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Abstract 
 

This paper aims to study the characterisation of time-frequency domain to analyse the fatigue strain signal due to weaknesses in time 

domain and frequency domain approaches. The objectives were to determine the behaviour of strain signal, characterise the fatigue life of 

strain signal and validate the fatigue life in time-frequency domain. The strain signal was obtained using data acquisition devices and 

strain gauges on two types of road condition including highway and industrial area. The acquired signals were analysed with time do-

main, frequency domain and time-frequency domain approaches. In time-frequency domain, the signals were decomposed using 4th 

Daubechies discrete wavelet transform. To validate the effectiveness of time-frequency approach in characterising vibration fatigue sig-

nal, fatigue data was clustered by mapping of the data based on the spectrum energy, root-mean-square and fatigue life obtained. The 

clustering was performed by comparing the centroid values which both data had five clusters as the optimum data clustering with 0.836 

average distance to centroid. From this, the relationship between fatigue life, root-mean-square and spectrum energy can be determined 

and thus a new fatigue life criterion was developed. 
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1. Introduction 

In a ground vehicle, the suspension system absorbs the vibration 

and protects the vehicle body from damage during vertical move-

ment of the wheels. Moreover, other components such as trans-

mission and bracket also play important role by supporting sus-

pension system to give a smooth and comfortable ride to the users 

[1]. Based on previous studies, the component performance was 

affected by the surface road experienced by the component when 

the vehicle moving and this phenomenon will lead to fatigue fail-

ure [2]. Thus, it is important to predict fatigue damage at early 

design stage as it helps in improving the durability of the compo-

nents. 

Failure analysis is able to detect fatigue damage in a compo-

nent which subjected to repeated load cycles. Various approaches 

in time domain and frequency domain are available for fatigue 

analysis. Time domain approaches require input of time histories 

but these approaches need a large data amount to approximate the 

statistics behaviours [3]. Hence, frequency domain approaches 

become another alternative for fatigue analysis other than time 

domain approaches [4]. In frequency domain, power spectral den-

sity (PSD) gives the average square amplitude of every sinusoidal 

wave of each frequency in the signals. Frequency domain ap-

proaches are able to reveal the amplitude of signal frequency but 

these approaches do not give information of time in which the 

frequency is occurring [5]. In addition, most of automotive fatigue 

signals are non-stationary. Thus time-frequency domain analysis is 

more suitable to analyse fatigue data due to its ability to identify 

the high fatigue activities in time and frequency basis [6]. 

In this study, fatigue life of the coil spring were characterised 

in time-frequency domain in order to correlate the parameter used 

in all domain stated. The discrete wavelet transform is developed 

by using Daubechies method to extract the characteristics of the 

signals [5]. In addition, based on time-frequency analysis, the 

fatigue life of the component is validated by comparing with three 

different domains. Based on these, the characterization of fatigue 

vibration signal can be achieved in time-frequency domain. 

2. Methodology 

The strain loading histories of coil spring were collected as the car 

was driven on two different road surfaces including the highway 

and industrial area. Figure 1 shows the location of strain gauge 

attached on the coil spring. The signals were sampled at 500 Hz 

for 60,000 data points which gave a total signal length of 120 

seconds. Subsequently, time domain, frequency domain and time-

frequency domain approaches were adopted to analyse the signals. 

For the time domain analysis, the strain signals were analysed by 

observing the behaviour and fatigue life of the signals was deter-

mined using commercial software. 

In time domain approach, fatigue life was predicted using strain-

life approaches including the Coffin-Manson relationship, Smith-

Watson-Topper (SWT) and Morrow models. Strain-life approach-

es were used with Palmgren-Miner’s linear cumulative damage 

rule as shown in Equation (1) [7]. 


=

=

k

i i

i
Nc

N

n
D

1

             (1) 

http://creativecommons.org/licenses/by/3.0/


International Journal of Engineering & Technology 159 

 
where D  is the damage value, N  is total number of cycles and 

in  is the number of applied cycles. 

 
Fig. 1: Example of an image with acceptable resolution 

The Coffin-Manson relationship, SWT and Morrow models 

are expressed in Equation (2), (3) and (4), respectively. 
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where a  is the true strain amplitude,   is the fatigue strength 

coefficient, b  is the fatigue strength exponent, f'  is the fatigue 

ductility coefficient, c  is the fatigue ductility exponent, E  is the 

Young’s modulus and fN2  is the number of cycle to failure. The 

fatigue life in Coffin-Manson relationship was calculated based on 

strain amplitude at zero mean stress. SWT and Morrow models 

considered the mean stress effect in the calculation of fatigue life. 

The correction of mean stress effect of Morrow is more realistic. 

The fatigue damage can be calculated with Equation (5): 
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where D  is fatigue damage and fN  is the number of cycle 

to failure. 
In time series, the signal can be analysed by observing the changes 

of the signal from time to time. Statistical analysis is one of the 

methods to analyse the signal and obtain statistical parameters 

such as mean, root-mean-square (RMS) and kurtosis. The equa-

tions for these statistical parameters are expressed as following: 
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Where F  is the signal with the number of data, n . 

In order to perform frequency domain analysis, the PSD of the 

signals were obtained to get the energy distribution in the signals. 

The process included the conversion of time domain signal into 

the frequency domain. For most fatigue studies, the frequency 

domain analysis is done using PSD. It is a spectrum analysis that 

considered the energy of a signal in the frequency domain. PSD 

can be expressed as followed: 
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where F  is the signal with the number of data n , t  is the time 

and   is the angular frequency. 

 

Decomposition of the signals was performed using Daubechies 4th 

order with 12 levels of decompositions which are optimal levels to 

remove most of its noise. Wavelet decomposition calculates the 

group index known as wavelet coefficient [8]. The coefficients 

obtained from the signal regression generated at different frequen-

cy scales in a wavelet. The signal generated establish the correla-

tion between the wavelet and a section of the signal being ana-

lysed. The Daubechies wavelet transform of class ND 2−   is a 

function ( )= 2LN   defined as followed:  
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where 0h ,…, −12Nh  and N  is the order. 

For each level, the spectrum energy, fatigue life and 

RMS of the signal were obtained to analyse the characteristics of 

the signals. Then, these parameters were used as the input for the 

data clustering process using k-mean algorithm. 

3. Results and Discussion 

Figure 2 and 3 shows the strain signal obtained from the coil 

spring for two types of road which were highway and industrial 

area, respectively. Statistical parameters are able to classify the 

strain signals of highway and industrial area. Table 1 shows the 

statistical result for both road conditions. Based on the observation 

and statistical result, the signals can be classed as tension strain 

signal since the signals had positive mean value. Thus, both sig-

nals can be defined as tension since they had positive mean value. 

Other than that, it was found that the both signals were non-

stationary as their kurtosis values were more than three. Normally, 

kurtosis of a Gaussian distribution is 3.0. The signal distribution 

contained high peak activities that contribute to damage if its kur-

tosis is higher than 3.0. In industrial area signal, there was more 

transient event associated with large and sudden amplitude chang-

es compared to the highway road signal. This is attributed to the 

bumpy surface and potholes in industrial area. 

 
Fig. 2: Strain signal obtained from highway 
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Fig. 3: Strain signal obtained from industrial area 

 

Table-1. Statistical analysis for highway road. 

Statistic parameter Highway road Industrial road 

Mean, µɛ 3847.69 1219.18 

Kurtosis 5.9719 27.6382 

RMS, µɛ 4704.72 1569.88 

Fatigue life was predicted based on the three strain-life approaches. 

The fatigue life was measured in number of cycle until failure. 

Table 2 shows the fatigue life for each signals obtained by using 

commercial software. The strain-life model was chosen based on 

the mean value of signals. This model relates deformation occur-

ring in the immediate vicinity of a stress concentration to the re-

mote or local pseudo-elastic stresses and strains using the constitu-

tive response determined from fatigue failure [9]. Therefore, 

Smith-Watson-Topper (SWT) model was used to determine both 

fatigue life. Morrow model is used if the signal has a negative 

mean value while Coffin-Manson is suitable for zero mean value 

[10]. Therefore, highway road give higher life cycle with 
51026.5   cycles compared to industrial road with 51088.2   

cycles. 

 
Table-2. Fatigue life for each data of highway road. 

Road condition 

Fatigue life (Number of cycles) 

Coffin-

Manson 

SWT Morrow 

Highway 5.85×105 5.26×105 5.51×105 

Industrial area 4.07×105 2.88×105 3.29×105 

By using power spectral density (PSD) analysis, frequency content 

of the signals can be obtained by using Fourier transform algo-

rithm [4]. Figure 4 and 5 depict the PSD of highway and industrial 

area signals, respectively. Based on the figures, high amplitudes 

were found at low frequency in highway signal. Therefore, the 

characteristics of the signal is influenced by the high amplitude 

that occurred at low frequency range. From the PSD, spectrum 

energy was calculated from area under the graph and tabulated in 

Table 3 [11]. The spectrum energy represents the energy content 

of a signal. The energy contents in the signal were affected by the 

road surface features such as bumps and potholes on the road 

which contribute to fatigue damage in the coil spring. 

 
Fig. 4: PSD of highway road signal 

 

 
Fig. 5: PSD of industrial road signal 

 

Table-3. Statistical analysis for highway road. 

Road condition Energy (με/Hz2) 

Highway  4.90×104 

Industrial area 5.52×105 

The strain signals were decomposed to 12 levels using 4th order 

Daubechies wavelet transform based on the number of data for the 

particular signal. The statistical analysis of the decomposed sig-

nals was remained the same as the original signal in order to clas-

sify the signal to its own frequency [6]. Figure 6 and 7 shows the 

decomposed signals of highway and industrial area up to 12 level 

of decomposition, respectively. The fatigue life of each level was 

calculated and tabulated in Table 4. From Table 4, it was found 

that the fatigue life increases as the level of decomposition in-

creases compared to the original fatigue life for both signals. This 

was because the fatigue damage in higher level was minimal, thus 

resulted in longer fatigue life. 

All the data were combined and clustered using k-means method 

by considering the spectrum energy of PSD, RMS and fatigue life 

for each levels of decomposition. Every parameters was normal-

ized to ensure all the values were in similar range. Figures 8-11 

show the fatigue data clustering with several clusters. As the total 

of cluster increases, the distance of the cluster from the centroid 

decreases [12]. The distance shows the significant relationship 

between data and centroid in each group which also known as the 

objective function. Table 5 shows the average distance of the data 

from the centroid. From the analysis, number of clusters five gave 

the lowest objective function value. 

 
Table 4: Fatigue life of original and decomposed signals at different de-
composition level 

Level of decomposition Fatigue life (cycle) 

Highway Industrial area 

Original 5.511x105 3.298x105 

Level 1 3.393x105 3.738x105 

Level 2 3.259x105 3.341x105 

Level 3 1.377x105 3.905x105 

Level 4 9.056x104 5.463x105 

Level 5 6.770x104 4.718x105 

Level 6 6.486x104 5.941x105 

Level 7 1.097x105 1.549x106 

Level 8 2.157x106 7.677x107 

Level 9 2.699x106 1.615x1010 

Level 10 9.645x106 2.561x1010 

Level 11 2.228x107 1.657x1011 

Level 12 1.514x108 5.669x1011 

 
Table 5: Average distance of data to centroid 

Number of cluster Average distance to centroid 

2 4.261 

3 2.619 

4 1.587 

5 0.836 

The optimum objective function value for the centroid of the clus-

ter is 0.836. This value shows the distribution of the data clustered 

were focus on the centroid as shown in Figure 11. Therefore, the 

decomposed signals can be easily categorized in three groups 

which are; group 1 is high spectrum energy with high RMS value, 

group 2 is moderate spectrum energy with moderate RMS value, 

and group 3 is low spectrum energy with low RMS value based on 
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the patterns shows on each figures. Thus, the high amplitude sig-

nal contained high energy is the main factor in contribution to 

fatigue failure to occur. The data that were scattered far away from 

the groups can be neglected as its do not have significant values 

because the characteristics of the data were differ from the clus-

tered data.  

 
Fig. 6: Decomposition of highway signal using DWT 

 
Fig. 7: Decomposition of industrial area signal using DWT 

 
Fig. 8: Two clusters for normalised number of cycles, normalised RMS 

and normalised energy using k-means clustering approach in 3D 
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Fig. 9: Three clusters for normalised number of cycles, normalised RMS 

and normalised energy using k-means clustering approach in 3D 

 
Fig. 10: Four clusters for normalised number of cycles, normalised RMS 

and normalised energy using k-means clustering approach in 3D 

 
Fig. 11: Five clusters for normalised number of cycles, normalised RMS 

and normalised energy using k-means clustering approach in 3D 

4. Conclusion  

In this study, two signals representing the highway and industrial 

area road were obtained. The road surfaces play a significant role 

in determine to the characteristics of the signals. Based on the data 

collected, industrial area signal has shorter fatigue life of 2.88 x 

105 compared to highway signal (5.26 x 105). From the time histo-

ries, the high peak amplitude with low background signal contrib-

utes to high fatigue. In frequency domain approach, PSD was 

utilized to obtain the spectrum energy in the signals to identify the 

signal that has high vibration energy. From the analysis, the char-

acteristics of the fatigue life in the signal can be identified when 

the high amplitude occurs at low frequency. In addition, the signal 

was analysed by decomposing the signals using Daubechies wave-

let transform. Spectrum energy, RMS and fatigue life the signal at 

each level of decomposition were used as parameter in fatigue 

data clustering. The optimum group of clusters were found to be 

five for both signals and the comparison shows similar character-

istics. Therefore, it can be concluded that the Daubechies method 

is suitable to access the characteristic of fatigue life. 
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