconstruction (computation) time for different 

images such as Lena, Barbara, balloon and cameraman at noise 

density level is 25%.  

4.1. Peak signal-to-noise ratio (PSNR) 

PSNR is defined as the fraction of maximum possible signal pow-

er to the corrupting noise power which affects the fidelity of its 

representation. Generally, it is defined by using Mean Squared 

Error (MSE) and computed as: 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
2552

𝑀𝑆𝐸
(4.1) 

 

𝑊ℎ𝑒𝑟𝑒, 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (𝑀𝑖𝑗 − 𝐼𝑖𝑗)

2𝑛−1
𝑗=1

𝑚−1
𝑖=1 (4.2) 
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Fig. 1: Comparison of PSNR. 

 

Figure 1 shows the comparison of different approaches by consid-

ering the images such as baboon, cameraman, Barbara and Lena in 

terms of PSNR (dB) at noise density level is 25%. The PSNR 

value of proposed e2-ALOHA is 7.4% higher than e1-ALOHA, 

15.5% higher than r-ALOHA and 24.1% higher than ALOHA 

when Lena image is considered. From the analysis, it is observed 

that the e2-ALOHA has better PSNR than the other approaches. 

4.2. Reconstruction time 

It is defined as the time required for reconstructing the original 

image i.e., a time required to obtain the noise-free images from 

noisy images.  

 

 
Fig. 2: Comparison of Reconstruction Time. 

 

Figure 2 demonstrates the comparison of reconstruction time (sec-

onds) for different approaches by considering various images like 

baboon, cameraman, Barbara and Lena at noise density level is 

25%. The reconstruction time value of proposed e2-ALOHA is 

18.9% less than e1-ALOHA, 33.4% less than r-ALOHA and 47.4% 

less than ALOHA for considering Lena image. Through the analy-

sis, it is that noticed that e2-ALOHA has reduced reconstruction 

(computation) time than the other approaches. 

4.3. Structural similarity index metric (SSIM) 

SSIM is defined as the similarity value between the original 𝑀 

and denoised images𝐼. It is computed as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑀𝜇𝐼+𝑐1)(2𝜎𝑀𝐼+𝑐2)

(𝜇𝑀
2 +𝜇𝐼

2+𝑐1)(𝜎𝑀
2 +𝜎𝐼

2+𝑐2)
(4.3) 

 

Here, 𝜇𝑀, 𝜇𝐼 are averages and 𝜎𝑀
2 , 𝜎𝐼

2 are variances of M, I respec-

tively,c1, c2 are constants and σMI is the covariance of M and I. 

 
Fig. 3: Comparison of SSIM. 

 

Figure 3 demonstrates the comparison of SSIM for different ap-

proaches by considering various images like baboon, cameraman, 

Barbara and Lena at noise density level is 25%. The SSIM value 

of proposed e2-ALOHA is 1.96% higher than e1-ALOHA, 4.22% 

higher than r-ALOHA and 6.59% higher than ALOHA when Lena 

image is considered. Through the analysis, it is that concluded that 

e2-ALOHA has improved SSIM than the other impulse noise 

removal approaches. 

5. Conclusion 

In this article, an enhanced robust ALOHA is proposed for im-

pulse noise removal. According to the observation that smooth-

ness or textures within an image patch correspond to sparse spec-

tral components in the log, exponential transform domain and 

wavelet transform domain, the proposed ALOHA exploits the 

existence of annihilating filters and the associated rank-deficient 

Hankel matrices in an image domain for estimating any missing 

pixels. In this approach, impulse noise is modeled as sparse com-

ponents and the image is modeled by using low-rank Hankel struc-

tured matrix. Also, the local image statistics that have individual 

spectral distributions is adapted by applying the proposed ap-

proach in a patch-by-patch manner. Finally, the experimental re-

sults prove that e2-ALOHA has better efficiency than the other 

approaches when noise density level is considered as 25%. Simi-

larly, the performance is increased when increasing the noise den-

sity level to 50% and 75% as well. In future, the other transform 

domains like hough/radon and gradient domain transform would 

be considered to analyze the performance of noise removal. 
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