
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (3.13) (2018) 157-164 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 
 

Research paper 
 

 

 

 

Privacy Preserving Decomposable Mining Association Rules on 

Distributed Data 
 

Ahmed M. Khedr1*, Zaher AL Aghbari2, and Ibrahim Kamel3 

 
1,2 Department of Computer Science, University of Sharjah, UAE 

1Mathematics Dept., Zagazig University, Zagazig, Egypt 
3Department of Electrical and Computer Engineering, University of Sharjah, UAE 

*Corresponding author: akhedr@sharjah.ac.ae 

 

 

Abstract 
 

In distributed computing, data sharing is inevitable, however, moving local databases from one site to another should be avoided because 

of the computational overhead and privacy consideration. Most of the data mining algorithms are designed assuming that data repository 

is stored locally. This paper presents a scheme and algorithms for mining association rules in geographically distributed data. The pro-

posed scheme preserves data privacy of the different geographical site by passing secure messages between them. The algorithms mini-

mize the communication cost by exchanging statistical summaries of the local databases. We provide a privacy and security analysis that 

shows the privacy preserving aspects of the proposed algorithms. Moreover, the paper presents extensive simulation experiments to eval-

uate the efficiency of the proposed scheme. 
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1. Introduction 

Emerging network-based applications such as counter-terrorism, 

emergency response, public health awareness, and financial analy-

sis require knowledge and data from a number of geographically 

distributed databases to make effective decisions. These sites usu-

ally belong to independent organizations and possibly using dif-

ferent databases scheme or models. In such application environ-

ment, a number of geographically distributed databases together 

form a global database that contains the relevant data to the com-

putation. Some pattern discovery tasks may require data from 

different sites, for example querying census databases that is com-

prised of labor statistics databases and social security databases. 

Unless the data is integrated and the big picture is formed, it will 

be impossible to fully answer the pattern discovery tasks. Addi-

tionally there is a need to protect the privacy of data within each 

site (or organization).  

 

The challenge we address in this paper is how to extract the neces-

sary data from a number of geographically distributed databases 

without relocating databases.  Most exiting data mining techniques 

assume that the data is centralized or the distributed data can effi-

ciently move to one site to become a single model. Moving data-

bases from one site to another results in performance penalty and 

security concerns. Traditionally, older techniques used brute force 

integration of the localized databases by moving databases from 

one site to another. This required translation of format and/or 

scheme, which are usually done by intermediate gateways.  Alt-

hough XML (extensible Mark-up Language) have facilitated the 

integration of various databases, yet the efficiency and privacy 

concerns remain.  Organizations may be willing to share only their 

data scheme, not the data itself. These decentralized techniques 

have a high risk of privacy breach when full data from local data-

bases is shared with other sites [1]. Organizations are looking for 

ways to decrease the risk of privacy breaching.  It is desirable to 

have solutions that let the individual databases resides at one site 

and answers tasks using an implicit image of the global database. 

In this case, tasks and queries need to be decomposed into sub-

tasks that can be performed locally. 

 

This paper presents a scheme and algorithms for mining distribut-

ed data that are vertically distributed using association rule. We 

demonstrate how mining tasks can be answered in a distributed 

way. The proposed algorithms have the capability to decompose 

their computations to fit the nature of data distribution across the 

sites. Sites exchange summaries of the local databases while pre-

serving privacy.  

 

The distributed algorithms consist of localized computational 

steps that can be executed at the participating sites. The intermedi-

ate results are securely transmitted to the site that initiated the 

computation. The main contributions of this paper are summarized 

as follows: 

• A scheme and algorithms for mining distributed data that 

are vertically distributed using association rule by 

exchanging privacy preserving summaries derived from 

local databases. 

• The paper shows that the proposed distributed computations 

accurately generate the expected mining results. 

• Simulation experiments that show the performance of the 

proposed solution. 

•  Theoretical analysis to show the complexity and the 

privacy preserving aspect of the proposed algorithm. 
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The rest of the paper is organized as follows: Section 2 presents 

the system model used in the study. Section 3 presents some re-

quired technical background and an overview of the latest tech-

niques for solving the above mentioned problem. The details of 

the proposed algorithm is presented in Section 4. In section 5, we 

discuss the complexity and the privacy preserving properties of 

the proposed algorithm. Section 6 presents the simulation experi-

ments and discuss their results.  Finally, conclusion and future 

works are presented in Section 7. 

2. Preliminaries 

2.1 System Model 

Fig. 1 is a high level system model of electronic health record 

sharing between autonomous healthcare providers that include 

hospitals, clinics and pharmacies. The databases of healthcare 

providers are in different geographic locations. These databases 

combined are considered one global database. Note that these 

databases usually cannot be physically moved from one site to the 

other due to several considerations such as security, size, privacy, 

or data ownership. 

For the doctors to form the big picture about their patients, the 

data needs to be integrated. 

Database

Sharjah Hospital

Database

Pharmacy

Database

Dubai Hospital

Logical Integration of Data

Data Analysis

 
Fig. 1: Application Example (Electronic Health Record) 

It is common that different healthcare providers may use different 

concepts to refer to the same object. For instance, the term influ-

enza may be used in one healthcare provider whereas another 

healthcare provider may use the term flu. Since the different 

healthcare providers are willing to share data, they have to follow 

strict policies to secure the data. In this paper we assume that ac-

cess can be regulated through appropriate authentication and au-

thorisation mechanisms and this topic is out of the scope of this 

work. 

2.2 Integration of Distributed Data 

In a distributed setting, a database D is implicitly defined in n 

explicit databases Di located at n different sites. We model a data-

base Di at the ith site, by a relation that contains patient records 

(tuples). Each Di contains a set of attributes.  Due to the nature of 

geographically distributed local databases, data normalization 

cannot be assumed. A Join operation on all Dis is required to cre-

ate the implicit database D. However, the tuples of D are distribut-

ed on the sites of the local databases, Di's. This inability to make 

the tuples of D explicit (physically exist on one site) is the main 

problem addressed by the proposed privacy preserving mining 

algorithm. 

2.3 Nature of Data Distribution 

Vertically Distributed Databases:  Here, each component Di con-

sists of tuples, where each tuple contain a different set of attributes. 

Some local databases Dj,  j ≠i may share some attributes with each 

other. Each Di may contain unique attributes which are not shared 

with other Dj,  j ≠i.  

     Vertically distributed databases require computations to be 

performed on the implicitly Joined, D. The decomposed algorithm 

utilizes the shared attributes (common attributes among Dis) in the 

performed computations. This formulation models more general 

circumstances than the case of a single key and non-overlapping 

attribute sets for single records distributed at various sites. Our 

target is to enable those local databases for participation that were 

designed independently and must have arbitrary overlap of attrib-

ute sets with the other local databases they have to collaborate 

with. We assume that the overlap between the attributes of the 

local Di's results in one connected global database.  The database 

for which the association rule is performed is the implicit cross 

product of the relations stored at the distributed sites. 

 

Horizontally Distributed Databases: The global database D exists 

as a set of components D1, D2, ….., Dn  such that each Di  contains 

tuples consisting of an identical set of attributes  A; but a distinct 

set of data tuples resides at each site. Each Di   resides on a differ-

ent site and the tuples contained in all the Di's, taken together, 

constitute the global database D.  The decomposition of the pro-

posed algorithm can be applied on horizontally and vertically 

distributed databases.  

2.4 Computation Scenario   

A number of vertically or horizontally distributed databases. Join-

ing these databases form an implicit global database that consists 

of the relevant data to mining or other computational tasks.  The 

main goal is to design a new algorithms that keep the local data as 

it is without moving and deal with  visualized implicit join of the 

remote databases. Let us say D1, D2, …, Dn are n local databases 

and D is the implicit global database formed by Merging (in case 

of horizontal distributed) or Joining (in case of vertical distribut-

ed) all the participating local Dis.  i.e., using Di , the local results 

will be sent to be aggregated with other sites at the initiator site. 

 Our notion of data privacy requires that when the local computa-

tions are exchanged over the network, even if they are captured by 

someone, they should not enable reconstruction of any single tuple 

residing in any of the participating local databases. It is facilitated, 

partly, by the absence of knowledge of the aggregation and hash 

functions by the network intruder.  

3. Related Works 

In [2], the author introduced the association rule mining problem.  

It can provide valuable information about buying behavior of the 

customer.  The association rule mining process involves 2 major 

sub-problems:  discovering all frequent itemsets and generating 

association rules using frequent itemsets. The performance of 

mining using association rule is decided by the first sub-problem 

because each association rule can be discovered from the congru-

ent frequent itemsets,  for this reason, researchers concentrate on 

efficiently discovering frequent itemsets.  In [3], the authors   

proposed  apriori algorithm to effectively recognize frequent item-

sets. Several proposed techniques to handle this problem such as 

level-wise techniques [1, 3, 13, 14] and pattern-growth technique  

[15, 16, 17, 18]. 

      

Many parallel algorithms are proposed to solve the association 

rules mining in parallel such [4, 5,6].  In Security Multiparty 

Computation (SMC), without a leak of knowledge some infor-

mation about each part can be exchanged among multiparty to get 

the final results [7, 8].  High polynomial-time complexity is the 

main disadvantage of SMC 7, 8]. Many algorithms have been 

proposed using SMC such as finding   decision trees [9], and min-

ing of vertically partitioned databases [10]. 

 

In distributed environment, each data site of the multiple sites  

does not have to disclose its individual data, but it is demand from 

each site to exchange the global candidate itemsets and the corre-
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sponding support counts [4,5]. In [11], the authors proposed an 

approach to reduce the complexity and enhance the security of  

distributed association rule mining on horizontally partitioned 

databases. In [12], the authors presented a technique to fasten the 

global candidate discovering and enhance the privacy preserving 

the frequent itemsets discovery.  

 

In [23,24], based on the Fast Distributed Mining (FDM), the au-

thors proposed two secure algorithm for mining  association rules 

in horizontally distributed databases.  Unsecured distributed ver-

sion of association rule is given in [25]. The proposed algorithm 

provides privacy with respect to the protocol in [24]. In addition, it 

is significantly efficient in terms of exchanged messages and time. 

Moreover it is simpler.   

The above works describe algorithms for the case when n records 

are distributed among a few local databases where each remote 

database includes a key to recognize some individuals, and some 

attributes are unique to the local site and are not shared with a 

local database at any other remote site. The proposed approach 

can be applied on the most general scenario where existing verti-

cally or horizontally partitioned   data would like to cooperate for 

mining without any constrains that there be only one record at 

each site for each individual and for any number of shared attrib-

utes. Also, the above algorithms are designed for environments 

where the relevant data are stored horizontally or vertically dis-

tributed data where different remote sites includes different attrib-

utes for a common set of entities. This is not the case of our dis-

tributed databases [29-33]. 

   

The proposed decompositions scenario can be seen as regular 

implemented distributed databases by a number of coordinated 

agents using message exchanging or visiting remote sites to gather 

local queries or/and computation results [19, 20, 21, 22].  Several 

issues related to knowledge distribution and processing capability 

over a loosely connected communication network have been ad-

dressed by Multi-agent systems [26, 27, 28].  In [26, 27, 28], the 

modeled agents have only a limited view of the global knowledge 

and resources.  In contrast, the proposed technique is directed at 

systems where cooperative agents honestly access local results 

from other agents to develop concepts from their collective 

knowledge while minimizing messages exchanged and disclose 

data among sites. Also our agent at each site does not need to have 

any uncertainty about the state of data or knowledge of other sites 

or computing agents [29-33]. They only need to be requested for 

its local results and they would truthfully give the needed infor-

mation look for by other agents. Therefore, the goal of the agents 

is to minimize the exchange information among themselves for 

performing the global computations [29-33].  In [19], proposed a 

technique to perform global tasks with minimum exchanged mes-

sages across the network. The global results is then locally per-

formed by the initiating agent after receiving minimal summaries 

from other agents. However, the algorithm in [19] does not handle 

the privacy of the information communicated between the differ-

ent agents.  In this paper, we use the distributed computational 

algorithm different from that of [19], also, we provide a better 

privacy-preserving solution.  

4. Decomposable Association Rule 

4.1 Problem Statement 

Given a distributed relational database, relational DB for simplici-

ty, between n sites, where each site holds a vertical partition of the 

database D1, D2, …,Dn.  These n partitions constitute the global 

database D. Each Di contains a set of attributes Ai and the union of 

all attributes of all partitions defines the set of attributes A of the 

global database D. 

 

                                                        (1) 

         

A subset of attributes sij that is shared, or common, between parti-

tions Di and Dj.  

 

                                                    (2) 

 

The union of all attributes between all partitions constitutes the 

shared set of attributes S of D. Thus, S contains all attributes that 

are shared between all sites.  We need to perform global computa-

tions, such as computing association rules of the implicit database 

D at one of the sites, say the initiator site Dinit, without moving the 

local tables of the different partitions to Dinit due to the security, 

privacy and size of the local databases.  Therefore, the global 

computation should be decomposed into local computations. Each 

site should perform the needed local computation keeping in mind 

the constraints of shared attributes and that the local results should 

contribute to the global solution at Dinit. 

To support the confidentiality of the data, Dinit should not know 

the actual distinct values of the shared attributes nor the number of 

tuples of each distinct value of the shared attributes at each site.  

 

Table 1: Symbol abbreviation 

Symbol Description 

D Global implicit database that is a union of all local databases 

Di Local database at site i 

Dinit Initiator site that starts the process of global computation 

A Set of attributes of the global database 

S Set of shared attributes between all partitions 

Shared  The Cartesian product of the received distinct values of S 

attributes 

CDi() A function that counts the number of transaction in Di 

Gi The agent, at a site i 

4.2 Proposed Solution 

To decompose the global computation of the association rules, i.e. 

finding the association rules in the global database D, we represent 

each site by an agent.  Each agent can access any part of its local 

database.    All agents are mobile that is they are capable of per-

forming computation locally at their respective sites and at the 

same time are capable of moving from one site to another to per-

form computations or collect statistics.  These agents cooperate to 

find the global association rules without moving local databases 

between sites, however agents may exchange messages and com-

municate summaries of their local results. 

To start the global computation, an agent at Dinit sends a request to 

the agents of the participating sites to start the local computations.  

The proposed algorithm is designed to minimize across site com-

munication and different sets of shared attributes between sites. 

Furthermore, the presented approach maintains the privacy of the 

communicated data. 

4.3 Decomposition of Global Computation 

To illustrate the decomposition process, let’s assume that the re-

sult R of a desired global computation, such as finding the count 

of a candidate frequent itemset Ij in the global database D,  is 

CD(Ij) when computed on D that is located at one site.  

 

                                                                 (3) 

 
However, in a distributed environment, D is partitioned among 

different sites and local partitions cannot be moved around.  The 

set S of shared attributes determines the fraction of the global 

database D that will be generated by aggregating the individual 

results of the local computations on D1, D2, …,Dn.  Thus, the oper-

ation CD can be decomposed for a given Shared to produce equiv-

alent results as follow: 

 
                               (4) 
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CDi(Ij,Shared) is the local computation will be executed by using 

Di and the shared attributes S among all sites.  The subscript j 

specifies the condition that is composed of the attribute-value 

pairs of the itemset Ij. The local computations will be aggregated 

by the initiated agent at Dinit using the operation  on the cross 

product (Π operation) of the local numbers of tuples in each site 

that satisfy the specified condition j.  

4.4 Algorithm Description  

Given a transaction database, where each transaction is a set of 

items, an association rule is an expression X ⇒ Y, where X and Y 

are sets of items. Intuitively, it would mean that transactions in the 

database, which contains the items in X also contain the items in 

Y. Traditionally, most of the algorithms to determine association 

rules are confined to a single large database. The main issues have 

been the size of the data, how many passes that are to be made 

over the database and the resultant time taken.  

In this research, we focused on finding association rules in a dis-

tributed database environment where moving local databases is 

not possible because of the security, privacy, and other issues. To 

discover the association rules in a given database [2][3], the algo-

rithm involve iterating over the following 2 steps: 

i) Find the itemsets at level Lk from the frequent itemsets (the 

sets of items that have minimum support) determined at level 

Lk-1. 

ii) Compute the support and the confidence of the found itemsets 

and rules at level Lk. 

 

Similarly, the decomposition of the proposed association rule 

algorithm can be divided into 2 major tasks: (1) Finding active 

itemsets and the candidate itemsets for the next level, and (2) 

Computing the support and confidence. Below, we show the de-

composed the algorithm:  

• An agent starts the association rule algorithm at a site. 

• This agent computes the frequent itemsets and the candidate 

itemsets for the next level. 

• Agents at different sites consult with each other to compute the 

support and confidence. 

 

     The support of an itemset is defined as the ratio of the number 

of transactions in which the itemset exists to the number of trans-

actions in D.  Thus, the common computational primitive for 

computing the support is to find the number of all transactions in 

D as represented by Equation 5.   

     The local computation CDi(Shared) is performed by an agent 

using Di and the shared attributes Shared among all sites. The 

number of transaction in which an itemset exist is an extension of 

this primitive to count those transactions in D that contain the 

itemset (see Equation 5).  Both of these counts are obtained by 

aggregating the results of local computations at the participating 

sites.  

                                            (5)  

      

Below we present the algorithm for the common computational 

primitive for counting the number of transactions in D. 

4.5 TransactionCount Algorithm 

When a site needs to compute the number of transactions in D, it 

invokes its agent Gi to initiate the count process as shown in the 

TransactionCount algorithm.  The TransactionCount algorithm 

counts the number of transactions in D by implicitly joining the 

local databases D1, D2,…,Dn at the participating sites without mov-

ing these Dis.  The algorithm is also preserves the privacy of the 

data as all communications of data sets between agents of partici-

pating sites are either hashed or/and multiplied by some locally 

determined constant before being communicated.  The objective 

of our algorithm is to perform the global computation in a distrib-

uted fashion, minimize communication between sites, hide actual 

values from other agents, and yet compute the actual results. 

Algorithm: TransactionCount 

Input: request to count number of transactions in D 

Output: number of transactions in D 

1. Agent Gi requests the attributes names from other agents 

representing the participating sites. 

2. Each requested agent Gj, where j: 1-n, j  i, replies with a set 

of attributes hA(Aj) of its local database Dj.  Attributes are 

hashed using the hash function hA() before being sent to Agent 

Gi.   

3. Agent Gi determines the set of shared attributes S by 

computing the intersection of all sets of attributes, A1, A2, …, 

An. 

4. Agent Gi requests the distinct values of the attributes in S from 

the respective sites through their agents. 

5.  Each requested agent Gj does the following: 

a. determines the distinct values of the shared attributes in 

its local database CDj(S),  

b. hashes them using the hash function hV(), and  

c. sends the results to agent Gi.  

6. Agent Gi computes the Cartesian product of the received 

distinct values and generates a relation called a shared relation. 

7. Agent Gi initialize R(Shared) = 0, which will accumulate the 

sum of products result of Equation 4.  

8. For each tuple t  in the shared relation,  

a. Agent Gi requests the number of transactions that contain 

the values of t from the participating agents. 

b. each requested agent Gj does the following:  

i. Performs the count locally, CDj(t, Shared). 

ii. Multiplies the count by a constant j that is 

decided locally to hide the actual count.  All 

other agents do not know this constant. 

iii. Sends the resulting value to agent Gi. 

c. Agent Gi multiplies the incoming values from the 

participating sites and accumulates the results in 

R(Shared). 

9. To remove the multiplied constants from the resulting value 

R(Shared), agent Gi sends the resulting value to its neighbor 

agent  Gi+1, which divides the value by its determined constant 

i+1 and in turn sends the resulting value to its neighbor agent  

Gi+2, and so in a pre-determined circular fashion till it comes 

back to the initiating agent Gi which divides the value by its 

determined constant i . The final value represents the actual 

number of transactions in D. 

 

In the TransactionCount algorithm, a site Di that needs to count 

the number of transaction in the global database D, initiate the 

counting process through its agent Gi, which will control the count 

process.  Agent Gi builds the shared relation by collecting the 

local attributes A1, A2, …, An from the agents of the participating 

sites.  To preserve the privacy of the data, the agents of the partic-

ipating sites send the hashed values of their respective local data-

base instead of the actual attribute values. The shared attributes 

are the intersection of the local attribute sets as in Equation 6. 

 

                                                                            (6) 

 

Then, the initiating agent Gi requests the distinct values of the 

shared attributes from the agents of the respective participating 

sites.  Each of these requested agents queries its local database to 

find the distinct values of the shared attributes that exist locally.  

To preserve privacy of the local data, the requested agent hashes 

them using the hash function hV(), and sends them to the initiating 

agent Gi.   

     From these collected distinct values, the initiating agent Gi 

builds the shared relation by performing the Cartesian product 

between the distinct values.    For each tuple of the shared relation, 
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agent Gi requests the number of transactions, which contain the 

values of the tuple, from the agents of the participating sites.  Each 

of these agents performs the operation CDi(t, Shared) locally to 

count the number of tuples in Di that satisfy the condition t.  The 

operation CDi(t, Shared)  is translated locally into a simple SQL 

query “SELECT count(*) FROM Di WHERE t”, where t repre-

sents the attribute-value condition.  Such decomposed operation is 

desirable due to its simplicity.  After computing the count, it is 

multiplied by a constant j that is determined locally by the local 

agent to hide the actual value and maintain the data privacy.   The 

result is then sent to the initiating agent Gi, which computes the 

product of all the collect results for the current tuple.  The product 

values of all individual tuple in the shared relation are accumulat-

ed in R(Shared).   

The accumulated value in R(Shared) represents the number of 

transactions in D multiplied by all the constants determined at the 

participating sites. Therefore, to remove these constants, the initi-

ating agent Gi sends the resulting value to its neighbor agent  Gi+1, 

which divides the value by its determined constant i+1 and in turn 

sends the resulting value to its neighbor agent  Gi+2, and so.  This 

value is sent from one agent to another in a pre-determined circu-

lar fasion that visits every site once till it comes back to the initiat-

ing agent Gi which divides the value by its determined constant i.  

The final value represents the actual number of transactions in D. 

4.6 Computing Support of an Itemset 

The support of an itemset is defined as the ratio of the number of 

transactions in which the itemset exists to the number of transac-

tions in D that are represented by Equations 4 and 5 respectively.  

Therefore, the support sup (Ij) of an itemset is: 

 

                                                           (6) 

 

The number of transaction in which an itemset exist is an exten-

sion of the primitive to count the number of transactions in D (see 

algorithm TransactionCount).  Therefore, instead of counting all 

transactions in D, the algorithm only count those transactions that 

contain the itemset (Ij.cond.).  The subscript j.cond. specifies the 

condition that is composed of the attribute-value pairs of the  

itemset Ij.cond.. 

4.7 Complexity Analysis 

When a computation is performed in a single computer, or a close-

ly-coupled processor model, the algorithmic complexity is meas-

ured in terms of the CPU time and the required memory.  On the 

other hand, in a distributed system where a global computation is 

performed cooperatively between the participating sites in the 

network, the total cost is measured in terms the communication 

cost since the computational is very small as compared to commu-

nication cost and thus the computational is neglected.  

One summary per message (un-optimized): The number of mes-

sages is the sum of the following required messages: 

•  (n-1) messages to get the attributes of the participating sites. 

• (n-1) messages to get the distinct values of the shared attributes. 

•  [(n-1)k] messages to get the number of transactions that 

contain the values of shared tuple.  Where k is the number of 

shared tuples in the relation Shared.  This size might be large 

depending on the number of different shared values at each site, 

however, it is possible to send one request with the whole 

shared relation to all agents of the participating sites.  This 

reduces the exchanged number of messages to n-1, which is 

equal to the number of participating agents. The first approach 

requires more messages, however each message contains little 

information and thus it is more privacy aware for transmission 

over a network. The second approach requires fewer messages, 

however, each exchanged message includes more information 

and thus less privacy aware for transmission. The total number 

of messages exchanged will be  (n-1) (2+k). 

Exchanging all the summaries in one message (optimized):  

Unlike above method, here the Shared tuple will be sent to all sites 

simultaneously and then the summaries are received in parallel. In 

this case the cost is decreased to  (n-1) (2+k)/n 

5. Discussions and Privacy Analysis 

In the above, we proposed an algorithm for finding the association 

rules in a distributed database environment. In such environment, 

one would be interested in preserving the security and the privacy 

of the data. Our goal is to protect against eavesdroppers on the 

communication between the sites. We also would like to preserve 

the privacy of each site as much as possible. 

5.1 Eavesdropping 

Malicious attacker can listen to the communication between two 

different sites to obtain copy of the database.  In this section, we 

show that anonymous listener cannot compromise the privacy of 

the transmitted information. 

To calculate the support and confidence for the association rules, 

sites exchange information like attributes names, attribute values, 

and the number of tuples on site Dj that have the same attribute 

value. To preserve the confidentiality of the information the pro-

posed algorithm uses secure hash function to avoid sending the 

attribute names on site Dj. In step 2 in the algorithm, when the 

Agent Gi requests the set of attributes, sites will not send the 

names of the attributes but rather sends a hash digest for each 

attribute. Each site Dj calculates the hash digest for the attribute aj 

as follow:  

 

Hash Digest = hA(K aj) 

 

where K is a secret key that is shared and used by all the sites. 

This way the attacker or the listener cannot figure out the transmit-

ted attribute names. At the same time, since all sites are using the 

same key K and hash function hA() the Agent Gi can still match 

similar hash digest to form the set of shared attributes (step 3 in 

the algorithm). 

Anonymous listener cannot also figure out whether a specific site 

has a tuple with specific attribute value or not. According to Algo-

rithm TransctionCount, each site sends the hash of the vector of 

distinct values of the common attributes. The use of secret key in 

the hash makes it impossible for the anonymous listener to know 

the actual values that are sent.  

In step 8 in the algorithm, participating sites send counts of the 

transactions that contain the received item sets from agent Gi. 

Sites do not send actual values, but rather they multiply the count 

by a secret constant. Thus, anonymous attacker who listens to the 

channel cannot figure out the count that site i has for a given value. 

Note that multiplying the count values by secret constant will not 

affect the calculation of the support at the agent Gi because this 

secret value will be factored out in step 9 of the algorithm. 

Thus in summary, anonymous listener will not be able to figure 

out the name of the variables, the distinct values of the shared 

attributes or the number of tuples in each participating site that 

correspond to each itemset in the shared relation.   

5.2 Site Privacy 

This section discuss how much privacy each site can preserve 

even though the different sites need to collaborate to answer quires. 

More specifically we will address the attribute name, attribute 

distinct values and the support for each value. 
Recall that all sites are using the same secret key. Site i canfigure 

out whether site j has a specific attribute or not if site i has the 

same attribute that site j sent. By simply comparing the hash di-

javascript:void(0)
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gest that site j sent with the list of hash digests that site i has. 

Since the secure hash is a one way function, given a hash digest, 

site i cannot extract the name of the attribute even if the secret key 

K is known. If site i does not have a copy of the database schema, 

it cannot figure out the name of the attributes that other sites send 

to agent Gi. Site i can still figure out the name of the attribute sent 

by site j if it has a copy of the global database schema. In this case 

site i will have to calculate the secure hash digest for each attribute 

in the database schema and compare it with the unknown digest.    

The same argument applies for the distinct values and count of 

itemsets. The participating sites send the hash of these values to 

agent Gi (step 5 and step 8 in the algorithm) rather than sending 

the values themselves. Even agent Gi will not be able to figure out 

the actual values or the counts of the itemsets. 

6. Simulation Results 

To evaluate the efficiency of the proposed algorithm in computing 

query results, we carried many simulation experiments. The tests 

were performed to find out the effect of various parameters on the 

final result. The three very important variables that affect the re-

sult are: the number of tuples in global database, the number of 

sites, and the average number of shared tuples between local data-

bases. We have performed a number of tests to demonstrate that 

the queries can be computed in a distributed fashion without mov-

ing all the data from one site to another site. We used a network of 

workstations to test a number of databases residing on different 

sites. The algorithm was implemented using Java. 

 

In this section, we refer to the proposed algorithm, Privacy Pre-

serving Decomposable Mining Association Rules on Distributed  

Data, as PDMAR. The first set of experiments was conducted to 

demonstrate the effect of the number of exchanged messages (as 

shown in Figure 2), and the effect of the elapsed time (as shown in 

Figure 3) as the number of local sites varies from 2-14.  Fig. 2 

demonstrates that the number of messages exchanged increases as 

the number of local sites increases.  Also, Figure 3 shows that the 

elapsed time increases linearly as the number of local sites in-

creases.  

Fig. 2: Exchanged messages to run PDMAR on vertically distributed 
databases with varying the number of local sites. 

Fig. 3: Elapsed time to run PDMAR on vertically distributed databases 

with varying the number of local sites. 
 

The second test was done to demonstrate effect on the elapsed 

time and the number of exchanged messages as the average num-

ber of shared tuples between local databases vary. The number of 

shared tuples varies as 5, 10, 15, 20, and 25. Figure 4 shows that 

the number of exchanged messages increases as the number of 

shared values increases.   

 
Fig. 4: Exchanged messages to run PDMAR on vertically distributed 

databases with varying the number of shared tuples. 

Fig. 5: Elapsed time to run PDMAR on vertically distributed databases 

with varying the number of shared tuples. 
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Fig. 6: Exchanged messages to run PDMAR on vertically distributed da-
tabases with varying the number of tuples in global databases. 

 

 
Fig. 7: Elapsed time to run PDMAR on vertically distributed databases 
with varying the number of tuples in global databases. 

 

Figure 5 shows that the elapsed time to execute PDMAR increases 

as the number of shared values increases.  

 

The last test was done to demonstrate the effect of the elapsed 

time and the number of exchanged messages as we vary the num-

ber of tuples in the database. Figures 6 and 7  show that the ex-

changed messages and the elapsed time to run PDMAR in an im-

plicit database D is fixed this because the exchanged messages and 

time of exchanged messages are independent of number of tuples. 

7. Conclusion 

This paper proposed the integration of arbitrarily distributed data 

such as performing privacy preserving association rule mining. 

We employed agent to compute some tasks such as finding the 

frequent itemsets in implicit database formed by joining distribut-

ed local databases. Additionally, agent were shown to compute the 

support and confidence of discovered itemsets from the implicit 

database as well as determining the candidate itemsets for the next 

level from the frequent itemsets of the current level. These tasks 

are performed in a distributed fashio by the agents on arbitrary 

overlapped local databases.  We have discussed the complexity of 

performing these computations in terms of messages that need to 

be exchanged among the sites for performing these computations.  

One very significant contribution of these results is that PDMAR 

can compute the association rules of geographically distributed 

databases.  At the same time, the communication cost among the 

participating sites is minimized while preserving the privacy of the 

local databases. 
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