

Copyright © 2018 Hamza Kamal Idrissi, Ali Kartit. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4) (2018) 4607-4611

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi:14789

Research paper

A multi-node adaptive load balancing approach for availability

in cloud computing

Hamza Kamal Idrissi 1 *, Ali Kartit 2

1 LRIT-CNRST, University Mohammed V, 4 Avenue Ibn Battouta. BP 1014 RP 10006 Rabat, Morocco

2 LTI, University Chouaïb Doukkali –El Jadida, ENSAJ, Avenue Jabran Khalil Jabran BP 299 El jadida, Morocco

*Corresponding author E-mail: h.kamalidrissi@gmail.com

Abstract

Cloud computing has become one of the most important fields in the IT technology domain. Its main objectives are to deliver different

services for users, such as infrastructure, platform or software with a reasonable and more and more decreasing cost for the clients. In

order to meet those objectives many aspects are studied and are subject to research, the availability is certainly one of the key sides of the

Cloud Computing. Load balancing techniques deal with many aspects of the cloud such as performance, response time, … For the big

distributed cloud systems that deal with many clients and big amounts of data and requests, load balancing is essential in order to proper-

ly satisfy all the demands. In this paper, we address the subject of availability with an adaptive load balancing approach in cloud compu-

ting. This proposed approach ensures load balancing as well as the availability of the system while avoiding points of failure.

Keywords: Adaptive Load Balancing; Availability; Cloud Computing; Multiple Nodes.

1. Introduction

Cloud computing is a new computing approach that strives for

providing end users with computing services. It is based on some

aspects of existing design principles, protocols, platforms ... Thus,

it keeps some of the advantages of those technologies, and as a

matter of fact, it comes with new capabilities that are useful for

the programmability, scalability, and virtualization of resources.

Cloud Computing is confronted with the existing problems of its

predecessor technologies, and comes with its own specific issues,

for example regarding the availability and the load balancing as-

pects. Thus, depending on the load of the system and its nature,

the rising of the final users’ demands can be problematic and can

cause the system to be slower or even unavailable. Due to the

different characteristics of the requests and their flow, the load on

each of the system’s nodes can vary. As a result, all the nodes are

not loaded with the same amount or need of demands, and the

performance of the system is therefore reduced. This causes a

significant dissimilarity in the response time to the requests as the

ones assigned to overloaded nodes will be penalized while those

assigned to lightly loaded nodes will be privileged in terms of the

response time within the same cloud [1]. The system can even go

to a state where it’s unable to satisfy some of the demands which

can be seen as a partial unavailability.

In order to overcome those issues of load imbalance and unavaila-

bility, a suitable load balancing technique is needed. Load balanc-

ing aims to avoid situations where some nodes are heavily loaded

with work while other nodes are less or not at all working. It helps

to satisfy the users and to use the resources efficiently [2]. In addi-

tion, if there is a node failure, the cloud system should be able to

relocate the corresponding tasks which were meant to be pro-

cessed be the failing node to another resource; this preserves the

availability of the system without any impact on the end users.

In this paper, we will begin by describing the cloud computing

concept. In the next section, we will describe some load balancing

techniques, metrics and algorithms involved in the cloud environ-

ments. This description will not go deeply in the details of those

techniques as the subject of this paper aims essentially to present a

general approach. The third section details our proposed approach

design and components. Last, we will identify some perspectives

and some challenges that will remain to be addressed in the future.

2. Cloud computing

Computing is being converted to a model consisting of services

that are commoditized and delivered in a manner similar to tradi-

tional utilities [3] such as water. As for Utility Computing is typi-

cally implemented using other computing infrastructure. In a

cloud business model, a customer will pay the provider on a con-

sumption basis, very much like the utility companies charge for

basic utilities such as electricity, gas, and water, and the model

relies on economies of scale in order to drive prices down for us-

ers and profits up for providers.

Cloud computing is therefore a new approach based on leveraging

the Internet to consume software or other IT services on demand.

End users share processing power, storage space, bandwidth,

memory and software. With cloud computing, the resources are

shared and so are the costs. Users can pay as they consume and

only use what they need at any given time, keeping charges to the

user cheap.

2.1. Cloud provider

The cloud model is composed of three types : [4]

Public clouds

This infrastructure can be used by the general public. This in-

cludes individuals, corporations and other types of organizations.

http://creativecommons.org/licenses/by/3.0/

4608 International Journal of Engineering & Technology

Typically, public clouds are ran by third parties or vendors over

the Internet, and services are provided on pay-per-use basis. Pub-

lic clouds are widely used in the development, deployment and

management of enterprise applications, at reasonable costs. It

delivers highly scalable and reliable applications rapidly but with

a major, significant concern in public which is confidentiality.

Private clouds

The infrastructure is deployed within the frontiers of a same com-

pany and is used exclusively for the organization’s profits. They

are also called internal clouds and are mainly built by IT depart-

ments within enterprises who seek to enhance exploitation of in-

frastructure resources within the enterprise by provisioning the

infrastructure with applications using the concepts of grid and

virtualization. This preserves some aspects of cloud such as virtu-

alization, availability of services and high levels of automation

reducing the administrative overhead. However, the buying,

maintenance and management of infrastructure is the responsibil-

ity of the company, which will increase operating costs. Commu-

nity clouds refers to a specific subtype of public cloud in which

several companies are sharing the same private cloud.

Hybrid clouds

A new concept combining resources from both internal and exter-

nal providers will become the most popular choice for enterprises.

For example, a company could select to use a public cloud service

for general computing, but store its business critical data within its

own data center. This may be because larger organizations are

likely to have already invested heavily in the infrastructure re-

quired to provide in-house resources or they may be concerned

about the security of public clouds.

Fig. 1: View of the Cloud Computing Environment.

2.2. Cloud architecture

In many techniques, software such as Eucalyptus, OpenNebula

and Nimbus are based on some common components. In a generic

open-source cloud computing system, we can recognize six basic

modules. First, we have the cloud control software whose aim is to

bring together all cloud stack pieces and to ascertain enough ab-

straction so that a user can simply demand VMs with no harass-

ment on how these components are created or coordinated.

Secondly, hardware, network and operating systems that are on

the various physical machines in the system. It should be virtual-

ized or paravirtualized depending of the virtualization framework

compatibility. Paravirtualization is not adopted unless the frame-

work could not handle the physical machines. The network in-

cludes the DNS, DHCP and the subnet organization of the physi-

cal machines. It also embraces virtual bridging and networking of

the network that is required to give each VM a unique virtual

MAC address. This bridging is done with the help of programs

like bridge-utils, iptables or ebtables.

The third module is the virtual machine hypervisor, AKA Virtual

Machine Monitor (VMM). Popular VMMs consist of Xen, KVM

and VirtualBox, which are open-source, and VMware which is

commercial. These programs afford a software which allows VMs

to run. In order to start and stop a VM, VMMS relies on a library

called Libvirt.

The fourth component is a repository of disk images that can be

copied and used as the basis for new virtual disks. In any specified

cloud, we must make a difference between template disk images

and runtime disk images. Also, when a VM is laid, one of those

templates copied and is wrapped into a disk image appropriate for

the given hypervisor. Usually, this includes adding a swap parti-

tion and resizing the disk image to the appropriate size.

The fifth component is the front-end for users. Represented by an

interface for users to request virtual machines, specify their pa-

rameters, and obtain needed credentials and keys to sign in.

The last module is the cloud framework itself, where Eucalyptus,

OpenNebula and Nimbus are located. This framework analyses

inputs from the front-end, recovers the needed disk images from

the archive, signals a VMM to run a VM and then mention to

DHCP and IP bridging programs to assign MAC and IP addresses

for the VM [5].

3. Load balancing and objectives

3.1. Load balancing definition and goals

Load balancing represents the fact of equally distributing the load

among several resources in a distributed or parallel system in or-

der to equalize workloads effectively and to enhance the execution

time of a task [6], [7]. In fact, it avoids a situation where some of

the nodes are heavily loaded while other nodes are not doing any

work. Load balancing guarantees that all the processors in the

system or every node in the network process approximately an

equal amount of work at any instant of time.

This concept involves first decomposing the overall computation

into tasks and then assigning the tasks to nodes [8]. The decompo-

sition and assignment steps together are often called partitioning.

The optimization objective for partitioning is to balance the load

among nodes and to minimize the internodes communication

needs. Executing a task in this distributed environment requires

mapping the processes to nodes. The number of resources generat-

ed by the partitioning step may not be equal to the total number of

nodes. Thus a node can be idle or loaded with multiple jobs.

As demonstrated before and based on [9], [10], load balancing

aims are:

To enhance the performance significantly

To redistribute the node tasks in case the latter suffers from over-

loading, malfunction or failure

To uphold the system stability

Scalability and flexibility: the distributed system in which the

algorithm is implemented may change in size or topology. So the

algorithm must be scalable and flexible enough to allow such

changes to be handled easily.

Priority: prioritization of the resources or jobs needs to be done on

beforehand through the algorithm itself for better service to the

important or high prioritized jobs in spite of equal service provi-

sion for all the jobs regardless of their origin.

3.2. Load balancing and cloud computing

The fundamental clue about cloud computing is to afford assets

such as VMs as services on demand. Assigning effective VM on

demand is being carried out with the support of the load balancing

algorithms in the cloud computing [10]. As the load balancing

algorithm plays an important role while determining which VM is

to be allocated on demand to the user.

Cloud vendors then are based on automatic load balancing ser-

vices [11], which allow clients to increase the number of CPUs,

memory or hard disk for their resources in order to scale with

bigger demands. This service is implied and depends on the cli-

ents’ professional requirements. So, load balancing supplies two

important basics, mostly to promote availability of Cloud re-

sources and secondarily to uphold a global performance, energy is

saved in case of under loading.

A perfect load balancing designed for cloud service should cir-

cumvent overloading or under loading of any specific node. So the

selection of load balancing algorithm is not unproblematic because

International Journal of Engineering & Technology 4609

it involves supplementary restraints like security, trustworthiness,

throughput, etc. Consequently, the main aim of a load balancing

algorithm in a cloud computing environment is to improve the

response time of job by simplifying interaction between the nodes,

choosing nature of work to be transferred and selecting the possi-

ble nodes which could hold the task or the process to be moved in

case of failure of its hosting node.

4. Algorithms and challenges

4.1. Load balancing metrics

The goal of load balancing is to effectively distribute the work

load between available resources, in order to maximize the benefit

from those resources and to have quick computing and processing

for the client requests. It is done so as to make resource utilization

effective and to improve the response time of the job, simultane-

ously removing a condition in which some of the nodes are over

loaded while some others are under loaded [12].

To evaluate the quality of a load balancing technique, architecture

or system, many metrics can be used. Some of them must be max-

imized while others should be minimized, in order to have an effi-

cient load balancing system. The most common are described by

Dash, M et al in [13], as follows:

Throughput is used to calculate the no. of tasks whose execution

has been completed. It should be high to improve the performance

of the system.

Overhead Associated determines the amount of overhead involved

while implementing a load-balancing algorithm. It is composed of

overhead due to movement of tasks, inter-processor and inter-

process communication. This should be minimized so that a load

balancing technique can work efficiently.

Fault Tolerance is the ability of an algorithm to perform uniform

load balancing in spite of arbitrary node or link failure. The load

balancing should be a good fault-tolerant technique.

Migration time is the time to migrate the jobs or resources from

one node to other. It should be minimized in order to enhance the

performance of the system.

Response Time is the amount of time taken to respond by a partic-

ular load balancing algorithm in a distributed system. This param-

eter should be minimized.

Resource Utilization is used to check the utilization of resources.

It should be optimized for an efficient load balancing.

Performance is used to check the efficiency of the system. This

has to be improved at a reasonable cost, e.g., reduce task response

time while keeping acceptable delays.

4.2. Load balancing algorithms

In order to achieve a fair resource allocation between demanding

tasks and to have a certain performance in the overall clod system,

load balancers resort to various scheduling algorithms. Since re-

search in this field is still ongoing, no technique can be considered

as the best. Hence, the chosen algorithm to utilize depends on

many considerations; especially the size of the cloud system, the

nature of the requests, the amount of available resources … Those

algorithms can be classified in various ways. Thus, they can be

classified as static or dynamic. A static load balancing algorithm

does not take into account the previous state or behavior of a node

while distributing the load. On the other hand, a dynamic load

balancing algorithm checks the previous state of a node while

distributing the load. The dynamic load balancing algorithm is

applied either as a distributed or non-distributed [14]. Load bal-

ancers can work in two ways: one is cooperative and non-

cooperative. In cooperative, the nodes work simultaneously in

order to achieve the common goal of optimizing the overall re-

sponse time. In non-cooperative mode, the tasks run independently

in order to improve the response time of local tasks [14].

The most known algorithms are listed by Mathew, T et al [15] in

Table 1. As shown in this table, each algorithm has its own char-

acteristics, advantages and disadvantages. Thus, it is depending on

the context that some algorithm or another is chosen to perform

load balancing, such as the type of requests, whether they are all

of the same type or not,...

Table 1: Load Balancing Algorithms Characteristics

Scheduling Method
Parameters Con-

sidered
Advantages Disadvantages

First Come First
Serve

Arrival time
Simple in imple-
mentation

Doesn’t consider

any other criteria

for scheduling

Round Robin
Arrival time,
Time quantum

Less complexity

and load is bal-

anced more fairly

Preemption is
required

Opportunistic Load

Balancing
Load balancing

Better resource

Utilization
Poor makespan

Minimum Execu-
tion Time Algo-

rithm

Expected execu-

tion time

Selects the fastest
machine for

scheduling

Load Imbalanced

Minimum Comple-

tion Time Algo-

rithm

Expected com-

pletion time,

Load balancing

Load balancing is

Considered

Optimization in
selection of best

resource is not

there

Min-Min, Max-

Min

Makespan, Ex-
pected comple-

tion time

Better makespan
compared to other

algorithms

Poor load balanc-

ing and QoS fac-

tors are not con-
sidered

Genetic Algorithm

Makespan, Effi-

ciency, Perfor-
mance, Optimi-

zation

Better perfor-

mance and effi-
ciency in terms of

makespan

Complexity and

long time con-

sumption

Simulated Anneal-

ing

Makespan, Op-

timization

Finds more poorer
solutions in large

solution space,

better makespan

QoS factors and
heterogeneous

environments can

be considered

Switching Algo-

rithm

Makespan, Load
balancing, Per-

formance

Schedules as per

load of the sys-

tem, better
makespan

Cost and time

consumption in

switching as per
load

K-percent Best
Makespan, Per-

formance

Selects the best

machine for

scheduling

Resource is select-

ed based on the

completion time

only

Suffrage Heuristic
Minimum com-
pletion time,

Reliability

Better makespan
along with load

balancing

Scheduling done
is only based on a

suffrage value

Benefit Driven,

Power Best Fit,

Load Balancing

Energy Con-

sumption, Cost,

Load balancing

Power consump-
tion is reduced

and cost is re-
duced even more

number of servers

used

Other QoS factors

and completion
time of tasks are

less considered

Energy efficient
method using

DVFS

Energy Con-

sumption,

Makespan, Exe-
cution time

Energy saving as

per load in the

system producing
better makespan

Cost and imple-

mentation com-

plexity can make
better in future

DENS

Traffic load

balancing, Con-

gestion, Energy
Consumption

Communication

load is considered
and job consolida-

tion is done to

save energy

Consider only data

intensive applica-
tions with less

computational

needs

e-STAB

Energy efficien-

cy, Network

awareness, QoS,
performance

Load balancing

and energy effi-

ciency is achieved
based on traffic

load, congestion

and delay are
avoided

QoS factors can be

considered for
improvement in

overall perfor-

mance

Task Scheduling &
Server Provisioning

Energy Con-

sumption, Task
response time,

Deadline

Energy is reduced

meeting the dead-

line of tasks

Makespan and

cost are less con-

sidered here

Improved Cost
Based Algorithm

Processing cost,
Makespan

Resource cost and
computation

performance is

considered before
scheduling

Dynamic cloud
environment and

other QoS attrib-

utes are not con-
sidered

Priority based Job

Scheduling Algo-

Priority of tasks,

Expected com-

Priority is consid-

ered for schedul-

Makespan, con-

sistency and com-

4610 International Journal of Engineering & Technology

rithm pletion time ing. Designed

based on multiple
criteria decision

making model

plexity of the

proposed method
can be considered

for improvement

Job Scheduling

based on Horizon-
tal Load Balancing

Fault tolerance,

Load balancing,
Response time,

Resource utiliza-

tion, Cost, Exe-
cution time

Probabilistic
assignment based

on cost. Highest

probable resource
and task are se-

lected for assign-

ment.

Algorithm never

mentions how the

total completion
time of the tasks

will remain

User Priority guid-

ed Min- Min

Priority ,

Makespan, Re-
source Utiliza-

tion, Load bal-

ancing

Prioritized is

given to users

improving load
balancing and

without increas-

ing total comple-
tion time.

Rescheduling of
tasks to perform

load balancing

will increase the
complexity and

time

WLC based Sched-

uling

Load balancing,
Efficiency, Pro-

cessing Speed

Dynamic task

assignment strate-
gy proposed, task

heterogeneity is

considered

Considering only
load balancing

feature

Cost Based Multi

QoS Based DLT

scheduling

Load balancing,

Makespan, QoS,
Performance,

Cost

DLT based opti-

mization model is

designed for
getting better

overall perfor-

mance

Machine failure,

communication

overheads and
dynamic work-

loads are not

considered

Enhanced Max-
Min Algorithm

Makespan, Load

balance, Average

execution time

Improves

makespan and

load balancing
when large differ-

ence occurs in the

length of longest
task and other

tasks or speed of
processors

Parameters con-
sidered are limited

and only theoreti-

cal analysis is
performed

The aforementioned metrics and algorithms have the goal of meet-

ing the challenges that load balancing in cloud computing has to

deal with. Thus, to achieve that, the following objectives must be

reached:

Improving the overall performance, which is the main objective of

the load balancing as a whole.

Avoiding starvation for the processed tasks, this can be done by

improving the throughput and minimizing the response as well as

the migration times.

Reliability, which can be obtained by a fault tolerant approach.

Security matters, which is an important side of the system since

data flows and communication have to be protected from any kind

of undesirable activities.

To realize those objectives while taking into consideration the

associated challenges, we proposed a multi cluster approach. The

next section details this approach and describes how it deals with

the stated matters.

5. Proposed approach

With the spreading of usage of cloud computing and the growing

demand of delivered services via this new technology, numerous

techniques and approaches are proposed by researchers to deal

with this demand. Most works tend to work on load balancing

algorithms to enhance performance and allocate available re-

sources as efficiently as possible. Still, due to the heterogeneity

and disparities between environments and architectures, all tech-

niques leave some problems unsolved. Our objective is to resolve

some of those left issues with our proposed approach. The issues

we aim at dealing with are: efficient load balancing between the

different resource nodes that process the client tasks, in a secure

way as well as the elimination of possible single point of failure in

a semi centralized load balancing architecture. Another addressed

matter is the continuous use of all available resources, in fact, no

resource should remain unused due to any kind of problem, such

as the failure of the central load balancer for example, that can

lead to the partial or the total shut down of the system (resource

nodes). Thus, the proposed method has the advantage of efficient

load balancing, continuous availability if any failure is experi-

enced in a central load balancer and secured data flows between

the system nodes. The detailed description of the aforementioned

architecture is as follows:

The load balancing elements are: the main load balancer (MLB,

it's the central node), the resources' clusters and an authentication

element, in order to have secure data flows between the two previ-

ous elements.

The main load balancer can be seen as the system node coordina-

tor, it receives task processing requests from the clients, and it

applies an algorithm to match each client request to a suitable

cluster to process it. It has its own table of clusters, each cluster

with a weight representing its average processing capacity, thus

the main load balancer can choose the right cluster to transfer a

client request to and the load is fairly shared between all the clus-

ters. No job queue is needed at this level as each cluster has its

own local queue.

Each resources' cluster consists of a group of nodes (resources), it

has its own local load balancer (LLB), and this latter receives

requests from the MLB and deals with the load balancing inside

its local cluster. It has a queue where the upcoming jobs are stored

until a node inside the cluster is available to process them. The

local load balancers use a scheduling algorithm to perform the

load balancing, they also keep a resource table that is constantly

updated if there is any change in the corresponding cluster nodes

(for example, in case of the failure of a node, the addition of a new

node,...). Depending on the changes in this table, the weight of the

cluster is updated in the MLB table. The local load balancer table

also contains the weight of each node, hence the local load is fair-

ly balanced between the cluster elements.

To ensure the availability of the system and to eliminate single

points of failure, another proposed functionality of this architec-

ture is to make each LLB an MLB candidate, it will replace the

MLB in the case it comes to fail. In that case, the first LLB that is

aware of the MLB failure, becomes the new MLB, it notifies the

other LLBs of this change, gathers data about the other LLBs,

dispatches its clusters' nodes between the other clusters and starts

its work as the new MLB by sending the elements in its queue to

the other LLBs. This ensures the continuous availability of the

system while the resources are efficiently used.

We also manage to add an authentication layer of security, so that

only authenticated users could send jobs through our load balanc-

ing architecture. With this way, no overloading should occur with-

in the platform and the load balancing architecture should stick to

the cloud principles such as paying the minimum possible so we

stop wasting resources. The authentication server should also

grant special priority to a user and then his jobs shall be executed

as quickly as possible.

Fig. 2: Adaptive Load Balancing Approach.

International Journal of Engineering & Technology 4611

6. Conclusion

The recent enthusiasm for the use of Cloud Computing related

services has brought to light many important issues that the pro-

viders have to deal with; one of the most important is certainly

availability and performance. To face those problems, some tech-

niques have been proposed and this area is still subject to research.

Load balancing is a key method to ensure a good overall perfor-

mance in Cloud systems and provide efficient resource usage. In

fact, Load Balancing can intervene in many aspects of Cloud

Computing, such as availability for example. In this paper, we

addressed some characteristics of Load balancing in cloud compu-

ting, namely its critical issues and challenges, especially the avail-

ability side. We also presented an adaptive approach to benefit

from load balancing in order to overcome availability issues in a

Cloud Computing environment using an adaptive architecture.

The proposed method deals with availability as well as with the

system performance while taking into account fault tolerance ele-

ments. In future work, we intend to explore this method possibili-

ties in different cloud computing environments in terms of re-

sources and demands. Other possible enhancements can be studied

as well as some other aspects such as cost effectiveness, energy

consumption,

References

[1] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, Nitin,

and R. Rastogi, “Load Balancing of Nodes in Cloud Using Ant
Colony Optimization,” presented at the Computer Modelling and

Simulation (UKSim), 2012 UKSim 14th International Conference

on, 2012, pp. 3–8.
[2] N. J. Kansal and I. Chana, “Cloud load balancing techniques: A

step towards green computing,” IJCSI Int. J. Comput. Sci. Issues,

vol. 9, no. 1, pp. 238–246, 2012.
[3] H. K. Idrissi, A. Kartit, and M. E. Marraki, “FOREMOST SECU-

RITY APPREHENSIONS IN CLOUD COMPUTING,” J. Theor.

Appl. Inf. Technol., vol. 59, no. 3, pp. 580–588, Jan. 2014.

[4] H. Kamal Idrissi, A. Kartit, and M. El Marraki, “A taxonomy and

survey of Cloud computing,” presented at the Security Days (JNS3),

2013 National, 2013, pp. 1–5.
https://doi.org/10.1109/JNS3.2013.6595470.

[5] P. Sempolinski and D. Thain, “A Comparison and Critique of Euca-

lyptus, OpenNebula and Nimbus,” presented at the Cloud Compu-
ting Technology and Science (CloudCom), 2010 IEEE Second In-

ternational Conference on, 2010, pp. 417–426.

https://doi.org/10.1109/CloudCom.2010.42.
[6] A. S. N and M. Hemalatha, “An Approach on Semi-Distributed

Load Balancing Algorithm for Cloud Computing System,” Int. J.
Comput. Appl., vol. 56, no. 12, pp. 5–10, Oct. 2012.

[7] R. P. Padhy, “Load balancing in cloud computing systems,” Na-

tional Institute of Technology, Rourkela, 2011.
[8] C. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theo-

ry and Practice. Norwell, MA, USA: Kluwer Academic Publishers,

1997.
[9] A. M. Alakeel, “A guide to dynamic load balancing in distributed

computer systems,” Int. J. Comput. Sci. Inf. Secur., vol. 10, no. 6,

pp. 153–160, 2010.
[10] M. M. D. Shah, M. A. A. Kariyani, and M. D. L. Agrawal, “Alloca-

tion Of Virtual Machines In Cloud Computing Using Load Balanc-

ing Algorithm,” Int. J. Comput. Sci. Inf. Technol. Secur. IJCSITS
ISSN, pp. 2249–9555, 2013.

[11] Soumya Ray, “Execution Analysis of Load Balancing Algorithms

in Cloud Computing Environment,” Int. J. Cloud Comput. Serv. Ar-
chit., vol. 2, no. 5, pp. 1–13, Oct. 2012.

[12] R. Gupta and R. Bhatia, “An Enhanced and Secure Approach of

Load Balancing in Cloud Computing,” 2014.
[13] M. Dash, A. Mahapatra, and N. R. Chakraborty, “Cost Effective

Selection of Data Center in Cloud Environment,” Int. J. Adv. Com-

put. Theory Eng. IJACTE, vol. 2, pp. 2319–2526, 2013.
[14] S. S. Moharana, R. D. Ramesh, and D. Powar, “Analysis of load

balancers in cloud computing,” Int. J. Comput. Sci. Eng., vol. 2, no.

2, pp. 101–108, 2013.
[15] T. Mathew, K. C. Sekaran, and J. Jose, “Study and analysis of vari-

ous task scheduling algorithms in the cloud computing environ-

ment,” in Advances in Computing, Communications and Informat-

ics (ICACCI, 2014 International Conference on, 2014, pp. 658–664.

https://doi.org/10.1109/ICACCI.2014.6968517.

https://doi.org/10.1109/JNS3.2013.6595470
https://doi.org/10.1109/CloudCom.2010.42
https://doi.org/10.1109/ICACCI.2014.6968517

