

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.32) (2018) 167-169

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An Efficient Data Replication Scheme for Hadoop Distributed

File System

T. Lakshmi Siva Rama Krishna
1
, J. Priyanka

2
, N. Nikhil Teja

3
, Sd. Mahiya Sultana

4
, B. Jabber

5

1,2Dept. Of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India-522502.

*Corresponding author E-mail: sivamca.mtech@kluniversity.in

Abstract

A Distributed file system (DFS) is a storage component of a distributed system (DS). DS consists of multiple autonomous nodes con-

nected via a communication network to solve large problems and to achieve more computing power. One of the design requirement of

any DS is to provide replicas. In this paper, we propose a new replication algorithm which is more reliable than the existing replication

algorithm used in DFS. The advantages of our proposed replication algorithm by incrementing nodes sequentially (RAINS) is that it

distributes the storage load equally among all the nodes sequentially and it guarantees a replica copy in case two racks in a DS are down.

This feature is not available in the existing DFS. We have compared existing replication algorithm used by Hadoop distributed file sys-

tem (HDFS) with our proposed RAINS algorithm. The experimental results indicate that our proposed RAINS algorithm performs better

when more number of racks failed in the DS.

Keywords: Hadoop Data locality, Data Replication, Data Placement

1. Introduction

Replication is one of the important design requirements of any

distributed system (DS). Many DFSs are exist in the literature.

Hadoop distributed file system (HDFS) is one of the popular open

source implementations of google file system (GFS) [1]. HDFS is

developed by apache foundation that provides advantages of the

power of high-speed computing clusters and storage and high

performance in big data storage [1-5]. HDFS provides high avail-

ability, fault-tolerance, and replication. Hadoop maintains default

replication factor as three. Many IT industries are using HDFS as

it supports to store, process and analyze big data applications.

Data locality is an important feature to improve the performance

of HDFS [1,6]. In this paper, we propose a new replication algo-

rithm which guarantees the data even two racks fail. In the litera-

ture [1-5] There are three types of data proximities are considered

(i) data local (ii) rack local and (iii) different rack.

Data local means when the data is located on the same node where

the mapper program is executing or being executed. Here, the

proximity of the data is close to the computation logic. Since data

local is always not possible while executing the mapper programs

in a Hadoop cluster. Hence we choose the different node on the

same rack to compute is known as rack local. In different rack,

some situations data local and rack local is not possible to choose

for executing the mapper logic, in such cases we go for other al-

ternative procedure such as choosing the node in the different rack

to execute the mapper program.

In our work, we have proposed a new replication algorithm by

considering different rack possibility which is a frequent case in a

busy Hadoop cluster. Rest of the paper is organized as follows,

section 2, we discus related work. Existing replication strategy is

described in section 3. In section 4, we discuss our proposed repli-

cation algorithm. Section 5 we discuss our experimental results.

Section 6, concludes the paper.

2. Related Work

There are several previous research works on data replication have

been proposed in HDFS. They are mainly focused on fault toler-

ance to overcome unexpected failure. Recently, some of the re-

searchers in [10-12] are focused on improving data locality for

efficient execution on data replication in Hadoop and some of the

researchers in [13-14] are proposed techniques to improve data

locality. In paper [17] authors compared the performance of read

and write operation of HDFS. Table 1 shows features of existing

data replication schemes.

Table 1. Data Replication Scheme and Scheduling

Replication Scheme Technique Weakness

1

 dynamic data repli-

cation access patterns

remove replicat-

ed data

2

data placement Balancing for requirement

depend on appli-
cation

3

data prefetching prediction by log

depend on log

data

In contrast to the above existing schemes, we have proposed a new

replication algorithm replication algorithm by incrementing nodes

sequentially (RAINS). We have considered two different scenarios

for the RAINS algorithm. In the first scenario, we have not con-

sidered the nearest data node to the client for replication. In the

first scenario the data nodes are placed in racks which are general-

ly far away from clients which involve communication overhead

168 International Journal of Engineering & Technology

for writing data in the data nodes thereby performance degrades.

In order to overcome the above issue, we have proposed another

scenario called choose nearest racks to the clients.

3. Existing Replication Strategy

In this section, we discuss the existing replication strategy used by

Hadoop DFS. The components in Hadoop DFS are name node

which is maintains metadata and several data nodes which actually

stores the data and multiple client nodes.

1. Hdfs client Write requests to the Name Node

2. Name Node has to perform various checks like (file existence,

and permissions) .

3. Name node sends response to hdfs client list of data nodes

available.

4. Hdfs client writes the data to the available data nodes

5. Once data written into the data nodes send the acknowledge-

ment to the name node

The default replication factor in the existing algorithm is three.

And they assumed multiple racks are available to store and main-

tain replicas. Here we assume each rack consists of 20 to 40 data

nodes. We also assume that writing client is also part of the Ha-

doop cluster. Hence, first replica placement is the node which is

writing the data. For placing the second replica we choose a data

node which is in the different rack than first replica and the third

replica is in the same rack which is used to place the second repli-

ca but in a different node.

We have explained the existing replica algorithm with the help of

below

figure 1.

4. Proposed Efficient Data Replication Scheme

In this section, we have proposed a new replication algorithm by

incrementing nodes sequentially (RAINS). We have considered

two different scenarios for the RAINS algorithm. In the first sce-

nario, we have not considered the nearest data node to the client

for replication. Data nodes are placed in racks which are generally

far away from clients which involve communication overhead for

writing data in the data nodes thereby performance degrades. In

order to overcome the above issue, we have proposed another

scenario called choose nearest racks to the clients.

In the second scenario, we took the nearest racks to the client that

includes we have taken only the racks which have minimum cost

from the client. The disadvantage of the first scenario is cost of

communication is more from client to the rack and performance

degrades. The advantage for the second technique is reduces the

cost from client to rack and also the processing time.

If the data nodes are not available in one racks place the data in

the another rack and the load balance will be minimum.

So in this way second technique is a better approach for the data

writing on the data nodes and also for replication.

Figure 2.

Proposed RAINS Algorithm:

4.1 Notations and assumptions used in the proposed

algorithm Assumptions

1.We assume that always there is sufficient storage space is avail-

able to store data in the data nodes.

2. We also assume that the size of each block is 64MB

3. Number of blocks to be replicated is represented with nbr

4. File size to be replicated is represented with fs

nbr = fs/64MB.

4.2 Replica Placement Algorithm

Input: file ‘f’

Output: File is successfully stored in the Data

Nodes

with 3 replicas

Step 1. Selection of a rack to store the replica

Step 2. Selection of a node to store the replica

place the first replica on the first rack

/*rack1selected = first replica placed*/

Step 3. Place the second replica on the second rack.

/*rack2selected = second replica

placed*/

Step 4.place the third replica on third rack

/*rack3selected = third replica placed*/

Step 5. if replication factor is more than three(3)circulate the

replicas from first rack onwards as this process goes on if it con-

tains more than three replicas.

Step 6. else replication process stops

Note that, the implementation of this algorithm is useful since

gigabit network are available nowadays hence we can overcome

communication overhead problem if exists.

5. Performance Results

We have implemented this algorithm using JAVA language. Ini-

tially we have implemented this algorithm in JAVA in future we

plan to implement this algorithm in actual Hadoop cluster with

multiple data nodes and single name node. First we have taken

data nodes which are also called worker nodes we divide the work

among all the three worker nodes. First data is replicated in first

worker node and second data replicated in second worker node

and third data in third worker node. Experimental results indicate

that our proposed RAINS algorithm performs better when more

number of racks failed in the DS

International Journal of Engineering & Technology 169

The data replication is shown below figures

6. Conclusion

In this paper, we proposed a new replication algorithm (RAINS).

The advantages of our proposed replication algorithm by incre-

menting nodes sequentially (RAINS) is that it distributes the stor-

age load equally among all the nodes sequentially and it guaran-

tees a replica copy in case two racks in a DS are down. This fea-

ture is not available in the existing DFS. We have compared exist-

ing replication algorithm used by Hadoop distributed file system

(HDFS) with our proposed RAINS algorithm. The experimental

results indicate that our proposed RAINS algorithm performs bet-

ter when more number of racks failed in the DS.

References

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data pro-

cessing on large clusters”, Communications of the ACM, vol. 51,

no. 1, (2008), pp.107-113.
[2] White, Tom. Hadoop: The definitive guide. O'Reilly Media, Inc.,

(2012).

[3] D. Borthakur, HDFS architecture guide, HADOOP APACHE PRO-
JECT http://hadoop. apache. org/common/docs/current/hdfs design.

pdf, (2008).
[4] Thomasian and J. Menon, RAID5 performance with distrib-uted

sparing, Parallel and Distributed Systems, IEEE Transactions on,

vol. 8, no. 6, (1997), pp. 640-657.
[5] J. Dean and S. Ghemawat, MapReduce: simplified data pro-cessing

on large clusters, Communications of the ACM, vol. 51, no. 1,

(2008), pp. 107-113.
[6] K. Shvachko, The hadoop distributed file system, Mass Stor-age

Systems and Technologies (MSST), 2010 IEEE 26th Symposi-um

on. IEEE, (2010).
[7] S. Mahadev, A survey of distributed file systems, Annual Review

of Computer Science, vol. 4, no. 1, (1990), pp. 73-104.

[8] Q. Wei, CDRM: A cost-effective dynamic replication manage-ment
scheme for cloud storage cluster, ClustComputing (CLUS-TER),

2010 IEEE International Conference on. IEEE, (2010).

[9] J. Xiong, Improving data availability for a cluster file system
through replication, Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on. IEEE, (2008).

[10] Abad, L. Cristina, Y. Lu, and R. H. Campbell, DARE: Adap-tive
data replication for efficient cluster scheduling, Cluster Com-puting

(CLUSTER), 2011 IEEE International Conference on. Ieee, (2011).

[11] Khanli, L. Mohammad, A. Isazadeh, and T. N. Shishavan, PHFS: A
dynamic replication method, to decrease access latency in the mul-

ti-tier data grid, Future Generation Computer Systems, vol. 27, no.

3, (2011), pp. 233-244.
[12] S. Seo, HPMR: Prefetching and pre-shuffling in shared MapReduce

computation environment, Cluster Computing and Workshops,

2009. CLUSTER'09. IEEE International Conference on. IEEE,
(2009).

[13] X. Zhang, An effective data locality aware task scheduling method

for MapReduce framework in heterogeneous environ-ments. Cloud

and Service Computing (CSC), 2011 International Conference on.

IEEE, (2011).

[14] M. Zaharia, Delay scheduling: a simple technique for achiev-ing
locality and fairness in cluster scheduling, Proceedings of the 5th

European conference on Computer systems. ACM, (2010).

[15] T. White, Hadoop: The definitive guide, O'Reilly Media, In(2012).
[16] Krishna, Talluri Lakshmi Siva Rama, Thirumalaisamy Ragun-athan,

and Sudheer Kumar Battula. Performance evaluation of read and

write operations in hadoop distributed file system. Parallel Archi-
tectures, Algorithms and Programming (PAAP), 2014 Sixth Inter-

national Symposiumon.IEEE,2014.

