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Abstract 
 

For discrete modeling of geometric images, it is possible to use the numerical method of finite differences, the static-geometric method, 

the mathematical apparatus of numerical sequences. Each of them has certain advantages and disadvantages, which depend on the 

solution of specific practical problems. 

This article proposes to use the geometric apparatus of superpositions together with the above-mentioned methods. It allows 

significantly to improve the efficiency and expanding capacities of the process of geometric images discrete modeling. In particular, it 

makes it possible to investigate an opportunity of interpolating as parabolic functions as well as other elementary functional 

dependencies. 

The purpose of this article is to expand capacities of the classical finite difference method and static-geometric method by using the 

geometric apparatus of superpositions. It allows using hyperbolic functions as interpolators for the geometric images discrete modeling. 

The result of this study is the obtained interpolating and extrapolating templates, which allow modeling geometric images of 

architectural and building constructions in a form of chain lines discrete frames. 
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1. Introduction 

In the process of creating discrete modeling methods of 

architectural and building constructions geometric images of dif-

ferent problems must be solved. The most common problem is the 

problem of changing the discrete information about a geometric 

image into continuous and an inverse one. The first problem can 

be solved by interpolation methods. One of the most perspective 

directions of solving these problems is a wide usage of discrete 

geometric modeling methods [1, 2]. They allow significantly sim-

plify algorithms and programs and to ensure the economy of com-

puting resources. 

It is proved that the theoretical axis of an arch corresponds as in 

the mirror to the shape of a thread, fixed in the bases of the arch 

[3]. 

This property allows using the shape of a sagging thread for build-

ing structures, which work both on compression and on stretching. 

Taking into consideration design static features give an oppor-

tunity to search for a form that corresponds to a minimum of un-

wanted stresses arising in it, and their concentrations. All this leads 

to the saving of building materials, which are used to provide ad-

ditional rigidity and resistance to various loads. 

A curve model is much easier to research than a surface model. It 

should be expected that a set of properties of a discrete line model 

can be transferred to a surface model, which is formed according 

to the same laws, if this line is considered as a component of the 

surface frame. Other properties of a discrete surface model can be 

obtained as a result of generalization of line model corresponding 

properties. 

A sagging thread, evenly loaded in length, takes the form of a chain 

line. When an even load distributes along the horizontal axe, then 

that thread takes the shape of a parabola. Changing a loading 

schedule of a thread, it becomes possible to manage its shape. This 

corresponds to one of the static-geometric method principles of 

constructing curve lines and contours [4]. Analytically, curve 

equations are obtained by double integration of a differential 

equation of the inextensible flexible thread equilibrium. 

Another idealized interpretation of a thread as an absolutely 

extensible one allows to describe its shape in a discrete form 

analytically simply. The shape of a chain line resembles a parabola 

(Fig. 1, 2), but it is described by a hyperbolic cosine [5]: 

 

𝑦 = 𝑎 ∙ 𝑐ℎ
𝑥

𝑎
 .                                                                               (1) 

 

 
Its form is uniquely determined by parameter a, the dependence of 

which is shown in Figure 3. Chain lines are often found in nature 

and technology (Fig. 4). In architecture and construction, arches in 

the form of an inverted chain (Figs. 5, 6) have high stability due to 

the fact that internal compression forces are perfectly compensated 

and do not cause any deflection [6]. 

 

Fig. 1. A chain that sags under 
its own weight 

Fig. 2. A chain line with different 
parameter values 

http://creativecommons.org/licenses/by/3.0/
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When the chain is rotated around Ox axis, a surface called a 

catenoid is formed (Fig. 7). The catenoid is a minimal surface, each 

part of which will be smaller than any other surface, bordered by 

the same contour. [7]. 

 
Taking into account the foregoing, it is considered expedient for a 

discrete determination of building structures geometric images to 

use hyperbolic functions in form (1) as interpolants. 

The finite difference method allows analytical description of 

discrete geometric images. 

For the discrete representation of a line curve with points of a 

certain step h along Ox axis: 

xi+1 = xi + h. 

A right finite difference of the first order has the form: 

∆yi = yi+1 − yi. 

A right finite difference of the second order is a difference between 

two finite differences of the first order: 

∆2yi = ∆yi+1 − ∆yi = (yi+2 − yi+1) − (yi+1 − yi)
= yi+2 − 2yi+1 + yi 

 

Correspondingly a central difference of the second order has the 

form:  

∆2yi = yi−1 − 2yi + yi+1 

For clarity, finite differences are often represented as 

"computational templates" or "difference operators". Such 

computational templates for central differences are as follows:  

 

 

  ;   

  ;   

  .   

These templates allow to receive discrete analogs of polynomial 

curves of corresponding degrees. 

2. Main body 

The authors of this article have shown in papers [8-13] some 

approaches to the definition of discrete analogues of geometric 

images, which were based on the geometric apparatus of point sets 

superpositions. This allows forming discrete images without 

compiling and solving cumbersome systems of equations. The 

management  of discretely represented forms of images is carried 

out by varying magnitudes of superposition coefficients. It was 

considered a possibility of generating computational templates for 

a discrete definition of hyperbolic function (1), which is depicted 

in Fig. (5), similar to the templates, which can be formed for 

polynomial curves by applying the geometric superposition 

apparatus.  

 
As in applied geometry [14], superpositions are sums of multiplied 

functions and weight coefficients. More exactly, superpositions of 

the corresponding points of n sets in m-space in Cartesian 

coordinate system are determined by equations (2): 

 

𝑢1 = 𝑘1,1𝑢1,1 + 𝑘1,2𝑢1,2 + ⋯ + 𝑘1,𝑗𝑢1,𝑗 + ⋯ + 𝑘1,𝑛𝑢1,𝑛   

… … … … … … … … … … … … … … … … … … … … … … … … ..   
 𝑢𝑖 = 𝑘𝑖,1𝑢𝑖,1 + 𝑘𝑖,2𝑢𝑖,2 + ⋯ + 𝑘𝑖,𝑗𝑢𝑖,𝑗 + ⋯ + 𝑘𝑖,𝑛𝑢𝑖,𝑛,                 (2) 

… … … … … … … … … … … … … … … … … … … … … … … … ..    
𝑢𝑚 = 𝑘𝑚,1𝑢𝑚,1 + 𝑘𝑚,2𝑢𝑚,2 + ⋯ + 𝑘𝑚,𝑗𝑢𝑚,𝑗 + ⋯ + 𝑘𝑚,𝑛𝑢𝑚,𝑛, 

where: i – the number of an axis; 

j – the number of  an initial set of superposition; 

ki,j – superposition coefficient. 

Without loss of generality, let us take hyperbolic cosine equation 

(1)  a=1. Then the closed form of this transcendental function 

numerical sequence will have the form:  

 

𝑦𝑖 = 𝑐ℎ 𝑖 .                                                                                       (3) 

 

In [15], it was proved that the coordinate of any point of a one-

dimensional set of points is the superposition (4) of coordinates of 

three arbitrary points of this set: 
 
𝑥0 = 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3

𝑦0 = 𝑘1𝑦1 + 𝑘2𝑦2 + 𝑘3𝑦3
 ,                                                        (4) 

 

where:  𝑘3 = 1 − 𝑘1 − 𝑘2 .   

Formulae (5) are obtained for calculating the superposition coeffi-

cients k1, k2 values:   

𝑘1 =
(𝑥0−𝑥3)(𝑦2−𝑦3)−(𝑥2−𝑥3)(𝑦0−𝑦3)

(𝑥1−𝑥3)(𝑦2−𝑦3)−(𝑥2−𝑥3)(𝑦1−𝑦3)
  ;   

Fig. 3. A chain line with different parameter values 

Fig.4. Golden Gate Bridge Fig. 5. Arch «Gate to the 

West» 

Fig. 6. Train Station Budapest-Keleti 

Fig. 7. The discrete frame of a catenoid surface 

Fig. 8. The graph of numerical sequence 𝑦𝑖 = 𝑐ℎ 𝑖 
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𝑘2 =
(𝑥1−𝑥3)(𝑦0−𝑦3)−(𝑥0−𝑥3)(𝑦1−𝑦3)

(𝑥1−𝑥3)(𝑦2−𝑦3)−(𝑥2−𝑥3)(𝑦1−𝑦3)
 .                                            (5) 

 

Table 1 shows a set of numerical sequence values (3) under 

condition a=1 . 

Table 1:The values of numerical sequence  𝑦𝑖 = 𝑐ℎ 𝑖  
i -7 -6 -5 -4 -3 -2 -1 0 

yi 548,31704 201,71564 74,20995 27,31823 10,06766 3,76220 1,54308 1 

i 1 2 3 4 5 6 7  

yi 1,54308 3,76220 10,06766 27,31823 74,20995 201,71564 548,31704  

By analogy with initial data for calculating right finite differences, 

we take the following coordinate of points: 

1.  𝑥0 = 2; 𝑦0 = 3,76220  ;  𝑥1 = 3; 𝑦1 = 10,06766  ,  𝑥2 =
4; 𝑦2 = 27,31823 ;  𝑥3 = 5; 𝑦3 = 74,20995.  

The values of superposition coefficients for calculating the 

ordinates of a desired point according to the ordinates of three 

adjacent points are determined by formulas (5): 

  𝑘1 = 2,368667648918668 ;  𝑘2 = −1,737335297837336.   

2.  𝑥0 = 3; 𝑦0 = 10,06766  ;  𝑥1 = 4; 𝑦1 = 27,31823  ,  

 𝑥2 = 5; 𝑦2 = 74,20995 ;    𝑥3 = 6; 𝑦3 = 201,71564.   

The values of superposition coefficients are calculated by formulas 

(5):  

  𝑘1 = 2,367986144430418 ;  𝑘2 = −1,735972288860837.  

3.  𝑥0 = 4; 𝑦0 = 27,31823  ;  𝑥1 = 5; 𝑦1 = 74,20995 ; 

 𝑥2 = 6; 𝑦2 = 201,71564 ;    𝑥3 = 7; 𝑦3 = 548,31704 ;   

the values of superposition coefficients are calculated by  formulas 

(5):  

  𝑘1 = 2,367893882454095 ;  𝑘2 = −1,735787764908191.  

4.  𝑥0 = 5; 𝑦0 = 74,20995  ;  𝑥1 = 6; 𝑦1 = 201,71564  ,  𝑥2 =
7; 𝑦2 = 548,31704 ;  𝑥3 = 8; 𝑦3 = 1490,47916 ;   

the values of superposition coefficients are calculated by formulas 

(5):  

  𝑘1 = 2,367881395596904 ;  𝑘2 = −1,735762791193807 .   

As can be seen from the above four examples, the superposition 

coefficients of the three adjacent points will be the same up to the 

third decimal place. Therefore, as for polynomial curves, a 

computational template can be created for a discrete modeling of 

one-dimensional geometric images by interpolating the given 

nodal points by hyperbolic functions (similar to the templates of 

right finite differences). This template has a form:  

  ;   

                                                  (6) 

By analogy with initial data for calculating central finite 

differences, we take the following coordinate of points: 

1.  𝑥0 = 2; 𝑦0 = 3,76220  ;  𝑥1 = 1; 𝑦1 = 1,54308  ,  

  𝑥2 = 3; 𝑦2 = 10,06766 ;  𝑥3 = 4; 𝑦3 = 27,31823.   

The values of superposition coefficients for calculating the 

ordinates of a desired point according to the ordinates of three 

adjacent points are determined from formulas (5): 

  𝑘1 = 4,212848081925265 ∙ 10−1;  

  𝑘2 = 7,361455754224206 ∙ 10−1 .  

2.  𝑥0 = 3; 𝑦0 = 10,06766  ;  𝑥1 = 2; 𝑦1 = 3,76220  ,  

  𝑥2 = 4; 𝑦2 = 27,31823  ;  𝑥3 = 5; 𝑦3 = 74,20995 ;   

the values of superposition coefficients are calculated by formulas 

(5):  

  𝑘1 = 4,22178265683037 ∙ 10−1 ;  

  𝑘2 = 7,33465202950889 ∙ 10−1.  

3.  𝑥0 = 4; 𝑦0 = 27,31823  ;  𝑥1 = 3; 𝑦1 = 10,06766  ,  

  𝑥2 = 5; 𝑦2 = 74,20995 ;  𝑥3 = 6; 𝑦3 = 201,71564 ;   

the values of superposition coefficients are calculated by formulas 

(5):  

  𝑘1 = 4,222997682448578 ∙ 10−1;  

  𝑘2 = 7,331006952654266 ∙ 10−1 .  

4.  𝑥0 = 5; 𝑦0 = 74,20995  ;  𝑥1 = 4; 𝑦1 = 27,31823  ,  

  𝑥2 = 6; 𝑦2 = 201,71564 ;  𝑥3 = 7; 𝑦3 = 548,31704 ;   

the values of superposition coefficients are calculated by formulas 

(5):  

  𝑘1 = 4,223162226187247 ∙ 10−1 ;  

  𝑘2 = 7,33051332143826 ∙ 10−1. 

As can be seen from the above given examples, the superposition 

coefficients of the three adjacent points will be the same up to the 

third decimal place after the decimal point. Therefore, as for 

polynomial curves, a computational template can be created for 

discrete modeling of one-dimensional geometric images by 

interpolation of the given nodal points by hyperbolic functions (in 

analogy to the templates of central finite differences. This template 

has a form:  

  .                                                       (7) 

 

The system of equations, which determinates the ordinates of 

sequence (3) nodal points by analogy with equations (4), has a 

form: 

{
𝑦𝑖 − 𝑦𝑖+2 = 𝑘1(𝑦𝑖−1 − 𝑦𝑖+2) + 𝑘2(𝑦𝑖+1 − 𝑦𝑖+2)

𝑦𝑖+1 − 𝑦𝑖+3 = 𝑘1(𝑦𝑖 − 𝑦𝑖+3) + 𝑘2(𝑦𝑖+2 − 𝑦𝑖+3)
                     (8) 

 

From (8) expressions for calculating the values of superposition 

coefficients similar to formulas (5) are found: 

𝑘1 =
(𝑦𝑖−𝑦𝑖+2)(𝑦𝑖+2−𝑦𝑖+3)−(𝑦𝑖+1−𝑦𝑖+2)(𝑦𝑖+1−𝑦𝑖+3)

(𝑦𝑖−1−𝑦𝑖+2)(𝑦𝑖+2−𝑦𝑖+3)−(𝑦𝑖+1−𝑦𝑖+2)(𝑦𝑖−𝑦𝑖+3)
 ;  

𝑘2 =
(𝑦𝑖−1−𝑦𝑖+2)(𝑦𝑖+1−𝑦𝑖+3)−(𝑦𝑖−𝑦𝑖+2)(𝑦𝑖−𝑦𝑖+3)

(𝑦𝑖−1−𝑦𝑖+2)(𝑦𝑖+2−𝑦𝑖+3)−(𝑦𝑖+1−𝑦𝑖+2)(𝑦𝑖−𝑦𝑖+3)
 .                          (9) 

 

The values of superposition coefficients by formulas (9) were also 

calculated.  

By analogy with initial data for calculating central finite 

differences, we take the following ordinates of points from Table 

1:  

1.  𝑦𝑖−1 = 3,762195691  ,  𝑦𝑖 = 10,067662  ,  

  𝑦𝑖+1 = 27,30823284 ;  𝑦𝑖+2 = 74,20994852 .   

  𝑘1 = 2,44728471054793 ∙ 10−1  ;  

  𝑘2 = 1, 000000000000016 ;   

the values of superposition coefficients are calculated by formulas 

(9).  

2.  𝑦𝑖−1 = 27,30823284  ,  𝑦𝑖 = 74,20994852  ,  

  𝑦𝑖+1 = 201,7156361 ;  𝑦𝑖+2 = 548,3170352 ,   

the values of superposition coefficients are calculated by formulas 

(9):  

  𝑘1 = 2,4472847105373753 ∙ 10−1  ;  

  𝑘2 = 1, 000000000002819. 

As can be seen from the above examples, the superposition coeffi-

cients of the three adjacent points will be the same up to the twelfth 

decimal place (we can assume that they are equal). Therefore, as 

for polynomial curves, a computational template for a discrete 

modeling of one-dimensional geometric images can be created by 

interpolating given nodal points by hyperbolic functions. This tem-

plate has a form: 

 

  .                                     (10) 

Or:  

  ,   

Or:  

  .                                    (11) 

 

Example. We construct discrete models of curves with the 

following initial data:  

1. A(xA=0, yA=3);  B(xB=3, yB=1);  C(xC=6, yC=5);   

2. A(xA=0, yA=3);  B(xB=3, yB=0);  C(xC=6, yC=5);   

3. A(xA=0, yA=3);  B(xB=3, yB=-1);  C(xC=6, yC=5).   

 

Taking into consideration a unit step along Ox axis, we compose 

the system of equations for all unknown nodes (xi = 1, 2, 4, 5) of 

a numerical sequence model 𝑦𝑖 = 𝑐ℎ 𝑖:  
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{

𝑦1 = 0,244728471054𝑦𝐴 + 𝑦2 − 0,244728471054𝑦𝐵

𝑦2 = 0,244728471054𝑦1 + 𝑦𝐵 − 0,244728471054𝑦4

𝑦𝐵 = 0,244728471054𝑦2 + 𝑦4 − 0,244728471054𝑦5

𝑦4 = 0,244728471054𝑦𝐵 + 𝑦5 − 0,244728471054𝑦𝐶

  .   

Substituting initial data 1, 2, 3 to that system, we have got the next 

results:  

1.  y1 = 1.551822587916218 ;  y2 = 1.062365645808218 ;  y4 = 

1.296986501458353 ;  

 y5 = 2.275900385674355 ;   

2.  y1 = 0.85644308351465 ;  y2 = 0.12225767035265 ;  y4 = 

0.35687852600278 ;  

 y5 = 1.580520881272782 ;   

3.  y1 = 0.16106357911308 ;  y2 = -0.81785030510292 ;  y4 = -

0.58322944945279 ;  y5 = 0.88514137687121.   

The obtained discrete models of the curves according to the initial 

data are presented in Figure 6.  

 

                 
Fig. 9. Discrete models of the curves based on 

 numerical sequence 𝑦𝑖 = 𝑐ℎ𝑖 . 

 

Different problems of forecasting processes in various fields of 

science can be solved by extrapolation methods. For similar ex-

trapolation problems it is better to use asymmetric computational 

templates. Templates (6), (7), (11) are asymmetric dependencies, 

which connect the ordinates of four adjacent nodes. The given 

node points are located on both sides from a desired point (on the 

right and on the left). 

Let’s input in formulae (9) the ordinates of four adjacent points, 

which are all located on one side from a desire point (for example, 

to the right from it):  

 

𝑘1 =
(𝑦𝑖−𝑦𝑖+3)(𝑦𝑖+3−𝑦𝑖+4)−(𝑦𝑖+2−𝑦𝑖+3)(𝑦𝑖+1−𝑦𝑖+4)

(𝑦𝑖+1−𝑦𝑖+3)(𝑦𝑖+3−𝑦𝑖+4)−(𝑦𝑖+2−𝑦𝑖+3)(𝑦𝑖+2−𝑦𝑖+4)
  ;  

𝑘2 =
(𝑦𝑖+1−𝑦𝑖+3)(𝑦𝑖+1−𝑦𝑖+4)−(𝑦𝑖−𝑦𝑖+3)(𝑦𝑖+2−𝑦𝑖+4)

(𝑦𝑖+1−𝑦𝑖+3)(𝑦𝑖+3−𝑦𝑖+4)−(𝑦𝑖+2−𝑦𝑖+3)(𝑦𝑖+2−𝑦𝑖+4)
  .                    (12) 

 

The values of the adjacent points ordinates are taken from  

Table 1: 

1. 𝑦𝑖 = 1,543080634815  ; 𝑦𝑖+1 = 3,762195691084  ;  

  𝑦𝑖+2 = 10,067661995778 ;  

  𝑦𝑖+3 = 27,308232836016 ;   𝑦𝑖+4 = 74,209948524788 .   

The values of superposition coefficients for calculating the 

ordinates of a desired point according to the ordinates of three 

adjacent points will be determined by formulas (12):  

  𝑘1 = 4,086161269652398 ;  𝑘2 = −4,086161269660338 .   

2.  𝑦𝑖 = 3,762195691084  ;  𝑦𝑖+1 = 10,067661995778  ;  

  𝑦𝑖+2 = 27,308232836016 ;  

  𝑦𝑖+3 = 74,209948524788 ;  𝑦𝑖+4 = 201,715636122456 .   

The values of superposition coefficients are calculated by formulas 

(12):  

  𝑘1 = 4,086161269312475 ;  𝑘2 = −4,086161269195054.   

3.  𝑦𝑖 = 10,067661995778  ;  𝑦𝑖+1 = 27,308232836016  ;  

  𝑦𝑖+2 = 74,209948524788 ;   

  𝑦𝑖+3 = 201,715636122456  ;  𝑦𝑖+4 = 548,317035155212 .   

The values of superposition coefficients are calculated by formulas 

(12):  

  𝑘1 = 4,08611270328305  ;  𝑘2 = −4,086161270579006.  

As can be seen from the above given examples, the superposition 

coefficients of three adjacent points will be the same up to the 

eighth decimal place (they can be considered equal). Therefore a 

computational template for a discrete modeling of one-

dimensional geometric images can be created by extrapolating the 

given nodal points to hyperbolic functions. This template has the 

form (13): 

 

  .                                       (13) 

 

For interpolation problems it is better to have symmetric templates. 

The symmetric template can be formed in the next way. 

The ordinates of five adjacent curve nodes will be connected by 

dependencies: 

 

𝑘1𝑦𝑖−2 − 𝑦𝑖−1 + 𝑘2𝑦𝑖 + 𝑘3𝑦𝑖+1 = 0                                        (14) 

𝑘1𝑦𝑖−1 − 𝑦𝑖 + 𝑘2𝑦𝑖+1 + 𝑘3𝑦𝑖+2 = 0                                        (15) 

 

By analogy with the finite difference method, equations (14) 
and (15) can be reduced to one equation: 𝑘1𝑦𝑖−2 − 𝑦𝑖−1 −
𝑘1𝑦𝑖−1 + 𝑘2𝑦𝑖 + 𝑦𝑖 + 𝑘3𝑦𝑖+1 − 𝑘2𝑦𝑖+1 − 𝑘3𝑦𝑖+2 = 0 ⟹
𝑘1𝑦𝑖−2 − (1 + 𝑘1)𝑦𝑖−1 + (1 + 𝑘2)𝑦𝑖 + +(𝑘3 −
𝑘2)𝑦𝑖+1−𝑘3𝑦𝑖+2 = 0                                                                                 (16)  

Considering that  −(1 + 𝑘1) = (𝑘3 − 𝑘2) ,  (1 + 𝑘2) = 2 ,  equa-

tion (16) can be represented in the form of computational template 

(17):  

  .                                            (17) 

 

From (14) and (15) we have got the following:  

  0,244728471054 ∙ 𝑦𝑖−2 − 1,244728471054 ∙ 𝑦𝑖−1 + 2𝑦𝑖 − 

  −1,244728471054 ∙ 𝑦𝑖+1 + 0,244728471054 ∙ 𝑦𝑖+2 = 0 .(18) 

 

Or, in the form of computational template (19):   

  .   (19) 

Similarly, for example, equation (15), which connects the 

ordinates of four nodal points, can be formed from two equations 

(20) and (21), which link the ordinates of those points:  

𝑘1𝑦𝑖−1 − (𝑘2 + 𝑘3)𝑦𝑖 + 𝑘1𝑦𝑖+1 = 0 ,                                      (20) 

𝑘1𝑦𝑖 − (𝑘2 + 𝑘3)𝑦𝑖+1 + 𝑘1𝑦𝑖+2 = 0 .                                      (21) 

 

They can be represented in the form of symmetric computational 

template (22):  

  .                                                                    (22) 

 

Or (23):  

  .                      (23) 

 

Or, in the form of the recurrent formula:  

 

  0,244728471054 ∙ yi−1 − 0,755271528946 ∙ yi +    

  +0,244728471054 ∙ yi+1 = 0  .                                            (24) 

 

Recurrent formula (24) allows discret determination of the central 

nodal point ordinate (for two given adjacent points) of a modeling 

curve in the form of chain line sections. It also can interpolate by 

the function in form (3). 
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3. Conclusion  

Based on the geometric apparatus of superpositions, 

computational templates for a discrete formation of geometric 

images by numerical sequences of hyperbolic functional 

dependences have been obtained. This extends capacities of 

discrete geometric modeling. Traditional methods of interpolation 

do not allow using transcendental functions as interpolants, be-

cause when substituting initial data we obtain the system of 

transcendental equations, which can not be solved in the general 

case.  

The developed method allows conducting hyperbolic curves 

through the given points, which is impossible in most cases when 

using traditional interpolation methods. 

The results of this work can be a base for further research on 

discrete formation of geometric images by one-dimensional 

numerical sequences of not only parabolic, hyperbolic, but also 

other elementary functional dependences. They also can be used 

for the formation of two-dimensional geometric images.  

References  

[1] Guoliang Xu, Oing Pan, Chandrajit L. Bajaj. Discrete surface mod-

elling using partial differential equations. Computer Aided Geomet-
ric Design. Volume 23, Issue 2, February 2006, pp. 125-145, 

https://doi.org/10.1016/j.cagd.2005.05.004  

[2] Lienhardt P. (1997) Aspects in topology-based geometric modeling 
Possible tools for discrete geometry?. In: Ahronovitz E., Fiorio C. 

(eds) Discrete Geometry for Computer Imagery. DGCI 1997. Lec-

ture Notes in Computer Science, vol 1347. Springer, Berlin, Heidel-
berg pp 33-48. https://doi.org/10.1007/BFb0024828 

[3] Vorontsov O.V. Dyskretnykh modelyuvannya heometrychnist 

obraziv ob'yektiv proektuvannya superpozitsiyami odnovimirnikh 
chyslovykh poslidovnostey z urakhuvannyam funktsional noho 

navantazhennya / O.V. Vorontsov // Zbirnyk naukovykh prats 

(Haluzevyy mashynobuduvannya, budivnytstvo) / Poltav. nats. 
tekhn. un-t im. Yuriya Kondratyuka. - Poltava: PoltNTU, 2015. - 

Vyp. 3 (45). - S. 28 - 39. ISSN 2409-9074 

[4] Kovalev S.N. Formirovaniye diskretnykh modeley poverkhnostey 
prostranstvennykh arkhitekturnykh konstruktsiy: dis. ... doktora 

tekhn. nauk: 05.01.01 / S.N. Kovalev - M .: MAI, 1986. - 348 s 

[5] Savelov A.A. Ploskiye krivyye. Sistematika, svoystva, prime-
neniya. (Spravochnoye rukovodstvo). Pod redaktsiyey A.P. Nor-

dena. Gosudarstvennoye izdatel'stvo fiziko-matematicheskoy liter-

atury. Moskva 1960 g. - 293 s.  
[6] Vorontsov O. Recurrence formulae of a catenary in creation of ge-

ometric images. / O. Vorontsov., L. Tulupova // Oxford Journal of 

Scientific research No. 1. (9), January-June, 2015, Volume IV. P. 

134 – 140. ISSN 0305-4882. 

[7] Vygodskiy M.YA. Differentsial'naya geometriya. Gosudarstven-
noye izdatel'stvo tekhnicheskoy literatury. Moskva 1949 Lenin-

grad. - 511 s. 

[8] Vorontsov O.V. Vyznachennya dyskretnoho analohu polinoma n-
ho stepenya superpozitsiyami tochok chislovoyi poslidovnosti n-ho 

poryadku / O.V. Vorontsov // Prykladna heometriya ta inzhenerna 

hrafika: zb. nauk. pratsʹ - K .: KNUBA, 2012. - Vyp. 90. - S. 63 - 
67. ISSN 0131-579X 

[9] Vorontsov O.V. Dyskretna interpolyatsiya superpozitsiyami tochok 

chyslovykh poslidovnostey drobovi-liniynikh funktsiy / O.V. 
Vorontsov, N.O. Makhinʹko // Prykladna heometriya ta inzhenerna 

hrafika: pratsi TDATU. - Melitopolʹ: TDATU, 2013. Vyp. 4. - T. 

57. - S. 62 - 67. 
[10] Vorontsov O.V. Vlastyvosti superpozitsiy tochkovykh mnozhyny / 

O.V. Vorontsov // Prykladna heometriya ta inzhenerna hrafika: zb. 

nauk. pratsʹ - K .: KNUBA, 2010. - Vyp. 86. - S. 345 - 349. ISSN 

0131-579X 

[11] Vorontsov O.V. Opredeleniye diskretnykh analogov klassov ele-

mentarnykh funktsiy superpozitsiyami odnomernykh tochechnykh 
mnozhestv [Elektronnyy resurs] / O.V. Vorontsov, L.O. Tulupova 

// Universsum. Ser.: Tekhnicheskiye nauki: elektron. nauchn. zhurn. 

− 2014. − № 3(4). – ISSN 2311-5122. 
[12] Vorontsov O.V. Dyskretna interpolyatsiya superpozytsiyamy od-

novymirnykh tochkovykh mnozhyn transtsendentnykh 

funktsionalʹnykh zalezhnostey na prykladi hiperbolichnykh 
funktsiy. / O.V. Vorontsov // Visnyk Khersonsʹkoho natsionalʹnoho 

tekhnichnoho universytethu / Vyp. 3(54). – Kherson: KHNTU, 

2015. – S. 551-554 ISSN 2078-4481 

[13] Vorontsov O.V. Dyskretna interpolyatsiya heometrychnykh 

obraziv superpozytsiyamy dvovymirnykh tochkovykh mnozhyn 

funktsionalʹnykh zalezhnostey / O.V. Vorontsov, L.O. Tulupova, 
I.V. Vorontsova // Visnyk Khersonsʹkoho natsionalʹnoho tekhnich-

noho universytethu / Vyp. 3(62). T.2. – Kherson: KHNTU, 2017. – 

S. 66-70 ISSN 2078-4481 
[14] Kovalev S.N. O superpozytsyi / S.N. Kovalev // Prykladna heomet-

riya ta inzhenerna hrafika: zb. nauk. pratsʹ. – K.: KNUBA, 2010. − 
Vyp. 84. – S. 38 – 42. ISSN 0131-579X 

[15] Vorontsov O.V. Diskretnoye modelirovaniye krivykh poverkh-

nostey superpozitsiyami dvumernykh tochechnykh mnozhestv / 
O.V. Vorontsov, L.O. Tulupova // Sbornik statey po materialam XL 

mezhdunarodnoy nauchno-prakticheskoy konferentsii «Tekhnich-

eskiye nauki – ot teorii k praktike». – Novosibirsk, 2014. – №11 
(36). – S. 7 – 16. –ISSN 2308-5991. 

[16] Kochkarev D. Calculation methodology of reinforced concrete ele-

ments based on estimated resistance of reinforced concrete / D. 
Kochkarev, T. Galinska // Matec Web of Conferences 116, 02020 

(2017), Materials science, engineering and chemistry, Transbud–

2017, Kharkiv, Ukraine, April 19–21, 2017. 
https://doi.org/10.1051/matecconf/201711602020 

 

https://www.sciencedirect.com/science/journal/01678396
https://www.sciencedirect.com/science/journal/01678396
https://www.sciencedirect.com/science/journal/01678396/23/2
https://doi.org/10.1016/j.cagd.2005.05.004
https://doi.org/10.1007/BFb0024828
https://doi.org/10.1051/matecconf/201711602020

