

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.6) (2018) 106-109

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Web Application Vulnerability Detection Using Hybrid String

Matching Algorithm

B.J. Santhosh Kumar
1*

, Kankanala Pujitha
2

1Department Of Computer Science, Amrita School Of Arts And Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India.
2Department Of Computer Science, Amrita School Of Arts And Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India

E-Mail:Pujithakankanala@Gmail.Com

*Corresponding Author E-Mail:Santhoshbj50@Gmail.Com

Abstract

Application uses URL as contribution for Web Application Vulnerabilities recognition. if the length of URL is too long then it will

consume more time to scan the URL (Ain Zubaidah et.al 2014).Existing system can notice the web pages but not overall web application.

This application will test for URL of any length using String matching algorithm. To avoid XSS and CSRF and detect attacks that try to

sidestep program upheld arrangements by white list and DOM sandboxing techniques (Elias Athanasopoulos et.al.2012). The web

application incorporates a rundown of cryptographic hashes of legitimate (trusted) client side contents. In the event that there is a

cryptographic hash for the content in the white list. On the off chance that the hash is discovered the content is viewed as trusted or not

trusted. This application makes utilization of SHA-1 for making a message process. The web server stores reliable scripts inside div or

span HTML components that are attribute as reliable. DOM sandboxing helps in identifying the script or code. Partitioning Program

Symbols into Code and Non-code. This helps to identify any hidden code in trusted tag, which bypass web server. Scanning the website

for detecting the injection locations and injecting the mischievous XSS assault vectors in such infusion focuses and check for these

assaults in the helpless web application(Shashank Gupta et.al 2015).The proposed application improve the false negative rate.

Keywords: SHA-1, DOM sandboxing, URL, SQL.

1. Introduction

SQL Injection is an assault strategy that adventures a security

vulnerabilities taking place in the database layer of an

application. An attackers use injections to get unauthorized access

from data structure, and DBMS. Which is the most commonly

used web application vulnerabilities A Database is the most

important for many, if not all, web applications and is used to

store useful information of the application. SQL Injections

occurs when a program writer takes end user‟s input that is

gives openly as a SQL Statement and does not properly validate

and filter out dangerous characters. Which allows an aggressor to

change SQL reports sent to the database as parameters, allow to

not only robber data from

atabase, as well as changing, and erase it. The growing

dependency on web applications has made them a regular target

for aggressors. Among these client-side code injection in the

browser location, is also called as SQL injection. SQL injection

assaults can yields in a huge collection of areas, from local code

to catalogs and web applications. In this paper enlisting new

forms of SQL injection and detecting using combination of

KMP Matching algorithm and BMP matching algorithm.

2. Related Works

Ain Zubaidah Mohd Saleh et.al,(2015)[1] has described the

method for web application vulnerabilities detection by using

Boyer-Moore String Matching Algorithm which is used to detect

SQL injection attack and Buffer overflow attack. The result of this

paper is in terms of low false negative and no false positive with

low processing time it has some limitations if the input URL is

too long, then it will take more time to scan the URL. Donald

Ray, Jay Ligatti (2012)[2] have explained the existing definition of

Code injection attacks The flaws also make it possible for benign

inputs to be treated as attacks. Web application attacks

performed. Different Code-injection attacks on output (CIAOs)

methods. Partitioning Program Symbols into Code and Non-code.

Elias Athanasopoulos et.al (2012) [3] has proposed detection of

XSS attacks that seek to bypass browser-enforced policies. The

web application includes a list of cryptographic hashes of valid

(trusted) client side scripts. If this method is vulnerable to the node

splitting attack, in need to test on client-side part of the proposal

in Firefox, safari policies. There is a cryptographic hash for the

script in the white list. If the hash is found the script is

considered trusted. DOM sandboxing works as follows. The web

server places trusted scripts inside div or span HTML elements

that are attribute as trusted. Priti Singh et.al [4] has proposed

Detection of SQL Injection and XSS Vulnerability in Web

Application it consists of some limitations: Detection of SQL

Injection and XSS

Vulnerability in Web Application. Designing a tool (filter) for the

HTTP request sent by the client. Limited to SQL injection attack

but cannot detect which bypass. Nadiya UP and Maya Mathew

[5] has proposed Vulnerability detection in Web application

which is used to detect the vulnerabilities in web application the

author combined taint analysis to detect the vulnerabilities with

data mining to predict whether it is false positive or real

vulnerability. Here open source static analysis tool has been

used to detect the vulnerability. The combination of source code

static analysis and data mining did not provide entirely correct

mailto:pujithakankanala@gmail.com

International Journal of Engineering & Technology 105

results. Only provides probabilistic result. Prabakar M. A, et.al

[6]. An efficient technique to detect and prevent SQL injection

using pattern-matching algorithm. Here the initial stage did not

produce the false positive and false negative. The pattern matching

process took O (n) time to detect the vulnerabilities. Buja.G et.al

[7] (2014) has proposed SQL injection attacks scanner using

Boyer Moore Pratt matching algorithm. The proposed method

able to detect with defined criteria of SQL injection on web

application and the proposed work is helpful to the web

application developer to give more security to their application

from unethical person outside the network. It is helpful to system

admin to give secure to the system. Abdalla Wasef Marashdih

and Zarul Fitri Zaaba [8] (2016) Has proposed XSS attacks

detection approaches in web application, the author used

genetic algorithm to detect the XSS attacks, the author succeeded

to detect XSS vulnerability using java web application without

false positive results. When he implemented in PHP he got

many false positive results, because they did not eliminate

infeasible pathway from flow graph. Raghuvanshi, K. K., &

Dixit, D. B. (2014) [9] proposed prevention and detection

techniques of SQL injection. The proposed work has done survey

on SQL injection, also described different types of SQL

injection detection and prevention techniques.

Anjugum S & Murugun A(2014)[10], has described The

attributes and data in the input query are encrypted using AES

(Advanced Encryption Standard) algorithm which is fast, and

requires little memory.

Once the query is arrived at server side, which is decrypted by

using the same key and in turn converts into various token

which are stored in to another dynamic table. The performance

comparison of cipher text over normal text shows that, cipher

text is very difficult and time consuming to crack.

Query tokenization technique converts the input query into

various tokens. These tokens are generated by detecting single

quote, double dashes and space in an input query. All string before

a single quote, before double dashes and before a space

constitutes a token.

Tokenization process executes in following four essential steps and

then forwarded to the server side. This approach does not require

major changes to application code and has negligible effect on

performance even at higher load conditions due to its low

processing overhead.

3. Existing System

Ain Zubaidah Mohd Saleh a, et.al [1]. Has proposed, a

method for web application exposures detection by using

Boyer-Moore string matching algorithm. This paper describes

the method for web application vulnerabilities recognition by

using BMP Algorithm to notice SQL injection attack and Buffer

overflow attack.

Existing method used URL as contribution for Web

Application exposures recognition. The existing system used two

sets of experiments to evaluate the performance of the

accurateness (false positive and false negative) and effectiveness

(processing time).

The results is low false negative and false positive for all

acknowledgment. For SQL Injection, many number of injections is

used for the different webpages, web pages tested will effect on

the processing time, where the higher number of dissimilar

facts of injection, the handling time will become high. For

Buffer Overflow, the length of URL will be the main factor

of increasing of handling time.

For XSS and CSRF, the dimensions and difficulty of the URL

also be the main factor the handling time will be high. [1]

Result is 80% accurateness and 20% false negatives

effectiveness is reduced to 10%.

4. Proposed Methodology

In Proposed application uses URL as contribution for the Web

Application.

Two Algorithms we are using to detect the SQL injection.

Compared two algorithms result.

The time complexity of the algorithms will vary but output will be

same, finally combined both the algorithms to get efficiency.

Knuth morris pratt matching algorithm

The main part of the KMP algorithm calculates the array F, which

is also called as the prefix function. If calculation of F or the

prefix function can be done efficiently, the KMP algorithm

finds prefix function in O (length of the string) time.

Boyer Moore Pattern Matching Algorithm: The BMP algorithm

uses information, which is collected in the pre- process advance to

skip pieces of the text, bringing about a lower steady factor than

numerous other pattern search algorithms.

Generally, the algorithm works speedier when the example length

increments. The key highlights of the algorithm is to coordinate

on the end of the example as opposed to the beginning piece of

the example, and it will skip various characters instead of looking

through each character in the content.

KMP algorithm works from left to write as well as BMP

algorithm works from right to left. Both the patterns will work at a

time, where the pattern will be matched with the given string then

the pattern will be found.

In the proposed application will give a username and password, it

will generates a SQL query.

Then the pattern matching algorithm applies on that query, if the

query is matched with that pattern it will shows the alarm, the

alarm sends a message to administrator that there is a SQL injection

on this Web application. If the query is not matched with the

pattern matching algorithm then it accepts to login web

application.

Proposed Algorithm Step1: Create a table dKMP.

Step2: Create a table dBMP

Step3: Defining primary value of index E, which is parallel

to the position of pattern with respect to the string.

Step4: Describing primary values of indices jKMP and jBMP,

which shows the starting and ending of the pattern respectively.

Step5: Equating the characters of pattern with index jKMP and

equivalent string character, equating the characters of the pattern

with index jBMP and the equivalent string character. If atleast one

observation ends with a mismatch then it will go to step 11.

Step6: If jBMP is greater than jKMP then go to step9.

Step7: As output will get a message to inform that, the pattern is

matches with a part of string.

Step8: Go to step15.

Step9: Increasing index jKMP by one, decreasing index jBMP by

one

Step10: Go to Step5.

Step11: Choosing the larger shift from,

JKMP-dKMP [jKMP] and dBMP [E+patternlength-jBMP].

Step12: Shifting the pattern to the right relative to the sting

increasing the value of index E by the shift defined in step11.

Step13: If the length of the string is greater than the sum of index

E and the length of the pattern, then go to step4.

Step14: As output will get a message to inform that the

pattern is not found.

Step15: The process will end here.

Proposed queries

 SELECT * FROM Login WHERE

Username=‟1‟ OR „1‟=‟1‟ password=‟1‟ OR „1‟=‟1‟

106 International Journal of Engineering & Technology

 SELECT * FROM student WHRER username=username

 UNION SELECT password FROM login WHERE

username=‟username‟

 SELECT * FROM login WHERE column

LIKE %M%F%.

Proposed flow chart

Fig. 1: Proposed flow chart

5. Result and Discussion

Web application for user login has implemented using java

NetBeans and MySQL database to store user information. The

proposed work detects SQL injection using hybrid string

matching algorithm. For hybrid string algorithm. We have used

KMP and BMP string matching algorithms. Above the author has

been included the algorithm. The proposed work reduced the false

negative rate.

Fig. 2: Without SQL injection

The above Fig-2 shows login without SQL injection, that means if

we give correct username and password, which is stored in user

database, then only the user, can get access of the application.

Fig. 3: With SQL injection

SELECT * FROM Users WHERE Username='1' OR '1' = '1' AND

Password='1' OR '1' = '1';

The above Fig-3 shows login an application with SQL

injection, that means, by using the above query the hacker can get

access to the web application without giving correct user name

and password.

Fig. 4: Fetching the data from the database using SQL injection

SELECT * FROM student WHERE username=username;

The above Fig-4 shows fetching the data from the database using

SQL injection, the author used above given SQL query to fetch the

data from the database using unauthorized access.

Fig. 5: Using hybrid string matching algorithm

The above Fig-5 shows if the pattern is matched with the user name

then it will show the message where the pattern has found, and

it will allow to access the login page. If the pattern is not matched

with user name it will show a message to provide correct

International Journal of Engineering & Technology 107

login details. This application used large amount of dataset to

match with pattern.

6. Conclusion

In the proposed work, the author proposed SQL injection

detection on web applications. The author successfully detected

SQL injection on web applications using hybrid string matching

algorithm. This application used KMP pattern matching

algorithm and BMP algorithm. The application compared both

the algorithms after that the proposed work combined both the

algorithms to get efficient result. However, it takes more time to

scan the input. In addition, proposed work improved false

negative rate.

References

[1] Saleh AZM, Rozali NA, Buja AG, Jalil KA, Ali FHM & Rahman

TFA, “A method for web application vulnerabilities detection by using

boyer-moore string matching algorithm”, Procedia Computer Science,
Vol.72, (2015), pp.112-121.

[2] Ray D & Ligatti J, “Defining code-injection attacks”, ACM

SIGPLAN Notices, Vol.47, No.1, (2012), pp.179-190.
[3] Athanasopoulos E, Pappas V & Markatos EP, “Code-injection

attacks in browsers supporting policies”, Proceedings of the 2nd

Workshop on Web 2.0 Security & Privacy (W2SP), (2009).
[4] Singh P, Thevar K, Shetty P & Shaikh B, “Detection of SQL

Injection and XSS Vulnerability in Web Application”,

Prevent, Vol.1, No.4, (2013).
[5] Manojkumar R, “Vulnerability Detection Behind Web

Applications”, Software Engineering and Technology, Vol.7, No.7,

(2015), pp.191-193.
[6] Prabakar MA, Karthikeyan M & Marimuthu K, “An efficient

technique for preventing SQL injection attack using pattern

matching algorithm”, International Conference on Emerging
Trends in Computing, Communication and Nanotechnology (ICE-

CCN), (2013), pp.503-506.

[7] Rahman TFA, Buja AG, Abd K & Ali FM, “SQL Injection Attack
Scanner Using Boyer- Moore String Matching Algorithm”, JCP,

Vol.12, No.2, (2017), pp.183-189.

[8] Marashdih AW & Zaaba ZF, “Cross Site Scripting: Detection
Approaches in Web Application”, International Journal of

Advanced Computer Science and Applications, Vol.7, No.10,

(2016).
[9] Raghuvanshi KK & Dixit, DB, “Prevention and Detection

Techniques for SQL Injection Attacks. International Journal of

Computer Trends and Technology (IJCTT), Vol.12, (2014).
[10] Anjugam S & Murugan A, “Efficient method for preventing SQL

injection attacks on web applications using encryption and
tokenization”, International Journal, Vol.4, No.4, (2014).

[11] Pushpa BR, “Enhancing Data Security by Adapting Network

Security and Cryptographic Paradigms”, International Journal of
Computer Science and Information Technologies, Vol.5, (2014),

pp.1319–1321.

[12] Joseph S & Jevitha, KP, “Evaluating the Effectiveness of
Conventional Fixes for SQL Injection Vulnerability”,

Proceedings of 3rd International Conference on Advanced

Computing, Networking and Informatics, Vol.2,
[13] Shiva Kumar KM, Shruthi K & Shruthi V, “Secured data

aggregation in wireless sensor network”, International Journal of

Applied Engineering Research, Vol.10, (2015), pp.26761-26768.

