

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.13) (2018) 123-127

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Study of Ajax Template Injection in Web Applications

Avijit Das Noyon
1
, Yeahia Md Abid

2
, Md. Maruf Hassan

*3
, Md. Hasan Sharif

4
, Fabiha Nawar Deepa

5
,

Rayhanul Islam Rumel
6
, Rafita Haque

7
, Samia Nasrin

8
, Moniruz Zaman

9

1,2,3,4,5,6,7,8,9Software Engineering Department, Daffodil International University, Dhaka, Bangladesh

7,8Cyber Security Centre, Daffodil International University, Dhaka, Bangladesh
*Corresponding author E-mail: maruf.swe@diu.edu.bd

Abstract
Cyber-attacks are becoming increasingly frequent, causing a lot of damage. Cyber-attacks have crippled our economic infrastructure both
directly and indirectly. Attackers steal our valuable data by compromising web application security loopholes. Developers can prevent
cyber-attacks using latest web technologies. Since web technologies are becoming more secure, cyber attackers are getting more incur-
sive to find out the zero day vulnerability of the targeted system to breach the security. Nowadays most damaging attacks are done using
zero-day vulnerability. An Ajax template injection is such an attack: An unauthenticated attacker dumps database table credentials by
intercepting server response. Owing to the damage caused by an Ajax template injection, it can be counted among the OWASP top ten
web application vulnerabilities in the near future. This paper discusses the idea of an Ajax template injection and its impact on Ajax-

based web applications. This paper also provides statistical data about the percentage of Ajax-based web application vulnerabilities in
Bangladesh.

Keywords: Cyber Security, Web Application, Vulnerability, Ajax Template Injection, Asynchronous, XHTML, XML HTTP Request, Ajax bridging.

1. Introduction

In keeping with digitalization and continuous technological inno-
vation, technologists replace all manual systems with web-based
technologies. Technologies are upgraded every day and the world
is getting increasingly dynamic. In response to these dynamic
changes, technologists shift from primitive technology such as the
read-only web Hypertext Markup Language (HTML), portals, and
web forms to Web 2.0 technology such as read-write web, Exten-
sible Markup Language (XML) [26], JavaScript, JavaScript Ob-
ject Notation (JSON) [27], Rich Site Summary (RSS) [28], and
web applications. Attackers are getting more active due to the
flourishing revolution took place among the web technologies.
Their inaction footprint are turning up into Web 3.0 technologies
such as portable-personal smart applications, RDF,OWL, etc. [1].
Consequently, web-based technologies are more vulnerable and
threatened. Attackers target web- based technologies such as Ap-
plication Program Interface (API) [11], Angular JS [12], Ajax [13],
MySQL [14], ASP.NET [15], PHP [16], XHTML [17], Flash [18],
JavaScript [19], MSSQL [20], etc. Sometimes these web technol-
ogies become vulnerable due to compromised web-based plat-
forms. Attackers exploiting these vulnerabilities gain unauthorized
access, thereby violating the information security triad of confi-
dentiality, integrity, and availability. In general, developers are
concerned about web application security, server-side security,
and database security; however, most developers do not think
about client-side security. A lack of experience on the part of the
developer makes web development scrappy and vulnerable. Hence,
developers with no knowledge of client-side security make a web
platform vulnerable if a client turns off JavaScript, bypasses cli-
ent-side input validation, and inserts malicious payload like ', ", \,
'<script>', and several HTML tags in Uniform Resource Locator
(URL) parameter or in a web form. These payloads are then in-
jected in a web server or a database server, whereupon an attacker
gains unauthorized access to the web platform and pretends to

have privileged administrative permissions [3], [9]. Nowadays,
Ajax is the most widely used web technology in the client side of
a web application [1]. Most of the big technology companies such
as Google [21], YouTube [22], Facebook [23], Twitter [24], and
Amazon [25], as well as many other companies, use Ajax to pro-
vide clients with usability as opposed to functionality. Many cli-
ents use the server service to generate more revenue. Clients are
adopting Ajax-based web applications and the full Ajax function-
ality. When a client hits the like button on Facebook, it will be
shown who liked it without the page reloading. In the meantime,
Ajax generates a request to the web server through an API. The
web server then responds with data, which is in XML format. In
these case, Ajax uses EXtensible Hyper Text Markup Language
(XHTML) to represent content in a web application or when
someone tags a photo to other guys. In the meantime, Ajax creates
a request, using an API, to the web server after receiving a re-
sponse. The API detects faces and starts image processing. After
finishing image processing, Ajax again makes a request, and
through the request web server, refers others to tag them. Devel-
opers also feel relaxed with Ajax due to its robustness and easy
integrability with API. Usually Ajax displays data in XML, JSON,
or plain text starting from this stage [1],[4]. Since developers are
not very much aware to implement the secured tunneling proto-
cols like Hyper Text Transfer Protocol Secure (HTTPS), Secure
Sockets Layer (SSL), Transport Layer Security (TLS), etc., at-
tackers, working as middleman, are trying to list and intercept all
request from server through insecure protocol like Hyper Text
Transfer Protocol (HTTP) to manipulate the requests [1],[7],[10].
Finally, web application security is compromised when credentials
are intercepted by an unauthenticated guest user [10]. Therefore,
developers should focus on data transmission and client-side web
technology.
This paper discusses the increasing functionality of Ajax for both
developers and end users, and highlights Ajax-based web applica-
tion security loopholes. Authors of the article discussed about the
traditional methods of securing web application such as ensuring

http://creativecommons.org/licenses/by/3.0/

124 International Journal of Engineering & Technology

web security by removing unnecessary HTML code, using server
side script to restrict possible threats, etc. The paper also recom-
mended the developers or security auditors not strictly consider
only the above two measures to protect web application from the
upcoming threats. Finally the paper proposed a model containing
different layers of security which will reduce forthcoming threats
[1].
In this paper, the authors discuss websites with improper input
validation. Improper input validation is responsible for various
types of web application-based attacks such as Cross Site Request
Forgery (CSRF) [29], Cross Site Scripting (XSS) [30], Structured
Query Language (SQLi) [31], [37] Local File Inclusion [32], [33],
Broken Authentications [34], Session Management [35], and Lo-
cal File Discloser [36]. The authors test SQLi-based attacks to
measure the severity of improper input validation of some targeted
websites. In SQLi attacks, the authors use some malicious data-
base queries, which are executed in a backend database server
without server-side user input validation, and retrieve confidential
data as an unauthenticated user [8].
The authors discuss the template-based web application (TWA),
which is a traditional model or structure used to generate dynamic
web pages. However, in TWA technology, web applications inter-
act with the web server when a web client makes a request to the
web server by clicking on a button or hyperlink, or by submitting
a form and searching in the search bar. Thus, the web page shows
the client’s expected response through page loading for each indi-
vidual request. Hence, the authors recommended shifting Java-
based TWA to a single-page application (SPA), where the server
responds to every individual client request without loading the
page. Ajax is integrated in SPA technology, which is why the
server responds with a partial page refresh [6].
The present paper discusses the severity of Cross-Site Scripting
(XSS) and Cross-Site Request Forgery (CSRF) for the Bangla-
deshi Bank sector. These two types of attacks are among the top
10 web application attacks in the Open Web Application Security
Project (OWASP), whereas XSS is placed third and CSRF is
placed eighth. These two attacks act as a disincentive against cli-
ents’ trustworthiness for their trusted site such as a bank website.
Moreover, the websites of the Bangladesh government are vulner-
able to these attacks. The two attacks are interrelated because an
attacker can launch an XSS attack by exploiting a CSRF attack on
a vulnerable website [4].
The authors consider SQLi vulnerability, which is a damaging
attack against web application database credentials. Different
types of trusted firewalls are available in the market to defend
against SQLi vulnerability, but the authors refer to several SQLi
techniques that can be used to evade firewalls and destructive web
application databases. After exploiting SQLi vulnerability, they
analyze the results, and warn web developers and web administra-
tors to take this vulnerability as a serious issue [2].
Fig. 1 makes it clear that the Ajax template injection will be in-
creasingly detrimental to web applications [5], [9].

Fig. 1: Raising rate of Ajax based vulnerability

2. Ajax Template Injection

2.1. Ajax Definition

The term ‘Ajax’ stands for ‘asynchronous JavaScript and XML’. It

is a new methodology for creating better, faster, and useful web
applications for clients who have a low bandwidth or who want to
save their bandwidth. Ajax uses the Extensible Hypertext Mark-up

Language (XHTML) to show content of web browsers. It also
uses CSS for attractive presentation and JavaScript to view con-
tents dynamically. Ajax can take requests from web application
clients, and process and show data without reloading the web page
[1], [5], [9].

2.2. Template

A template is a form that is reused for a defined pattern composed

by a group of components [2]. For web applications, templates are
dynamically generated web pages based on a structure that helps
users easily obtain information [4], [6].

2.3. Injection

In general, the term “injection” means pushing something into an
object. But in website term injection means putting an external
arbitrary query or modifying some requests by intercepting web
requests. Thus, an injection allows malicious payload with web
application requests into another server [4]. A successful injection
can read sensitive data and can get root privilege to that server [1],

[5], [6], [9]. Each web application behaves differently as they use
different types of functional components. Those components are
used to build different methodological and programming tools [9].
These components are server-side scripts (PHP, ASP.NET, Py-
thon), client-side scripts (JavaScript, jQuery), database (SQL,
XQuery), and web servers (Apache, Tomcat, IIS) [1][5]. A server-
side script is a part of a web application executed on a web server,
which is why a user cannot see it [1]. Ajax needs a server-side

script for applications. The script language is independent. A cli-
ent-side script is a part of a web application which is executed on
the user’s web browser [1]. Mostly XMLHTTPRequest is used for
transferring data from client side to server side for updating a part
of a website without refresh the page. The XMLHTTPrequest is
used heavily in Ajax programming [1], [6]. A database is a com-
ponent that helps a website to store data in an organized manner.

3. Ajax Working Process

Ajax is a client-side technique for communicating between the
web client and the web server. It is different from general web
requests [1][7]. When a webpage loads, the JavaScript fires up on
the client browser and takes requests from data asynchronously. It
allows users to fetch data and gives results without reloading the

current page. Once a request successfully send to a server, it will
respond back with the format as JSON or XML or Ajax format.
Ajax can show data in web format without reloading the page,
meaning it only reloads a little bit of content rather than reloading
the whole page [1][4][5]. Fig. 2 describes the working process of

Ajax.

Fig 2: Ajax data flow

Fig. 2 also shows a web client search using a search box on a

webpage. Thus, a user has sent a request from the web user inter-
face to the server. The server is not taking the request directly.

International Journal of Engineering & Technology 125

When user makes a request, JavaScript call goes to
XMLHTTPRequest object [8] by executing JavaScript of the cli-
ent side. Here the XMLHTTPRequest object creates an HTTP for
the server. In this phase, retrieving the data process from the client
is completed, because now the data works on the server side; it
interacts with the database using JSP, ASP.NET, PHP, and Servlet,
etc. (server-side languages). When the data is retrieved successful-
ly by processing queries, the server sends back the data to the user

interface. The data format can be XML, JSON, or plain text to the
XMLHTTPRequest call-back function. HTML and CSS display
the data in the browser without loading the page.

4. Ajax-Based Web Application Security

Breach

Some technical experts think that Ajax is not vulnerable to attacks
because it does not directly interact with the server. Ajax uses
XML HTTP REQUEST, which is an API (Application Process
Interface), interacts with the server side, and retrieves data as
JSON, XML, and plain text from database. Therefore, XML

HTTP REQUEST is a target point for attackers where they can
manipulate sniffing data [1], [3], [10]. This functionality makes
web applications vulnerable, but sometimes technical experts scan
their web applications with automated tools which give false posi-
tive results. In this case, technical experts are not concerned about
the vulnerabilities of their applications i.e. web application uses
HTTP protocol running on port: 80, XMLHTTPRequest running
on port: 80, use Secure Sockets Layer (SSL), JS and other compo-

nents, etc. In a nutshell, Ajax-based web applications are vulnera-
ble as traditional web applications [21] with the following reasons.

1. Improper input validation [2][3][8];
2. Use of bridging in the Ajax application [9];
3. Accepting users’ repudiation requests [5];
4. Using JSON, XML, and plain text for transmitting data [10];
5. Transmitting data as plain text on the client side;
6. Using inner HTML;
7. Using raw XML; and
8. User's controlled service calls.

The Ajax engine handles server requests when the user searches
for something in the web application. The Ajax engine uses JS to
retrieve data and the data is transmitted as JSON, XML, or plain
text format. However, as these formats of data are not encrypted,
malicious users can sniff this data and easily learn about database
tables and the number of columns [1][5][9]. Also, the Ajax web
application uses JS so it is susceptible to XSS attacks, and the
attacker can retrieve SESSION_ID, COOKIES, and other confi-
dential data. Attackers launch possible CSRF attacks by using this
method. They manipulate legitimate users’ data and inject SQL
queries to retrieve data from databases, DOS attacks, and browser-
based attacks. Owing to JS, all possible attacks in JS are feasible
in Ajax-based web applications [2] [4][9].
Nowadays, Secure Sockets Layer (SSL) or HTTPS channels are
used in most web applications for securing the transmission of
data over the internet [10]. These channels actually encrypt all
data transmitted over the network. However, some web applica-
tions remain vulnerable even after using SSL, because they do not
pass the data to SSL, which is why attackers sniff all this confi-
dential information [10]. As a result, many web applications re-
main vulnerable.
There are different technologies for Ajax users and web applica-
tions. Ajax bridging is one of them [9]. But sometimes Ajax appli-
cations are vulnerable for implementing Ajax bridging in a web
application. Different sites are run on the same or a different serv-
er. For security purposes, on server a site cannot interact with
another site. But sometimes web developers add third-party web
components such as commenting systems, chat boxes, and RSS
feeds to their web applications for serving their customers more
efficiently and reliably. Although all effort taken by the developer
to secure the web application implementing safe coding practice in
the web application, it will even be defenseless due to the exist-

ence of vulnerability in third party web components that may
cause dumping database. This bridging is a threat to Ajax-based
web applications [9].
XML is used in Ajax, which is a data format that is both machine-
and human-readable. When a user puts his query in the search
field, Ajax retrieves data in XML format and represents it to the
user. To use XML in Ajax applications, attackers can manipulate
web application content by intercepting web requests with XML
injection [5][8][9].
An Ajax application can be vulnerable to insecure JavaScript code.
Using a client-side JavaScript code, users can analyze and expose
client- as well as server-side vulnerabilities. Thus, if an Ajax-
based web application is vulnerable to XSS attacks, the attacker
exploits it and injects malicious payload/script into it, which is
written in JavaScript and is caused by the XSS worm. These
worms target social networking sites. In this case, these worms
expand and target new users as well [5][8][9].

5. Code Analysis

Fig. 3 represents a demo page (xyz.com) of a web application. In
the search box labeled as ‘MovieName’ carries input using ‘keyup
function’ along with Ajax and shows the output by updating the
table according to its identity. Thus, the URL will be
http://xyz.com/test/Ajax2.php?title=Man. In this case, the SQL
query will be $sql = "SELECT * FROM movies WHERE title
LIKE '%Man%'".

Fig 3: Demo web page

Here, the code has been injected, ‘Man’ is inserted in the ‘Mov-
ieName’ field, and the output is empty because an SQL error oc-
curs when ‘Man’ is put within single quotation marks [2] in Fig. 4.
The data cannot detect the error in Fig. 4 because the server rejects
the error and there is no option for showing the error. The current
page’s URI is /test/Ajax2.php and the query string is title=Man.
Once the request with the query string has been sent, the request
will be updated with the movie list table by the table ID. First, the

request is carried with the Ajax function from the client to the
server, and then the server runs a query and produces some results.

Fig 4: String with attempting injection

The results come from the server to the client with another page
request; the URI is /test/ajax.php with the same query string. The
/test/ajax.php contains data formatted by JSON or XML. This data
is updated in the table by the table ID, and is shown using JSON
or XML data. The error cannot be caught (even in an HTML
source file) since there is no tag to show the error in the table.
Also, the error and the data create a collage when they interact
with the browser. If the request intercepts before it interacts with

the browser, the actual error will be found in JSON or XML. Burp
suites have been used to intercept the request (Fig. 4).

126 International Journal of Engineering & Technology

Fig 5: Showing error of SQL injection in Burp Suite response

The actual response is provided by the server. Therefore, the SQL
injection method [2] can be applied to it. The number of columns
can be discovered gradually using the order or group method [2],

but the given method is a bit different. The output query returns
from the server in JSON or XML, where the number of columns
returns from a valid request.

Fig 6: Returning data in JSON format

Fig. 6 represents the value returns of a dictionary containing the
length of 7. By inserting Man%'+union+select+1, version(),0x61
6a61782074656d706c61746520696e6a656374696f6e,4,5,6,7+and'
%'=' malicious payload, the current version can be discovered and
a string text in the JSON-formatted data results in Fig. 7, where
the arbitrary query is executed and gets the database version name.

Fig 7: Arbitrary query is executed in server

This experiment can dump a full database by simply extending the
payload through another database dump payload.

Fig 8: Final payload is pushing with query string

Therefore, the malicious payload query is as follows:

Man%'+union+select+1,(Select+export_set(5,@:=0,(select+count(
*)from(information_schema.columns)where@:=export_set(5,expo
rt_set(5,@,table_name,0x3c6c693e,2),column_name,0xa3a,2)),@,
2)),0x616a61782074656d706c61746520696e6a656374696f6e,4,5,
6,7+and'%'='. After pushing the payload using Burp Suite requests,
the result
col- umns
name of users

table are
shown as like
Fig. 9.

Fig 9: Result of dumping database

Consequently, the payload dumps all tables with each column
name. This process depends on the type of payload that it uses to
explore the injection technique.

6. Result Analysis & Discussion

Two domain areas including 475 web applications has been cho-
sen in order to collect statistical data. These web applications used

Fig 10: Web programming language of vulnerable Ajax-based web appli-

cation.

PHP, ASP.NET, JSP, and Python are selected as server-side lan-

guage where client-side language as Ajax. However, it has been
observed from our investigation that the dominance of PHP (46%)
is eminent in Bangladeshi web applications with 46% whereas
uses of ASP.NET and JAVA are present in the applications with
28% and 20% respectively. Python with 6% is least used language
that are selected to build web applications. The black box testing
approach is used in testing these web applications.

Fig 11: Percentage of Ajax Template Injection Vulnerability

This analysis shows that almost 41% web applications are vulner-

able to Ajax template injection. But the severity of the Ajax tem-
plate injection depends on versions. Presence of four types of Ajax
versions have been found during our investigation. 38.653% vul-
nerability found in version 3.0.30512.17815 using Ajax template
injection whereas 21.925% vulnerability observed in version

3.0.30930. 28736. Ajax version of 4.0.20526 and 3.5.0.0 were
exploited using Ajax template injection with 21.997% and
17.425% respectively.

Fig 12: Specific Ajax version which is vulnerable to Ajax Template Injec-

tion

After observing the Fig 12, version 3.0.30512.17815 has been

listed as critical whose affected rate was 38.653%. Version
3.0.30930.28736 also listed as high and the affected rate was
53.8565%.

Table 01: Severity of Ajax Template Injection vulnerability based on

specific versions

International Journal of Engineering & Technology 127

Version Affected Rate Risk Level

3.0.30512.17815 53.8565% High

3.0.30930.28736 83.743% Critical

7. Conclusion and Future Work

In this study, an attempt has been made to unmask the backend

logic of an Ajax template injection, its process of exploitation by
which it can be used to access to a database tables and columns.
The results show that it currently poses a threat to Ajax-based web
applications, but it can keep a footprint of the most sophisticated
attack in the history of cyberspace attack. Therefore, the attempt
was intended to help web developers, security experts, and pene-
tration testers to consider it seriously even if it is a low-level Ajax-
based security loopholes. Moreover, it is the challenge for security

experts and penetration testers to identify Ajax template injection
in Ajax-based web application by investigating on data flows and
error analysis. However, middleware called the burp suite can be
used to detect this vulnerability.
In future work, we intend to focus on the prevention mechanisms
of the Ajax template injection, and to test upcoming versions of
Ajax to secure it from a template injection or other attacks. We
plan to start working on a model that can detect Ajax template
injection and filter an attacker’s malicious queries. This model

could be an excellent solution for web developers, security experts,
and penetration testers for detecting Ajax-based vulnerabilities
and for using it as a guard against Ajax vulnerabilities. The pro-
posed model can be a great help to reduce web application securi-
ty cost.

References

[1] X U. S. Qurashi and Z. Anwar, "Ajax based attacks: Exploiting

Web 2.0," 2012 International Conference on Emerging Technolo-

gies, Islamabad, 2012, pp. 1–6.

[2] T. Farah, D. Alam, M. N. B. Ali and M. A. Kabir, "Investigation of

Bangladesh region based web applications: A case study of 64

based, local, and global SQLi vulnerability," 2015 IEEE Interna-

tional WIE Conference on Electrical and Computer Engineering

(WIECON-ECE), Dhaka, 2015, pp. 177–180.

[3] T. Farah, M. Shojol, M. Hassan and D. Alam, "Assessment of vul-

nerabilities of web applications of Bangladesh: A case study of

XSS & CSRF," 2016 Sixth International Conference on Digital In-

formation and Communication Technology and its Applications

(DICTAP), Konya, 2016, pp. 74–78.

[4] J. Oh, W. H. Ahn, S. Jeong, J. Lim and T. Kim, "Automated Trans-

formation of Template-Based Web Applications into Single-Page

Applications," 2013 IEEE 37th Annual Computer Software and

Applications Conference, Kyoto, 2013, pp. 292–302.

[5] B. Hoffman and B. Sullivan, Ajax Security. 1 ed

[6] A. A. Noureddine and M. Damodaran, “Security in web 2.0 appli-

cation development,” in Proceedings of the 10th International Con-

ference on Information Integration and Web-based Applications &

Services, iiWAS ’08, (New York, NY, USA), pp. 681–685, ACM,

2008

[7] E. Kiciman and B. Livshits, “Ajaxscope: a platform for remotely

monitoring the client-side behavior of web 2.0 applications,” SI-

GOPS Oper. Syst. Rev., vol. 41, pp. 17–30, October 2007

[8] I. Alsmadi and I. Alazzam, "Websites' Input Validation and Input-

Misuse-Based Attacks," 2016 Cybersecurity and Cyberforensics

Conference (CCC), Amman, 2016, pp. 113–116.

[9] https://www.owasp.org/index.php/Testing_for_Ajax_Vulnerabilitie

s_(OWASP-AJ-001)

[10] D. V. Bhatt, S. Schulze and G. P. Hancke, "Secure Internet access

to gateway using secure socket layer," in IEEE Transactions on In-

strumentation and Measurement, vol. 55, no. 3, pp. 793–800, June

2006.

[11] A. Brito, L. Xavier, A. Hora and M. T. Valente, "APIDiff: Detect-

ing API breaking changes," 2018 IEEE 25th International Confer-

ence on Software Analysis, Evolution and Reengineering (SANER),

Campobasso, Italy, 2018, pp. 507–511.

[12] P. Darwin and P. Kozłowski, AngularJS Web Application Devel-

opment. Birmingham: Packt Publ., 2013.

[13] “Ajax Applications and Empowering the Web User Experience,”

Beginning Web Development, Silverlight, and ASP.NET AJAX, pp.

253–278.]

[14] Hardono, I. Surjandari, A. Rachman, Y. A. B. Panjaitan and A.

Rosyidah, "Development of theses categorization system search

engine using PHP and MySQL," 2017 International Conference on

Information Technology Systems and Innovation (ICITSI), Ban-

dung, 2017, pp. 194–199.

[15] P. Daly, "Review: The Ultimate VB.NET and ASP.NET Code

Book," in ITNOW, vol. 46, no. 4, pp. 31–31, July 2004.

[16] M. Hills and P. Klint, “PHP AiR: Analyzing PHP systems with

Rascal,” 2014 Software Evolution Week - IEEE Conference on

Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), 2014.

[17] HTML & XHTML: The Definitive Guide: The Definitive Guide

[18] J. Yoon, W. S. Jeong, W. Jeon and W. W. Ro, "Efficient and relia-

ble NAND flash channel for high-speed solid state drives," 2018 In-

ternational Conference on Electronics, Information, and Communi-

cation (ICEIC), Honolulu, HI, USA, 2018, pp. 1–4.

[19] B. Sayed, I. Traoré, and A. Abdelhalim, “If-transpiler: Inlining of

hybrid flow-sensitive security monitor for JavaScript,” Computers

& Security, vol. 75, pp. 92–117, 2018.

[20] A. Nichie and H.-S. Koo, “A Comparison of Performance Between

MSSQL Server and MongoDB for Telco Subscriber Data Manage-

ment,” The Transactions of The Korean Institute of Electrical Engi-

neers, vol. 65, no. 3, pp. 469–476, Jan. 2016.

[21] L. A. Barroso, J. Dean and U. Holzle, "Web search for a planet:

The Google cluster architecture," in IEEE Micro, vol. 23, no. 2, pp.

22–28, March-April 2003.

[22] J. Burgess and J. Green, YouTube: online video and participatory

culture. Cambridge: Polity, 2010.

[23] N.B. Ellison, C. Steinfield, & C. Lampe,” The benefits of Facebook

“friends:” Social capital and college students’ use of online social

network sites,” Journal of computer-mediated communication,

12(4), 1143–1168, 2007.

[24] H. Kwak, C. Lee, H. Park, & S. Moon, “What is Twitter, a social

network or a news media,?” In Proceedings of the 19th internation-

al conference on World wide web, pp. 591–600, 2010, April , ACM.

[25] G. Linden, B. Smith and J. York, "Amazon.com recommendations:

item-to-item collaborative filtering," in IEEE Internet Computing,

vol. 7, no. 1, pp. 76–80, Jan/Feb 2003.

[26] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, & F. Yergeau,

“Extensible markup language (XML),”. World Wide Web Journal,

2(4), 27–66, 1997.

[27] D. Crockford, “The application/json Media Type for JavaScript Ob-

ject Notation (JSON),” 2006.

[28] A.R. Board, “RSS 2.0 Specification,”2007.

[29] P. Yadav and C. D. Parekh, "A report on CSRF security challenges

& prevention techniques," 2017 International Conference on Inno-

vations in Information, Embedded and Communication Systems

(ICIIECS), Coimbatore, 2017, pp. 1–4.

[30] R. Wang, G. Xu, X. Zeng, X. Li, and Z. Feng, “TT-XSS: A novel

taint tracking based dynamic detection framework for DOM Cross-

Site Scripting,” Journal of Parallel and Distributed Computing,

2017.

[31] D. Alam, T. Bhuiyan, M. A. Kabir and T. Farah, "SQLi vulner-

abilty in education sector websites of Bangladesh," 2015 Second

International Conference on Information Security and Cyber Foren-

sics (InfoSec), Cape Town, 2015, pp. 152–157.

[32] A. Begum, M. M. Hassan, T. Bhuiyan and M. H. Sharif, "RFI and

SQLi based local file inclusion vulnerabilities in web applications

of Bangladesh," 2016 International Workshop on Computational

Intelligence (IWCI), Dhaka, 2016, pp. 21–25.

[33] M. M. Hassan, T. Bhuyian, M. K. Sohel, M. H. Sharif, and S.

Biswas, “SAISAN: An Automated Local File Inclusion Vulnerabil-

ity Detection Model,” International Journal of Engineering &

Technology, vol. 7, no. 2–3, p. 4, Aug. 2018.

[34] D. Huluka and O. Popov, "Root cause analysis of session manage-

ment and broken authentication vulnerabilities," World Congress

on Internet Security (WorldCIS-2012), Guelph, ON, 2012, pp. 82–

86.

[35] R. Lukanta, Y. Asnar and A. I. Kistijantoro, "A vulnerability scan-

ning tool for session management vulnerabilities," 2014 Interna-

tional Conference on Data and Software Engineering (ICODSE),

Bandung, 2014, pp. 1–6.

[36] M. I. Ahmed, M. M. Hassan, and T. Bhuyian, “Local File Disclo-

sure Vulnerability: A Case Study of Public-Sector Web Applica-

tions,” Journal of Physics: Conference Series, vol. 933, p. 012011,

Mar. 2018.

128 International Journal of Engineering & Technology

[37] N. F. Awang, A. Manaf and S.F. Abidin, “Test Input Generation for

Detecting SQL Injection Vulnerability in Web Application,” Inter-

national Journal of Soft Computing, 11(2), pp. 103–106, 2016.

