

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.13) (2018) 157-164

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Privacy Preserving Decomposable Mining Association Rules on

Distributed Data

Ahmed M. Khedr1*, Zaher AL Aghbari2, and Ibrahim Kamel3

1,2 Department of Computer Science, University of Sharjah, UAE

1Mathematics Dept., Zagazig University, Zagazig, Egypt
3Department of Electrical and Computer Engineering, University of Sharjah, UAE

*Corresponding author: akhedr@sharjah.ac.ae

Abstract

In distributed computing, data sharing is inevitable, however, moving local databases from one site to another should be avoided because

of the computational overhead and privacy consideration. Most of the data mining algorithms are designed assuming that data repository

is stored locally. This paper presents a scheme and algorithms for mining association rules in geographically distributed data. The pro-

posed scheme preserves data privacy of the different geographical site by passing secure messages between them. The algorithms mini-

mize the communication cost by exchanging statistical summaries of the local databases. We provide a privacy and security analysis that

shows the privacy preserving aspects of the proposed algorithms. Moreover, the paper presents extensive simulation experiments to eval-

uate the efficiency of the proposed scheme.

Keywords: Decomposable algorithm, secure data mining, association rules, vertically and horizontally distributed database.

1. Introduction

Emerging network-based applications such as counter-terrorism,

emergency response, public health awareness, and financial analy-

sis require knowledge and data from a number of geographically

distributed databases to make effective decisions. These sites usu-

ally belong to independent organizations and possibly using dif-

ferent databases scheme or models. In such application environ-

ment, a number of geographically distributed databases together

form a global database that contains the relevant data to the com-

putation. Some pattern discovery tasks may require data from

different sites, for example querying census databases that is com-

prised of labor statistics databases and social security databases.

Unless the data is integrated and the big picture is formed, it will

be impossible to fully answer the pattern discovery tasks. Addi-

tionally there is a need to protect the privacy of data within each

site (or organization).

The challenge we address in this paper is how to extract the neces-

sary data from a number of geographically distributed databases

without relocating databases. Most exiting data mining techniques

assume that the data is centralized or the distributed data can effi-

ciently move to one site to become a single model. Moving data-

bases from one site to another results in performance penalty and

security concerns. Traditionally, older techniques used brute force

integration of the localized databases by moving databases from

one site to another. This required translation of format and/or

scheme, which are usually done by intermediate gateways. Alt-

hough XML (extensible Mark-up Language) have facilitated the

integration of various databases, yet the efficiency and privacy

concerns remain. Organizations may be willing to share only their

data scheme, not the data itself. These decentralized techniques

have a high risk of privacy breach when full data from local data-

bases is shared with other sites [1]. Organizations are looking for

ways to decrease the risk of privacy breaching. It is desirable to

have solutions that let the individual databases resides at one site

and answers tasks using an implicit image of the global database.

In this case, tasks and queries need to be decomposed into sub-

tasks that can be performed locally.

This paper presents a scheme and algorithms for mining distribut-

ed data that are vertically distributed using association rule. We

demonstrate how mining tasks can be answered in a distributed

way. The proposed algorithms have the capability to decompose

their computations to fit the nature of data distribution across the

sites. Sites exchange summaries of the local databases while pre-

serving privacy.

The distributed algorithms consist of localized computational

steps that can be executed at the participating sites. The intermedi-

ate results are securely transmitted to the site that initiated the

computation. The main contributions of this paper are summarized

as follows:

• A scheme and algorithms for mining distributed data that

are vertically distributed using association rule by

exchanging privacy preserving summaries derived from

local databases.

• The paper shows that the proposed distributed computations

accurately generate the expected mining results.

• Simulation experiments that show the performance of the

proposed solution.

• Theoretical analysis to show the complexity and the

privacy preserving aspect of the proposed algorithm.

http://creativecommons.org/licenses/by/3.0/

158 International Journal of Engineering & Technology

The rest of the paper is organized as follows: Section 2 presents

the system model used in the study. Section 3 presents some re-

quired technical background and an overview of the latest tech-

niques for solving the above mentioned problem. The details of

the proposed algorithm is presented in Section 4. In section 5, we

discuss the complexity and the privacy preserving properties of

the proposed algorithm. Section 6 presents the simulation experi-

ments and discuss their results. Finally, conclusion and future

works are presented in Section 7.

2. Preliminaries

2.1 System Model

Fig. 1 is a high level system model of electronic health record

sharing between autonomous healthcare providers that include

hospitals, clinics and pharmacies. The databases of healthcare

providers are in different geographic locations. These databases

combined are considered one global database. Note that these

databases usually cannot be physically moved from one site to the

other due to several considerations such as security, size, privacy,

or data ownership.

For the doctors to form the big picture about their patients, the

data needs to be integrated.

Database

Sharjah Hospital

Database

Pharmacy

Database

Dubai Hospital

Logical Integration of Data

Data Analysis

Fig. 1: Application Example (Electronic Health Record)

It is common that different healthcare providers may use different

concepts to refer to the same object. For instance, the term influ-

enza may be used in one healthcare provider whereas another

healthcare provider may use the term flu. Since the different

healthcare providers are willing to share data, they have to follow

strict policies to secure the data. In this paper we assume that ac-

cess can be regulated through appropriate authentication and au-

thorisation mechanisms and this topic is out of the scope of this

work.

2.2 Integration of Distributed Data

In a distributed setting, a database D is implicitly defined in n

explicit databases Di located at n different sites. We model a data-

base Di at the ith site, by a relation that contains patient records

(tuples). Each Di contains a set of attributes. Due to the nature of

geographically distributed local databases, data normalization

cannot be assumed. A Join operation on all Dis is required to cre-

ate the implicit database D. However, the tuples of D are distribut-

ed on the sites of the local databases, Di's. This inability to make

the tuples of D explicit (physically exist on one site) is the main

problem addressed by the proposed privacy preserving mining

algorithm.

2.3 Nature of Data Distribution

Vertically Distributed Databases: Here, each component Di con-

sists of tuples, where each tuple contain a different set of attributes.

Some local databases Dj, j ≠i may share some attributes with each

other. Each Di may contain unique attributes which are not shared

with other Dj, j ≠i.

 Vertically distributed databases require computations to be

performed on the implicitly Joined, D. The decomposed algorithm

utilizes the shared attributes (common attributes among Dis) in the

performed computations. This formulation models more general

circumstances than the case of a single key and non-overlapping

attribute sets for single records distributed at various sites. Our

target is to enable those local databases for participation that were

designed independently and must have arbitrary overlap of attrib-

ute sets with the other local databases they have to collaborate

with. We assume that the overlap between the attributes of the

local Di's results in one connected global database. The database

for which the association rule is performed is the implicit cross

product of the relations stored at the distributed sites.

Horizontally Distributed Databases: The global database D exists

as a set of components D1, D2, ….., Dn such that each Di contains

tuples consisting of an identical set of attributes A; but a distinct

set of data tuples resides at each site. Each Di resides on a differ-

ent site and the tuples contained in all the Di's, taken together,

constitute the global database D. The decomposition of the pro-

posed algorithm can be applied on horizontally and vertically

distributed databases.

2.4 Computation Scenario

A number of vertically or horizontally distributed databases. Join-

ing these databases form an implicit global database that consists

of the relevant data to mining or other computational tasks. The

main goal is to design a new algorithms that keep the local data as

it is without moving and deal with visualized implicit join of the

remote databases. Let us say D1, D2, …, Dn are n local databases

and D is the implicit global database formed by Merging (in case

of horizontal distributed) or Joining (in case of vertical distribut-

ed) all the participating local Dis. i.e., using Di , the local results

will be sent to be aggregated with other sites at the initiator site.

 Our notion of data privacy requires that when the local computa-

tions are exchanged over the network, even if they are captured by

someone, they should not enable reconstruction of any single tuple

residing in any of the participating local databases. It is facilitated,

partly, by the absence of knowledge of the aggregation and hash

functions by the network intruder.

3. Related Works

In [2], the author introduced the association rule mining problem.

It can provide valuable information about buying behavior of the

customer. The association rule mining process involves 2 major

sub-problems: discovering all frequent itemsets and generating

association rules using frequent itemsets. The performance of

mining using association rule is decided by the first sub-problem

because each association rule can be discovered from the congru-

ent frequent itemsets, for this reason, researchers concentrate on

efficiently discovering frequent itemsets. In [3], the authors

proposed apriori algorithm to effectively recognize frequent item-

sets. Several proposed techniques to handle this problem such as

level-wise techniques [1, 3, 13, 14] and pattern-growth technique

[15, 16, 17, 18].

Many parallel algorithms are proposed to solve the association

rules mining in parallel such [4, 5,6]. In Security Multiparty

Computation (SMC), without a leak of knowledge some infor-

mation about each part can be exchanged among multiparty to get

the final results [7, 8]. High polynomial-time complexity is the

main disadvantage of SMC 7, 8]. Many algorithms have been

proposed using SMC such as finding decision trees [9], and min-

ing of vertically partitioned databases [10].

In distributed environment, each data site of the multiple sites

does not have to disclose its individual data, but it is demand from

each site to exchange the global candidate itemsets and the corre-

International Journal of Engineering & Technology 159

sponding support counts [4,5]. In [11], the authors proposed an

approach to reduce the complexity and enhance the security of

distributed association rule mining on horizontally partitioned

databases. In [12], the authors presented a technique to fasten the

global candidate discovering and enhance the privacy preserving

the frequent itemsets discovery.

In [23,24], based on the Fast Distributed Mining (FDM), the au-

thors proposed two secure algorithm for mining association rules

in horizontally distributed databases. Unsecured distributed ver-

sion of association rule is given in [25]. The proposed algorithm

provides privacy with respect to the protocol in [24]. In addition, it

is significantly efficient in terms of exchanged messages and time.

Moreover it is simpler.

The above works describe algorithms for the case when n records

are distributed among a few local databases where each remote

database includes a key to recognize some individuals, and some

attributes are unique to the local site and are not shared with a

local database at any other remote site. The proposed approach

can be applied on the most general scenario where existing verti-

cally or horizontally partitioned data would like to cooperate for

mining without any constrains that there be only one record at

each site for each individual and for any number of shared attrib-

utes. Also, the above algorithms are designed for environments

where the relevant data are stored horizontally or vertically dis-

tributed data where different remote sites includes different attrib-

utes for a common set of entities. This is not the case of our dis-

tributed databases [29-33].

The proposed decompositions scenario can be seen as regular

implemented distributed databases by a number of coordinated

agents using message exchanging or visiting remote sites to gather

local queries or/and computation results [19, 20, 21, 22]. Several

issues related to knowledge distribution and processing capability

over a loosely connected communication network have been ad-

dressed by Multi-agent systems [26, 27, 28]. In [26, 27, 28], the

modeled agents have only a limited view of the global knowledge

and resources. In contrast, the proposed technique is directed at

systems where cooperative agents honestly access local results

from other agents to develop concepts from their collective

knowledge while minimizing messages exchanged and disclose

data among sites. Also our agent at each site does not need to have

any uncertainty about the state of data or knowledge of other sites

or computing agents [29-33]. They only need to be requested for

its local results and they would truthfully give the needed infor-

mation look for by other agents. Therefore, the goal of the agents

is to minimize the exchange information among themselves for

performing the global computations [29-33]. In [19], proposed a

technique to perform global tasks with minimum exchanged mes-

sages across the network. The global results is then locally per-

formed by the initiating agent after receiving minimal summaries

from other agents. However, the algorithm in [19] does not handle

the privacy of the information communicated between the differ-

ent agents. In this paper, we use the distributed computational

algorithm different from that of [19], also, we provide a better

privacy-preserving solution.

4. Decomposable Association Rule

4.1 Problem Statement

Given a distributed relational database, relational DB for simplici-

ty, between n sites, where each site holds a vertical partition of the

database D1, D2, …,Dn. These n partitions constitute the global

database D. Each Di contains a set of attributes Ai and the union of

all attributes of all partitions defines the set of attributes A of the

global database D.

 (1)

A subset of attributes sij that is shared, or common, between parti-

tions Di and Dj.

 (2)

The union of all attributes between all partitions constitutes the

shared set of attributes S of D. Thus, S contains all attributes that

are shared between all sites. We need to perform global computa-

tions, such as computing association rules of the implicit database

D at one of the sites, say the initiator site Dinit, without moving the

local tables of the different partitions to Dinit due to the security,

privacy and size of the local databases. Therefore, the global

computation should be decomposed into local computations. Each

site should perform the needed local computation keeping in mind

the constraints of shared attributes and that the local results should

contribute to the global solution at Dinit.

To support the confidentiality of the data, Dinit should not know

the actual distinct values of the shared attributes nor the number of

tuples of each distinct value of the shared attributes at each site.

Table 1: Symbol abbreviation

Symbol Description

D Global implicit database that is a union of all local databases

Di Local database at site i

Dinit Initiator site that starts the process of global computation

A Set of attributes of the global database

S Set of shared attributes between all partitions

Shared The Cartesian product of the received distinct values of S

attributes

CDi() A function that counts the number of transaction in Di

Gi The agent, at a site i

4.2 Proposed Solution

To decompose the global computation of the association rules, i.e.

finding the association rules in the global database D, we represent

each site by an agent. Each agent can access any part of its local

database. All agents are mobile that is they are capable of per-

forming computation locally at their respective sites and at the

same time are capable of moving from one site to another to per-

form computations or collect statistics. These agents cooperate to

find the global association rules without moving local databases

between sites, however agents may exchange messages and com-

municate summaries of their local results.

To start the global computation, an agent at Dinit sends a request to

the agents of the participating sites to start the local computations.

The proposed algorithm is designed to minimize across site com-

munication and different sets of shared attributes between sites.

Furthermore, the presented approach maintains the privacy of the

communicated data.

4.3 Decomposition of Global Computation

To illustrate the decomposition process, let’s assume that the re-

sult R of a desired global computation, such as finding the count

of a candidate frequent itemset Ij in the global database D, is

CD(Ij) when computed on D that is located at one site.

 (3)

However, in a distributed environment, D is partitioned among

different sites and local partitions cannot be moved around. The

set S of shared attributes determines the fraction of the global

database D that will be generated by aggregating the individual

results of the local computations on D1, D2, …,Dn. Thus, the oper-

ation CD can be decomposed for a given Shared to produce equiv-

alent results as follow:

 (4)

160 International Journal of Engineering & Technology

CDi(Ij,Shared) is the local computation will be executed by using

Di and the shared attributes S among all sites. The subscript j

specifies the condition that is composed of the attribute-value

pairs of the itemset Ij. The local computations will be aggregated

by the initiated agent at Dinit using the operation  on the cross

product (Π operation) of the local numbers of tuples in each site

that satisfy the specified condition j.

4.4 Algorithm Description

Given a transaction database, where each transaction is a set of

items, an association rule is an expression X ⇒ Y, where X and Y

are sets of items. Intuitively, it would mean that transactions in the

database, which contains the items in X also contain the items in

Y. Traditionally, most of the algorithms to determine association

rules are confined to a single large database. The main issues have

been the size of the data, how many passes that are to be made

over the database and the resultant time taken.

In this research, we focused on finding association rules in a dis-

tributed database environment where moving local databases is

not possible because of the security, privacy, and other issues. To

discover the association rules in a given database [2][3], the algo-

rithm involve iterating over the following 2 steps:

i) Find the itemsets at level Lk from the frequent itemsets (the

sets of items that have minimum support) determined at level

Lk-1.

ii) Compute the support and the confidence of the found itemsets

and rules at level Lk.

Similarly, the decomposition of the proposed association rule

algorithm can be divided into 2 major tasks: (1) Finding active

itemsets and the candidate itemsets for the next level, and (2)

Computing the support and confidence. Below, we show the de-

composed the algorithm:

• An agent starts the association rule algorithm at a site.

• This agent computes the frequent itemsets and the candidate

itemsets for the next level.

• Agents at different sites consult with each other to compute the

support and confidence.

 The support of an itemset is defined as the ratio of the number

of transactions in which the itemset exists to the number of trans-

actions in D. Thus, the common computational primitive for

computing the support is to find the number of all transactions in

D as represented by Equation 5.

 The local computation CDi(Shared) is performed by an agent

using Di and the shared attributes Shared among all sites. The

number of transaction in which an itemset exist is an extension of

this primitive to count those transactions in D that contain the

itemset (see Equation 5). Both of these counts are obtained by

aggregating the results of local computations at the participating

sites.

 (5)

Below we present the algorithm for the common computational

primitive for counting the number of transactions in D.

4.5 TransactionCount Algorithm

When a site needs to compute the number of transactions in D, it

invokes its agent Gi to initiate the count process as shown in the

TransactionCount algorithm. The TransactionCount algorithm

counts the number of transactions in D by implicitly joining the

local databases D1, D2,…,Dn at the participating sites without mov-

ing these Dis. The algorithm is also preserves the privacy of the

data as all communications of data sets between agents of partici-

pating sites are either hashed or/and multiplied by some locally

determined constant before being communicated. The objective

of our algorithm is to perform the global computation in a distrib-

uted fashion, minimize communication between sites, hide actual

values from other agents, and yet compute the actual results.

Algorithm: TransactionCount

Input: request to count number of transactions in D

Output: number of transactions in D

1. Agent Gi requests the attributes names from other agents

representing the participating sites.

2. Each requested agent Gj, where j: 1-n, j  i, replies with a set

of attributes hA(Aj) of its local database Dj. Attributes are

hashed using the hash function hA() before being sent to Agent

Gi.

3. Agent Gi determines the set of shared attributes S by

computing the intersection of all sets of attributes, A1, A2, …,

An.

4. Agent Gi requests the distinct values of the attributes in S from

the respective sites through their agents.

5. Each requested agent Gj does the following:

a. determines the distinct values of the shared attributes in

its local database CDj(S),

b. hashes them using the hash function hV(), and

c. sends the results to agent Gi.

6. Agent Gi computes the Cartesian product of the received

distinct values and generates a relation called a shared relation.

7. Agent Gi initialize R(Shared) = 0, which will accumulate the

sum of products result of Equation 4.

8. For each tuple t in the shared relation,

a. Agent Gi requests the number of transactions that contain

the values of t from the participating agents.

b. each requested agent Gj does the following:

i. Performs the count locally, CDj(t, Shared).

ii. Multiplies the count by a constant j that is

decided locally to hide the actual count. All

other agents do not know this constant.

iii. Sends the resulting value to agent Gi.

c. Agent Gi multiplies the incoming values from the

participating sites and accumulates the results in

R(Shared).

9. To remove the multiplied constants from the resulting value

R(Shared), agent Gi sends the resulting value to its neighbor

agent Gi+1, which divides the value by its determined constant

i+1 and in turn sends the resulting value to its neighbor agent

Gi+2, and so in a pre-determined circular fashion till it comes

back to the initiating agent Gi which divides the value by its

determined constant i . The final value represents the actual

number of transactions in D.

In the TransactionCount algorithm, a site Di that needs to count

the number of transaction in the global database D, initiate the

counting process through its agent Gi, which will control the count

process. Agent Gi builds the shared relation by collecting the

local attributes A1, A2, …, An from the agents of the participating

sites. To preserve the privacy of the data, the agents of the partic-

ipating sites send the hashed values of their respective local data-

base instead of the actual attribute values. The shared attributes

are the intersection of the local attribute sets as in Equation 6.

 (6)

Then, the initiating agent Gi requests the distinct values of the

shared attributes from the agents of the respective participating

sites. Each of these requested agents queries its local database to

find the distinct values of the shared attributes that exist locally.

To preserve privacy of the local data, the requested agent hashes

them using the hash function hV(), and sends them to the initiating

agent Gi.

 From these collected distinct values, the initiating agent Gi

builds the shared relation by performing the Cartesian product

between the distinct values. For each tuple of the shared relation,

International Journal of Engineering & Technology 161

agent Gi requests the number of transactions, which contain the

values of the tuple, from the agents of the participating sites. Each

of these agents performs the operation CDi(t, Shared) locally to

count the number of tuples in Di that satisfy the condition t. The

operation CDi(t, Shared) is translated locally into a simple SQL

query “SELECT count(*) FROM Di WHERE t”, where t repre-

sents the attribute-value condition. Such decomposed operation is

desirable due to its simplicity. After computing the count, it is

multiplied by a constant j that is determined locally by the local

agent to hide the actual value and maintain the data privacy. The

result is then sent to the initiating agent Gi, which computes the

product of all the collect results for the current tuple. The product

values of all individual tuple in the shared relation are accumulat-

ed in R(Shared).

The accumulated value in R(Shared) represents the number of

transactions in D multiplied by all the constants determined at the

participating sites. Therefore, to remove these constants, the initi-

ating agent Gi sends the resulting value to its neighbor agent Gi+1,

which divides the value by its determined constant i+1 and in turn

sends the resulting value to its neighbor agent Gi+2, and so. This

value is sent from one agent to another in a pre-determined circu-

lar fasion that visits every site once till it comes back to the initiat-

ing agent Gi which divides the value by its determined constant i.

The final value represents the actual number of transactions in D.

4.6 Computing Support of an Itemset

The support of an itemset is defined as the ratio of the number of

transactions in which the itemset exists to the number of transac-

tions in D that are represented by Equations 4 and 5 respectively.

Therefore, the support sup (Ij) of an itemset is:

 (6)

The number of transaction in which an itemset exist is an exten-

sion of the primitive to count the number of transactions in D (see

algorithm TransactionCount). Therefore, instead of counting all

transactions in D, the algorithm only count those transactions that

contain the itemset (Ij.cond.). The subscript j.cond. specifies the

condition that is composed of the attribute-value pairs of the

itemset Ij.cond..

4.7 Complexity Analysis

When a computation is performed in a single computer, or a close-

ly-coupled processor model, the algorithmic complexity is meas-

ured in terms of the CPU time and the required memory. On the

other hand, in a distributed system where a global computation is

performed cooperatively between the participating sites in the

network, the total cost is measured in terms the communication

cost since the computational is very small as compared to commu-

nication cost and thus the computational is neglected.

One summary per message (un-optimized): The number of mes-

sages is the sum of the following required messages:

• (n-1) messages to get the attributes of the participating sites.

• (n-1) messages to get the distinct values of the shared attributes.

• [(n-1)k] messages to get the number of transactions that

contain the values of shared tuple. Where k is the number of

shared tuples in the relation Shared. This size might be large

depending on the number of different shared values at each site,

however, it is possible to send one request with the whole

shared relation to all agents of the participating sites. This

reduces the exchanged number of messages to n-1, which is

equal to the number of participating agents. The first approach

requires more messages, however each message contains little

information and thus it is more privacy aware for transmission

over a network. The second approach requires fewer messages,

however, each exchanged message includes more information

and thus less privacy aware for transmission. The total number

of messages exchanged will be (n-1) (2+k).

Exchanging all the summaries in one message (optimized):

Unlike above method, here the Shared tuple will be sent to all sites

simultaneously and then the summaries are received in parallel. In

this case the cost is decreased to (n-1) (2+k)/n

5. Discussions and Privacy Analysis

In the above, we proposed an algorithm for finding the association

rules in a distributed database environment. In such environment,

one would be interested in preserving the security and the privacy

of the data. Our goal is to protect against eavesdroppers on the

communication between the sites. We also would like to preserve

the privacy of each site as much as possible.

5.1 Eavesdropping

Malicious attacker can listen to the communication between two

different sites to obtain copy of the database. In this section, we

show that anonymous listener cannot compromise the privacy of

the transmitted information.

To calculate the support and confidence for the association rules,

sites exchange information like attributes names, attribute values,

and the number of tuples on site Dj that have the same attribute

value. To preserve the confidentiality of the information the pro-

posed algorithm uses secure hash function to avoid sending the

attribute names on site Dj. In step 2 in the algorithm, when the

Agent Gi requests the set of attributes, sites will not send the

names of the attributes but rather sends a hash digest for each

attribute. Each site Dj calculates the hash digest for the attribute aj

as follow:

Hash Digest = hA(K aj)

where K is a secret key that is shared and used by all the sites.

This way the attacker or the listener cannot figure out the transmit-

ted attribute names. At the same time, since all sites are using the

same key K and hash function hA() the Agent Gi can still match

similar hash digest to form the set of shared attributes (step 3 in

the algorithm).

Anonymous listener cannot also figure out whether a specific site

has a tuple with specific attribute value or not. According to Algo-

rithm TransctionCount, each site sends the hash of the vector of

distinct values of the common attributes. The use of secret key in

the hash makes it impossible for the anonymous listener to know

the actual values that are sent.

In step 8 in the algorithm, participating sites send counts of the

transactions that contain the received item sets from agent Gi.

Sites do not send actual values, but rather they multiply the count

by a secret constant. Thus, anonymous attacker who listens to the

channel cannot figure out the count that site i has for a given value.

Note that multiplying the count values by secret constant will not

affect the calculation of the support at the agent Gi because this

secret value will be factored out in step 9 of the algorithm.

Thus in summary, anonymous listener will not be able to figure

out the name of the variables, the distinct values of the shared

attributes or the number of tuples in each participating site that

correspond to each itemset in the shared relation.

5.2 Site Privacy

This section discuss how much privacy each site can preserve

even though the different sites need to collaborate to answer quires.

More specifically we will address the attribute name, attribute

distinct values and the support for each value.
Recall that all sites are using the same secret key. Site i canfigure

out whether site j has a specific attribute or not if site i has the

same attribute that site j sent. By simply comparing the hash di-

javascript:void(0)

162 International Journal of Engineering & Technology

gest that site j sent with the list of hash digests that site i has.

Since the secure hash is a one way function, given a hash digest,

site i cannot extract the name of the attribute even if the secret key

K is known. If site i does not have a copy of the database schema,

it cannot figure out the name of the attributes that other sites send

to agent Gi. Site i can still figure out the name of the attribute sent

by site j if it has a copy of the global database schema. In this case

site i will have to calculate the secure hash digest for each attribute

in the database schema and compare it with the unknown digest.

The same argument applies for the distinct values and count of

itemsets. The participating sites send the hash of these values to

agent Gi (step 5 and step 8 in the algorithm) rather than sending

the values themselves. Even agent Gi will not be able to figure out

the actual values or the counts of the itemsets.

6. Simulation Results

To evaluate the efficiency of the proposed algorithm in computing

query results, we carried many simulation experiments. The tests

were performed to find out the effect of various parameters on the

final result. The three very important variables that affect the re-

sult are: the number of tuples in global database, the number of

sites, and the average number of shared tuples between local data-

bases. We have performed a number of tests to demonstrate that

the queries can be computed in a distributed fashion without mov-

ing all the data from one site to another site. We used a network of

workstations to test a number of databases residing on different

sites. The algorithm was implemented using Java.

In this section, we refer to the proposed algorithm, Privacy Pre-

serving Decomposable Mining Association Rules on Distributed

Data, as PDMAR. The first set of experiments was conducted to

demonstrate the effect of the number of exchanged messages (as

shown in Figure 2), and the effect of the elapsed time (as shown in

Figure 3) as the number of local sites varies from 2-14. Fig. 2

demonstrates that the number of messages exchanged increases as

the number of local sites increases. Also, Figure 3 shows that the

elapsed time increases linearly as the number of local sites in-

creases.

Fig. 2: Exchanged messages to run PDMAR on vertically distributed
databases with varying the number of local sites.

Fig. 3: Elapsed time to run PDMAR on vertically distributed databases

with varying the number of local sites.

The second test was done to demonstrate effect on the elapsed

time and the number of exchanged messages as the average num-

ber of shared tuples between local databases vary. The number of

shared tuples varies as 5, 10, 15, 20, and 25. Figure 4 shows that

the number of exchanged messages increases as the number of

shared values increases.

Fig. 4: Exchanged messages to run PDMAR on vertically distributed

databases with varying the number of shared tuples.

Fig. 5: Elapsed time to run PDMAR on vertically distributed databases

with varying the number of shared tuples.

International Journal of Engineering & Technology 163

Fig. 6: Exchanged messages to run PDMAR on vertically distributed da-
tabases with varying the number of tuples in global databases.

Fig. 7: Elapsed time to run PDMAR on vertically distributed databases
with varying the number of tuples in global databases.

Figure 5 shows that the elapsed time to execute PDMAR increases

as the number of shared values increases.

The last test was done to demonstrate the effect of the elapsed

time and the number of exchanged messages as we vary the num-

ber of tuples in the database. Figures 6 and 7 show that the ex-

changed messages and the elapsed time to run PDMAR in an im-

plicit database D is fixed this because the exchanged messages and

time of exchanged messages are independent of number of tuples.

7. Conclusion

This paper proposed the integration of arbitrarily distributed data

such as performing privacy preserving association rule mining.

We employed agent to compute some tasks such as finding the

frequent itemsets in implicit database formed by joining distribut-

ed local databases. Additionally, agent were shown to compute the

support and confidence of discovered itemsets from the implicit

database as well as determining the candidate itemsets for the next

level from the frequent itemsets of the current level. These tasks

are performed in a distributed fashio by the agents on arbitrary

overlapped local databases. We have discussed the complexity of

performing these computations in terms of messages that need to

be exchanged among the sites for performing these computations.

One very significant contribution of these results is that PDMAR

can compute the association rules of geographically distributed

databases. At the same time, the communication cost among the

participating sites is minimized while preserving the privacy of the

local databases.

References

[1] Atallah M. Bertino E., Elmagarmid A., Ibrahim M., and Verykios

V., (1999), Disclosure limitation of sensitive rules,” Proceedings of

the Workshop on Knowledge and Data Engineering Exchange,
Chicago, IL, November, pp.45-52.

[2] Agrawal T. Imielinski, and A. Swami, (1993),Mining association

rules between sets of items in large databases, In SIGMOD 93
International Csonference on Management of Data, pp. 207-216.

[3] Agrawal, R. and R. Srikant, (1994), Fast algorithms for mining

association rules,” Proceedings of the 20th International
Conference on Very Large Data Bases, Santiago, Chile, September,

pp.487-499,.

[4] Agrawal R. and Shafer J.C, (1996), Parallel mining of association

rules,” IEEE Transactions on Knowledge and Data Engineering,

Vol. 8, No. 6, pp.929-969.

[5] Cheung D. W.-L., Han, J., Ng, V. T. Y., Fu A. W.-C. and Fu, Y.
(1996), A fast distributed algorithm for mining association rules,”

Proceedings of the 1996 International Conference on Parallel and

Distributed Information Systems, Miami Beach, Florida, December,
pp.21-42.

[6] Savasere, A., Omiecinski, E. and Navathe, S., (1995), An efficient

algorithm for mining association rules in large databases,”
Proceedings of the 21th International Conference on Very Large

Data Bases, Zurich, Switzerland, September, pp.432-444.

[7] Brickell J. and Shmatikov V., (2005), Privacy-preserving graph
algorithm in the semi-honest model,” in Roy, B. (Ed.): Lecture

Notes in Compute Science, Vol. 3788, Springer-Verlag, pp.236-252.

[8] Canetti R., (2000), Security and composition of multiparty
cryptographic protocols,” Journal of Cryptology Vol. 13, No. 1,

pp.143-202.

[9] Lindell, Y. and Pinkas, B., (2002), Privacy preserving data mining,
Journal of Cryptology, Vol. 15, No. 3, pp.177-206.

[10] Dwork, C. and Nissim, K., (2004), “Privacy-preserving data mining
on vertically partitioned databases,” in Franklin, M.K. (Ed.):

Lecture Notes in Computer Science, Vol. 3152, Springer-Verlag,

pp.528-544.
[11] Kantarcioglu, M. and Clifton, C., (2004), “Privacy- preserving

distributed mining of association rules on horizontally partition

data,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 16, No. 9, pp.1026-1037.

[12] Veloso, A.A., Meira Jr., W., Parthasarathy, S. and de Carvalho,

M.B., (2003), “Efficient, accurate and privacy- preserving data
mining for frequent itemsets in distributed databases,” Proceedings

of the Brazilian Symposium on Databases, Manaus, Amazonas,

Brazil, October, pp.281- 292.
[13] Chang, C.-C. and Lin, C.-Y. (2005), Perfect hashing schemes for

mining association Rules,” The Computer Journal, Vol. 48, No. 2,

pp.168-179.
[14] Park, J.S., Chen, M.-S. and Yu, P.S., (1995), An effective hash-

based algorithm for mining association rules,” Proceedings of the

1995 ACM-SIGMOD International Conference on Management of
Data, San Jose, CA, May, pp.175-186.

[15] Agarwal, R.C., Aggarwal,C.C. and Prasad,V., (2001), A tree

projection algorithm for generation of frequent itemsets,” Journal
of Parallel and Distributed Computing, Vol. 61, No. 3, pp.350-371.

[16] Grahne, G. and Zhu, J., (2005), Fast algorithms for frequent

itemset mining using FP-trees,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 17, No. 10, pp.1347-1362.

[17] Han, J., Pei, J., Yin, Y. and R. Mao, (2004), Mining frequent

pattern without candidate generation: a frequent pattern tree
approach, Data Mining and Knowledge Discovery, Vol. 8, No. 1,

pp.53-87.

[18] Li, Y.-C. and C-C. Chang, (2004), A new FP-tree algorithm for
mining frequent itemsets,” in Chi, C.-H. and Lam, K.-Y. (Eds.):

Lecture Notes in Computer Science, Vol. 3309, Springer-V erlag,

pp.266-277.
[19] Khedr A. M. and R. Bhatnagar, (2007), Agents for Integrating

Distributed Data for Complex Computations, Computing and

Informatics Journal , vol. 26, No.2, pp. 149-170.
[20] Khedr A. M., (2011), Nearest Neighbor Clustering over Partitioned

Data, Computing and Informatics, Vol. 30, pp. 1001ñ1026.

[21] Khedr A. M. and A. Salim,(2008), Decomposable Algorithms for
Finding the Nearest Pair}, J. Parallel Distrib. Comput. vol.68, pp.

902-912.

164 International Journal of Engineering & Technology

[22] Khedr A. M., Learning k-Classifier from Distributed Databases},

Computing and Informatics Journal, Vol. (27), pp. 355-376, 2008.

[23] Tamir Tassa, (2011), Secure Mining of Association Rules in

Horizontally Distributed Databases, arXiv:1106.5113v1.

[24] Cheung D. W.-L., J. Han, V. Ng, A. W.-C. Fu, and Y. Fu, (1996),
A fast distributed algorithm for mining association rules. In PDIS,

page 3142.

[25] Kantarcioglu M. and C. Clifton, (2004), Privacy-preserving
distributed mining of association rules on horizontally partitioned

data. IEEE Transactions on Knowledge and Data Engineering,,
16(9):10261037.

[26] Chia M. H., D. E. Neiman, and V. R. Lesser, (1987), Poaching and

distraction in asynchronous agent activities}, ICMAS, pp. 88-95.
[27] Durfee E. H., and V. R. Corkill, Coherent cooperation among

communicating problem solvers, IEEE Transactions on Computers,

36(11), 1987.
[28] Huhns M. N., Singh M. P., and Ksiezyk T.,(1997) Global

Information management via Local Autonomous Agents, Morgan

Kaufmann Publishers.
[29] Khedr, A. M. Decomposable Algorithm for Computing k-Nearest

Neighbors across PartitionedData, in: International Journal of

Parallel, Emergent and Distributed Systems, vol. 31, no. 4, pp. 334-
353, 2016.

[30] Khedr, A. M. and R. Bhatnagar, Agents for Integrating distributed

databases for Complex Computations, Turk. J. Elec. Eng. & Comp.
Sci., 14, pp. 313-327, 2006.

[31] Khedr, A. M. and R. Bhatnagar, New Algorithm for Clustering

Distributed Data using k-means, Computing and Informatics, Vol.
33, pp. 1001-1022, 2014.

[32] Khedr, A. M. and R. Mahmoud, Agents for Integrating Distributed

Data for Function Computations, Computing and Informatics, Vol.
31, pp. 1101-1125, 2012.

[33] Khedr, A. M. and Ahmed Salim, Decomposable Algorithms for

Finding the Nearest Pair, J. Parallel Distrib. Comput., Vol. 68, pp.
902-912, 2008.

