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Abstract 
 

A method of estimating natural modes and frequencies of vibrations for elastic shells of revolution conveying a liquid is proposed. The 

vibration modes of the liquid-filled elastic shells are presented as linear combinations of their own vibration modes without liquid. The 

explicit expression for fluid pressure is defined using Bernoulli’s integral and potential theory suppositions. Non-penetration, kinematic, 

and dynamic boundary conditions are applied at the shell walls and on a free liquid surface, respectively. The solution of the hydro-

elasticity problem is found out using an effective technique based on coupled finite and boundary element methods. Computational 

vibration analysis of elastic truncated conical shells with different fixation conditions is accomplished. Sloshing and elastic walls 

frequencies and modes of liquid-filled truncated conical tanks are estimated. Both rigid and elastic bottoms of shells are considered. 

Some examples of numerical estimations are provided to testify the efficiency of the developed method  
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1. Introduction 

Thin-wall structural elements are widely used nowadays in 

chemistry, aerospace and transport industries, wind power 

engineering, gas and oil producing and other engineering areas. 

Such facilities often operate under extremely process loading, 

furthermore, they are usually filled with dangerous toxic and 

explosive liquids. Among these reservoirs there are spacecraft fuel 

tanks, storage tanks and containers for oil and propellant. If such 

storage sites are subjected to surface shots caused by a terrorist 

act, an airplane crash or a seismic shockwave, this would be an 

ecological catastrophe with dangerous repercussions. Not only 

assessing the safety conditions of operating storage tanks, but also 

advanced design of new highly effective machines and structures 

requires the qualified evaluation of their strength characteristics. 

These data allow us to estimate the critical strength of structures at 

shockwave or seismic action, to isolate dangerous resonance 

frequencies, and to identify at the design stage the most critical 

zones from the viewpoint of stress concentration. Therefore, it is 

topical to develop refined mathematical and computational models 

and structural design methods that account for intricate shape, the 

impact of fluid or gas on the stress-strained state, modes and 

frequencies of their natural oscillations. However, studying the 

oscillation processes of structures interacting with a liquid is a 

challenging design problem. The experimental research of 

sloshing process in elastic containers is very difficult and 

expensive. So mathematical modeling for describing these 

physical processes using advanced computational technologies is 

the most powerful tool for solution of these problems. Numerical 

methods are successfully applied when containers are of 

complicated forms, so the processes of sloshing cannot be 

described analytically. Both experimental and analytical research 

were successfully performed in hydro-elasticity of shells and 

plates in last decade [1-6]. Most of these works are devoted to the 

hydro-elasticity problems of flat and curved plates, circular 

cylinder shells [1-3]. The dynamics of elastic conical containers 

without liquid has been considered by analytical, numerical, and 

experimental methods in [4–6]. The fluid-filled conical shell has 

been successfully studied by Lakis in [7]. Noted, that the sloshing 

effects were ignored in [7]. In [8] the coupled problem was 

considered for vibrations of the liquid-filled elastic shell 

simultaneously with liquid vibrations in the rigid shell with the 

same geometrical characteristics and filling levels. It was 

demonstrated here that one cannot consider sloshing and walls 

vibrations separately, because this problem is essentially coupled. 

Spectrums of sloshing and elastic wall vibrations are not 

separated, moreover, they are alternated, at least in presence of 

baffles. So here the method is proposed where the unknown 

velocity potential is given as a sum of two potentials. First one 

describes the liquid sloshing in the rigid tank, and second one 

deals with vibrations of the liquid-filled elastic shell without 

considering the gravity force. The method allows us to obtain 

vibration modes and frequencies for different fuel tanks taking 

into account effects of sloshing, gravity, and elasticity. 

2. Problem Statement and Method of Mode 

Superposition in Coupled Dynamic 

Problems 

Free harmonic vibrations of conical elastic shells are considered. 

The shell is supposed to be made of homogeneous, isotropic 

material. The following shell parameters are involved: thickness h, 

height L, Poisson's ratio , elasticity modulus E , and mass 

density s.  
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Denote by  the wetted shell surface, and the liquid free surface by 

S0. Let Sbot be the tank bottom surface. Denote as U  
321 ,, UUU  

the shell displacement vector. Consider at first free oscillations of 

the elastic empty shell. Suppose that shell displacements are 

expressed by following formula: 

 
321 ,,);exp( uuuti  uuU . 

Here  is the frequency of elastic empty shell vibrations; the time-

dependant factor )exp( i  will be separated further on. Then the 

next system of differential equations in partial derivatives 

describes the empty shell vibrations, Levitin et al [9] 

3,2,1,
3

1

2 


juuL j
i

iij . 

Here 
ijL  are linear differential operators corresponding to 

Kirchhoff - Love shell theory.  

The finite element method developed in [8] is in use here for 

estimating own frequencies 
k  and modes 

ku , Nk ,1  of 

vibrations for the elastic empty shell of revolution. The next 

equation of movement for the shell containing a fluid is obtained 

in [8]: 

nUMLU dp  , 

where L  and M are global stiffness and mass matrices, n is an 

unit outward normal vector to the shell surface, the term pdn is for 

the dynamical component of fluid pressure, perpendicular to the 

shell surface. The next vector equalities are valid for each 

eigenvalue 
k  and eigenmode 

ku  of the elastic empty shell: 

kjjkkkk  ),(,2
uMuMuLu .                         (1) 

The mathematical model is developed for modeling the fluid-

structure interaction. It is based on the next suppositions: the 

liquid is an incompressible and inviscid one, its movement is 

irrotational, the only small vibrations are considered. It allow us to 

introduce a scalar velocity potential  tzyx ,,, . Its gradient 

presents the fluid velocity components. The liquid pressure 

 tzyxpp ,,,  acting on the wetted surface is defined for a 

potential flow from Bernoulli’s equation  

t
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t
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Here l is the liquid density, g is for the acceleration of gravity, z 

is the liquid point vertical coordinate, pd and ps are dynamical and 

static fluid pressure components, p0 is for atmospheric pressure. 

The velocity potential  tzyx ,,, could be defined at any instant 

from the next boundary value problem:  
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where the function w is the normal component of shell 

displacements, namely,  nU,w ; an unknown function 

 tyx ,,  describes the free liquid surface shape and position. 

The second item in relations (2) is the impermeability condition on 

the shell wetted surfaces, the third equality over there defines the 

kinematics boundary condition, that assumes that any fluid 

particle being at the free liquid surface in initial time, will be 

remain there in all subsequent times. Forth equation in (2) defines 

the boundary dynamical condition, consisting in equality of liquid 

and atmospheric pressure on the free liquid surface. So the 

considered problem of fluid-structure interaction is here reduced 

to the next system of ordinary differential equations:  

nUMLU dp  ;     0                        (3) 

with boundary conditions (2), relative to the potential  , and 

shell fixation conditions for the displacements U. In this paper 

clamped-free (C-F), clamped–clamped (C-C), simply supported - 

clamped (SS-C), and clamped- simply supported (C-SS) truncated 

conical tanks are studied. 

Consider fluid-filled tank vibration modes as following: 

 



N

k
kk tc

1

uU .                                          (4) 

Here ck(t) are unknown coefficients, and uk are shapes of the 

empty shell natural vibrations. Thus the vibration modes of the 

liquid-filled elastic shell are linear combinations of its own modes 

of vibrations without the liquid. Due equalities (1) one can obtain 

kjkjk  2),( uLu , 

where Nkk ,1,   are natural frequencies of the empty elastic 

shell. Let the potential Φ be a sum
21  , as it was 

proposed by Degtyarev in [10]. The series for potential Φ1 is 

following 

 



N

k
kk tc

1
11

 , 

where the time-dependant coefficients ck(t) are given in eqn (4). 

To determine functions 1k the next boundary value problems are 

formulated: 

01  k
, k

k w




n

1 , 0
0

1 
Sk ,  nu ,kkw  , Nk ,1        (5) 

Noted, that problems (5) were solved numerically in [8]. 

So the fluid-structure interaction problem for elastic liquid-filled 

shells of revolution, without gravity, is formulated using the 

unknowns U and 1. These functions satisfy differential equations 

(3) with the shell fixation conditions. The conditions of 

impermeability and pressure lack on the free liquid surface are 

also satisfied. Represent solutions of boundary problems (5) in the 

operator form as  
kk i uH1

, where  
kuH  is the 

corresponding inverse operator [8]. Suppose that 

   tiCtc kk  exp , and  is a natural frequency of the liquid-

filled shell. From eqns (1), (4), (5) we have 

    



N

k
jkkljkjkjk CC

1

22 ,uuH .                        (6) 

This equation describes a generalized eigenvalue problem. 

Solution of problem (6) provides the natural vibration frequencies 

 of the considered elastic tank with the liquid, but without 

considering the gravity effects.  

If potential 2 is known, the sloshing modes will be obtained. To 

define potential 2, the problem of the liquid oscillations in the 

rigid tank including gravity effects is formulated. Consider the 

expansion 

 



M

k
kk td

1
22

 , 

where dk.(t) are unknown coefficients, and functions 2k  are 

sloshing eigenmodes. To determine these modes the next 

boundary value problems are considered: 
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Suppose    zyxezyxt k

ti

k
k ,,,,, 22 

  and obtain from (7) the 

next relations along the free liquid surface for each sloshing mode 

2k  with frequency k: 

Mk
g

k

kk ,1,2

2

2 







n
.                         (8) 

It brings us to the next eigenvalue boundary problems 
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Solving these problems provides the unknown sloshing modes 2k 

and frequencies k . 

Thus, for the sum of potentials 
21  the next expression is 

found out: 

   

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k
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k
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The unknown function  becomes 
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To define harmonic vibration coupled modes assume that 

       tiDtdtiCtc klkk  exp;exp . Substituting these time-

dependant coefficients into (10)-(11) and then into equations  

nUMLU dp  , 0

0






S

g
t

 

brings us to generalized eigenvalue problem. Note that both 

gravity and elasticity effects here are taken into account. 

3. Boundary Singular Integral Equations  

To determine unknown functions 1k and 2k the boundary element 

method (BEM) in its direct formulation is in use, Brebbia et al 

[11]. Dropping for simplicity indexes 1k and 2k the basic relation 

is presented as 

  dS
PP

dS
PP

qP
SS 00

0

11
2




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
 

n
,                         (12) 

where 
0SS  . The functions  and q, given on , are the 

liquid pressure on the wetted shell surface and the flux, 

n /q . Module 0PP   is Cartesian distance between points 

P and P0. We start with boundary integral equation for potential 

(12), then transform Cartesian coordinates (x, y, z) into cylindrical 

ones (r, , z), and integrate in (12) with respect to variables z and 

. In the cylindrical coordinate system unknown functions are 

represented as Fourier series expansion by the coordinate  

   

    ,...2,1;2,1;2,1;cos,,,
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nzrwzrw

ii

ii

jkjk
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where n is the wave number. It would be noted, that solution is 

independent now of the angular coordinate , so 3D problem has 

been reduced to a two-dimensional one in radial and axial 

coordinates r and z. The singular boundary integral equations for 

mixed boundary value problems (5),(7) have been obtained in 

[8,10]. Numerical simulation procedures built upon the one-

dimensional BEM are depicted in [3],[8],[10]. Numerical solutions 

are obtained using BEM with constant approximations of 

unknown functions  and q inside boundary elements. 

4. Numerical Simulation and Discussion 

The empty and liquid-filled truncated isotropic conical tanks are 

considered. The sketch of the liquid-filled truncated conical tank is 

given in Figure 1. Here R1 and R2 are cone radii at its large and 

small edges,  is the semivertex angle, and H is the cone height. 

The conical tank is refereed to the cylindrical coordinate system 

(x,,z). Hereinafter in the next numerical simulation, the shell 

thickness and Poisson’s ratio are taken as h/R1=0.01 and =0.3, 

the semivertex angle =45o, H/R2=1, Young’s modulus 

E = 2,11·106 MPa, s=8000 kg/m3, l=1000 kg/m3 , R1=1m, [6]. 

Here the next fixation conditions are applied at the shell edges: 

clamped–clamped (CC), clamped–simply supported (C-SS), 

simply supported –clamped (SS-C), and clamped –free (C-F).  

4.1. Hollow Conical Shell without Bottom 

To testify the developed here method the hollow conical shell 

without bottom is considered. The first step was to define the 

requisite number of finite elements for evaluating the own 

frequencies with given accuracy. The convergence is established 

when numbers of finite elements on the tank walls was equal to 

30. 

  
Fig. 1: Truncated conical shell. 

 

The comprehensive analysis of our results and those of Shu et al. 

[6] is given in Table 1. The abovementioned boundary conditions 

are included here, with wave numbers n=0,1,2,3,4,5, 6,7. 

 
Table 1: Dimensionless frequencies 1 for the conical tank 

 

n 

Boundary conditions 

SS-C C-SS C-C 

present Shu [6] present Shu [6] present Shu [6] 

0 0,8701 0,8700 0,7157 0,7151 0.8730 0.8732 

1 0,8118 0,8118 0,7098 0,7090 0,8120 0,8120 

2 0,6614 0,6613 0,6479 0,6475 0,6694 0,6696 

3 0.5247 0.5245 0,5204 0,5201 0,5427 0,5428 

4 0,4319 0,4319 0,4166 0,4161 0,4563 0,4566 

5 0,3827 0,3826 0.3596 0.3592 0,4087 0,4089 

6 0,3739 0,3737 0,3458 0,3450 0,3960 0,3964 

7 0,3983 0,3981 0,36518 0,3648 0,4141 0,4143 

Here we compare dimensionless frequencies obtained for 

truncated isotropic elastic conical tanks at different fixation 

conditions with results obtained by Shu et al. [6] (m = 1, α = 45° ) 

with usage the frequency parameter 

  ER /1, 2

11   

for different circumferential number  n. The results are in good 

agreement. 

4.2. Hollow Conical Tank with Elastic Clamped Bottom 

http://www.sciencedirect.com/science/article/pii/S0307904X09001826#bib1


International Journal of Engineering & Technology 338 

 
Next simulation is concern with comparison of dynamical 

characteristics of hollow conical tanks with rigid bottoms and with 

clamped elastic bottoms. The fixation conditions at edges are the 

clamped-free ones. The results for n=0 are shown in Table 2. 

 
Table 2: Axisymmetric natural frequencies 1 for conical shell, Hz 

m 

Type of shell 

Hollow shell without bottom 

 

Conical shell with elastic 

clamped bottom   

 Frequency Dominant  Frequency Dominant 

1 559,46 wall  101,67 bottom 

2 675, 85 wall  393,43 bottom 

3 707,27 wall  559,48 wall 

4 824,91 wall  675,85 wall 

5 1001,1 wall  707,68 wall 

6    824,91 wall 

The own frequencies of the elastic shells with rigid bottoms and 

hollow shells are coincided. The dynamical characteristics are 

changed in the case of elastic bottom. Comparing the above results 

from Table 2 one can conclude that the lowest axisymmetric 

frequencies belong to the bottom vibrations. 

4.3. Sloshing Process in Conical Shells  

Linear liquid sloshing in the rigid Ʌ-shape conical tank with R2 = 

0.5m and R1 = 1.0m, H=0.5m and =/4 is considered. The 

sloshing frequencies are calculated accordingly to Degtyarev [12]. 

Below we testify that sloshing frequencies of rigid cylindrical and 

conical shells with equal heights (H=1m) and large radius of cone 

R1=1m equals to cylinder radius are differed. Comparison of 

results for n=0 is given in Table 3. 

 
Table 3: Sloshing axisymmetric natural frequencies, Hz 

m 
Type of shell 

Cylindrical shell Conical shell  

1 6,1309        5,8368       

2 8,3007        8,1042 

3 9,9975       9,8394      

4 11,.434       11,3082      

5 12,7261       12,6069      

The difference between frequencies of conical and cylindrical 

shells is essential at the lowest m. 

4.4. Vibrations of Elastic Fluid-Filled Truncated 

Conical Tanks 

The main purpose of this research is to estimate natural modes and 

frequencies of the elastic cone coupled with liquid sloshing. 

Below the elastic conical tank with CF edges is considered. The 

results are obtained for 7 wave numbers 6,0n  and for 4,1m . 

The frequencies of liquid sloshing, vibrations of empty and liquid-

filled tanks are considered. The numerical simulation results are 

given in table 4. 

 
Table 4: Own frequencies of elastic truncated conical shell, Hz 

n m 
Frequencies 

 Sloshing Empty Fluid-filled 

0  

1 5.836       101.07         41.67     

2 8.300       393.49 214.06     

3 9.997      559.52 257.91     

4 11.443      675.88 471.43 

1 

1 3.659       210.34 113.56                              

2 7.001       327.90        126.64                    

3 8.979      601.83         425.00                         

4 10.577 649.99 438.22 

2 

1 4.819 193.05         96.57    

2 7.897       345.07     224.03                

3 9.729      605.43      346.52                

4 11.236      764.39 500.66 

3 

1 5.707       128.30        64.217                            

2 8.661      504.88         281.69                        

3 10.397      519.84        327.95                         

4 11.837  723.61 474.97 

4 

1 6.460      100.89      58.200     

2 9.340      436.93         467.25     

3 11.005     689.26         265.86     

4 12.394    693.20 506.67 

5 

1 7.1288       101.85           56.908     

2 9.9581      385.15         232.28     

3 11.568      671.56      452.47     

4 12.915  897.75    686.67 

6 

1 7.736     123.20        78.861     

2 10.529      368.32         241.18     

3 12.094      663.03         458.88     

4 13.406 952.83 688.34 

As a result of these numerical simulations three basic systems are 

built. The elastic empty shell modes are the first one. The second 

system presents the free vibration modes of the elastic tank 

without gravity effects, and the third one consists of sloshing 

modes including gravity effects. In the considered case the mutual 

influence of sloshing and elastic shell vibrations is negligible. The 

separation of frequency spectrums for the liquid-filled elastic cone 

tank and sloshing in the rigid tank is observed. 

The interesting conclusions of numerical simulations are 

following. First, the lowest frequency here belongs to the 

axisymmetric mode with dominant bottom vibrations. The 

axisymmetric modes for the bottom and wall of the truncated 

conical tanks are demonstrated in Figures 2-3. 

 
Fig. 2: Axisymmetric modes of bottom vibrations. 

 

 

Fig. 3: Axisymmetric modes of wall vibrations. 
 

Here and hereinafter numbers 1,2,3,4 correspond to the vibration 

number m. Figures 2-3 demonstrate different behavior of the 

bottom and shell walls vibrations. 

One can observe that in this case the bottom and wall vibrations 

do not affect each other. Note that the frequency =41.67 Hz is 

the lowest one for vibrations of the liquid-filled elastic conical 

shell with elastic bottom. It corresponds to n=0 and m=1. If the 

conical shell with the rigid bottom is considered, then the lowest 

frequency occurs at n=4 and m=1 for the empty shell, and for n=5 

and m=1 for the fluid-filled shell. 

Figure 4 demonstrates modes that correspond to the bottom 

vibrations for n=5 and m=1. 
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Fig. 4: Modes of bottom vibrations for n=5 and m=1 

 

Here one can see that the frequencies of bottom vibrations are not 

the lowest ones. 

Figure 5 demonstrates the modes of wall vibrations for n=5 and 

m=1. The lowest frequency here responds to the wall vibrations. 

So, if the truncated elastic conical tank having the rigid bottom is 

considered then the lowest frequency does not correspond to the 

axisymmetric mode. 

 
Fig. 5: Modes of wall vibrations for n=5 and m=1 

 

Here one can observe that the wall vibrations became dominant. 

Analyzing figures 2-5 leads to understanding that at low wave 

numbers the dominant modes of truncated elastic cone vibrations 

correspond to its bottom. With increasing the number of nodal 

diameters the wall vibrations become dominant. 

Figure 6 shows the modes of lowest frequencies for liquid 

sloshing in the rigid tank (left) and for the elastic conical tank with 

the rigid bottom (right). 

 
Fig. 6: Modes of lowest frequencies 

 

If the bottom deformation is neglected, than the lowest frequency 

of elastic fluid-filled shell will be missed. 

The frequencies  near 100Hz are so considered as most 

dangerous for empty shells. The results given in table 4 testify it. 

For example, =101.07Hz correspond to n=0 and m=1; 

=100.89Hz correspond to n=4 and m=1; and =101.86Hz 

correspond to n=5 and m=1. 

It is also important to note that lowest frequencies of the empty 

and liquid-filled tanks correspond to different circumferential 

wave numbers. 

The frequencies of liquid-filled tank vibrations are drastically 

differ from frequencies of empty ones. But with increasing the 

wave number this difference become gradually smaller.  

5. Conclusion  

The analysis of natural vibrations for the truncated elastic shell in 

interaction with the liquid sloshing has been accomplished. 

Coupled one-dimensional finite and boundary element methods 

are in use. The vibration analysis includes several steps. At the 

first stage the frequencies and modes of the empty elastic conical 

tank are obtained. The displacements in the coupled problem are 

considered as the linear combinations of the empty elastic shell 

natural modes. So free vibration modes and frequencies for the 

liquid-filled elastic shell without gravity effects are defined at the 

second step. The sloshing frequencies and modes in the rigid 

conical tank including gravity effects are estimated at third stage. 

The numerical simulation for two latter problems is accomplished 

with usage of the one-dimensional BEM. The developed method 

essentially reduces the computer time for numerical analysis and 

produces new qualitative possibilities in advanced computational 

modeling the dynamical characteristics of elastic shell structures. 

The difference in dynamical characteristics between elastic 

truncated shells with rigid and elastic bottoms is established. The 

[resented here results can be considered as a basis for further 

research in the dynamical behaviour of structures subjected to 

intensive loadings and interacting with fluids. It would be noted 

that our interpretation and understanding the dynamical processes 

in elastic shell structures subjected to actions of flowing fluids is 

nowadays far from completion, and requires additional research. 
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