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Abstract

In recent decades, hyperjerk systems have been studied well in the literature because of their simple dynamics structure and complex
qualitative properties. In this work, we announce a new hyperchaotic hyperjerk system with three nonlinear terms. Dynamical properties of
the hyperjerk system are analyzed through equilibrium analysis, dissipativity, phase portraits and Lyapunov chaos exponents. We show that
the new hyperchaotic hyperjerk system has a unique saddle-focus equilibrium at the origin. Thus, the new hyperchaotic hyperjerk system has
a self-excited strange attractor. Next, global hyperchaos synchronization of a pair of new hyperchaotic hyperjerk systems is successfully
achieved via adaptive backstepping control. Also, an electronic circuit of the hyperchaotic hyperjerk system has been designed via MultiSIM
to check the feasibility of the theoretical system.
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1. Introduction

It is well-known that chaos theory has application has many branches
of science and engineering ([1]-[2]). Some popular applications can
be mentioned as plasma systems [3], weather systems ([4]-[5]),
chemical reactions ([6]-[8]), encryption ([9]-[11]), robotics [12],
oscillations ([13]-[16]), circuits ([17]-[20]), etc.
In 1996, it was shown by Gottlieb [21] that 3-D chaotic systems
can be expressed in the form of single ordinary differential equa-
tions, which are also termed as jerk differential equations. The
jerk differential equations arise in many physical models of science
and engineering such as jerk circuits [22], thermal arc plasma [23],
biological reactions [24], mechanical oscillations [25], etc.
In physics, a jerk differential equation can be represented as the third
order dynamics

...x = f (x, ẋ, ẍ) , (1)

where x(t) represents the displacement, ẋ(t) the velocity, ẍ(t) the
acceleration and

...x (t) the jerk.
A famous example of a jerk system is the Coullet system [26], which
is described by the jerk dynamics

...x +aẍ+ ẋ−b(x2−1) = 0. (2)

In [26], it was established that the jerk dynamics (2) is chaotic when
(a,b) = (0.6,0.58).

Generalizing the jerk system (2), we obtain the hyperjerk system
given by

D(n)(x) = f
(

x,Dx, . . . ,D(n−1)(x)
)
, (n≥ 4), (3)

where D = d
dt is the time-derivative.

In the modelling of dynamical systems, it is a common practice to
express the nth order ODE (3) as an equivalent system of n ordinary
differential equations.
This is carried out by defining n phase variables defined as follows:

x1 = x
x2 = ẋ
x3 = ẍ
...

...
...

xn = D(n)(x)

(4)

Using the phase variables (4), we can give a representation in system
form for the hyperjerk differential equation (3) as follows:

ẋ1 = x2

ẋ2 = x3

...
...

...

ẋn−1 = xn

ẋn = f (x1,x2, . . . ,xn)

(5)
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Thus, the n-th order ODE (3) and the system of n ODEs (5) are equiv-
alent. Henceforth, we shall consider hyperjerk systems in the system
form given by Eq. (5). Hyperjerk systems have generated good
interest in the literature due to their simple structure and complex
qualitative properties ([27]-[31]).
By adding a quadratic nonlinearity to Daltzis hyperjerk system [32]
and considering different parameter values, we derive a new hyper-
chaotic hyperjerk system in this work. In Section 2, we describe
the dynamics and qualitative properties of the new hyperchaotic
hyperjerk system. As an engineering application, we derive global
hyperchaos synchronization results for the new hyperchaotic hyper-
jerk system with unknown parameters using adaptive backstepping
control in Section 3. Furthermore, we design an electronic circuit us-
ing MultiSIM for the new hyperchaotic hyperjerk system in Section
4. Conclusions are summarized in Section 5.

2. A new hyperjerk system with three nonlinear
terms

In 2018, Daltzis et al. [32] presented a new 4-D hyperjerk system
given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1− x2−ax3−b|x2|− cx4
1x4

(6)

where a,b and c are positive parameters. In [32], it was shown that
the Daltzis hyperjerk system (6) is hyperchaotic when the parameters
take the values (a,b,c) = (3.8,0.1,1.5).
Using Wolf’s algorithm [33], the Lyapunov exponents of the Daltzis
hyperjerk system (6) are obtained for (a,b,c) = (3.8,0.1,1.5) and
X(0) = (0.1,0.1,0.1,0.1) for T = 1E4 seconds as

L1 = 0.1201, L2 = 0.0210, L3 = 0, L4 =−1.2854. (7)

Since L1 and L2 are positive in (7), we conclude that the Daltzis
hyperjerk system (6) is hyperchaotic.
Also, the Kaplan-Yorke dimension of the Daltzis hyperjerk system
(6) is calculated as

DKY = 3+
L1 +L2 +L3

|L4|
= 3.1098, (8)

which gives a pointer to the complexity of the Daltzis hyperjerk
system (6).
In this paper, we propose a new 4-D hyperjerk system by adding a
quadratic nonlinearity to Daltzis hyperjerk system (6) as follows.

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1− x2−ax3−b|x2|− cx4
1x4−dx2

2

(9)

where a,b,c and d are positive parameters.
We show that the system (9) is hyperchaotic for the parameter values
(a,b,c,d) = (3.8,0.01,1.3,0.05).
Using Wolf’s algorithm [33], the Lyapunov exponents of the new hy-
perjerk system (9) are obtained for (a,b,c,d) = (3.8,0.01,1.3,0.05)
and X(0) = (0.1,0.1,0.1,0.1) for T = 1E4 seconds as

L1 = 0.1251, L2 = 0.0183, L3 = 0, L4 =−1.1275 (10)

Since L1 and L2 are positive Lyapunov exponents, the new hyperjerk
system (9) is hyperchaotic.
By adding all Lyapunov exponents in (10), we get the sum as
−0.9841, which is negative. This shows that the new hyperjerk
system (9) is dissipative.

The Kaplan-Yorke dimension of the new hyperjerk system (9) is
determined as

DKY = 3+(L1 +L2+L3)/|L4|= 3.1272, (11)

which gives a pointer to the high complexity of the hyperchaotic
hyperjerk system (9).
The maximal Lyapunov exponent (MLE) of the new hyperjerk sys-
tem (9) is L1 = 0.1251, which is greater than the MLE of the Daltzis
hyperjerk system (6) given by L1 = 0.1201.
Also, the Kaplan-Yorke dimension of the new hyperjerk system (9)
is DKY = 3.1272, which is greater than the Kaplan-Yorke dimension
of the Daltzis hyperjerk system (6) given by DKY = 3.1098. Thus,
we have shown that the new hyperjerk system (9) is more complex
than the Daltzis hyperjerk system (6).
The equilibrium points of the new hyperjerk system (9) are tracked
by solving the following equations:

x2 = 0

x3 = 0

x4 = 0

−x1− x2−ax3−b|x2|− cx4
1x4 = 0

(12)

For all the parameter values, the new hyperjerk system (9) has a
unique equilibrium point at the origin:

E0 = 0 =


0

0

0

0

 (13)

The Jacobian matrix of the new hyperjerk system (9) at the equilib-
rium point E0 = 0 is obtained as

J0 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 −a 0

 (14)

For the hyperchaotic case, the parameters are taken as (a,b,c,d) =
(3.8,0.01,1.3,0.05).
Then we have

J0 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 −3.8 0

 (15)

which has the eigenvalues 0,0,±1.9494i.
Thus, the new hyperjerk system (9) has a critical case at the ori-
gin. The stability of the new hyperjerk system (9) can be further
investigated using Lyapunov stability theory.
The phase portraits of the new hyperchaotic hyperjerk system (9) are
displayed in Figures 1-4.
The Lyapunov exponents of the new hyperchaotic hyperjerk system
(9) are shown in Figure 5.

3. Global hyperchaos synchronization of the
new hyperjerk systems

In this section, we study an engineering application of the new
hyperjerk system, viz. global hyperchaos synchronization of a pair
of new hyperjerk systems considered as master and slave systems
via adaptive backstepping control method.
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Figure 1: MATLAB simulations of phase portraits of the new hyper-
chaotic hyperjerk system (9) for X(0) = (0.1,0.1,0.1,0.1) and (a,b,c,d) =
(3.8,0.01,1.3,0.05) in (x1,x2) plane

Figure 2: MATLAB simulations of phase portraits of the new hyper-
chaotic hyperjerk system (9) for X(0) = (0.1,0.1,0.1,0.1) and (a,b,c,d) =
(3.8,0.01,1.3,0.05) in (x2,x3) plane

Figure 3: MATLAB simulations of phase portraits of the new hyper-
chaotic hyperjerk system (9) for X(0) = (0.1,0.1,0.1,0.1) and (a,b,c,d) =
(3.8,0.01,1.3,0.05) in (x3,x4) plane

As the master system, we consider the new hyperjerk system given

Figure 4: MATLAB simulations of phase portraits of the new hyper-
chaotic hyperjerk system (9) for X(0) = (0.1,0.1,0.1,0.1) and (a,b,c,d) =
(3.8,0.01,1.3,0.05) in (x1,x4) plane

Figure 5: Lyapunov exponents of the new hyperchaotic hyperjerk system (9)
for X(0) = (0.1,0.1,0.1,0.1) and (a,b,c,d) = (3.8,0.01,1.3,0.05)

by
ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1− x2−ax3−b|x2|− cx4
1x4−dx2

2

(16)

where x1,x2,x3,x4 are the states and a,b,c,d are unknown parame-
ters of the system.
As the slave system, we consider the new hyperjerk system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = y4

ẏ4 = −y1− y2−ay3−b|y2|− cy4
1y4−dy2

2 +u

(17)

where y1,y2,y3,y4 are the states and u is the backstepping control to
be found.
The synchronization error between the new hyperjerk systems (16)
and (17) is defined by

e1 = y1− x1

e2 = y2− x2

e3 = y3− x3

e4 = y4− x4

(18)
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The error dynamics is calculated as follows.

ė1 = e2

ė2 = e3

ė3 = e4

ė4 = −e1− e2−ae3−b(|y2|− |x2|)
−c(y4

1y4− x4
1x4)−d(y2

2− x2
2)+u

(19)

Next, we define the estimation errors for the unknown parameters as
ea(t) = a−A(t)

eb(t) = b−B(t)

ec(t) = c−C(t)

ed(t) = d−D(t)

(20)

where A(t),B(t),C(t),D(t) are estimates for a,b,c,d, respectively.
Differentiating (20), we get

ėa(t) = −Ȧ(t)

ėb(t) = −Ḃ(t)

ėc(t) = −Ċ(t)

ėd(t) = −Ḋ(t)

(21)

Using adaptive backstepping control method, we establish the key
result of this section.

Theorem 1. The master and slave hyperchaotic systems represented
by the new hyperjerk systems (16) and (17) with unknown parameters
are globally and exponentially synchronized by means of the adaptive
backstepping feedback control law given by{

u = −4e1−9e2− (9−A(t))e3−4e4 +B(t)(|y2|− |x2|)

+C(t)(y4
1y4− x4

1x4)+D(t)(y2
2− x2

2)− kξ4

(22)

where k > 0 is a gain constant,

ξ4 = 3e1 +5e2 +3e3 + e4 (23)

and the update law for the parameter estimates A(t),B(t),C(t),D(t)
is given by

Ȧ(t) = −ξ4e3

Ḃ(t) = −ξ4(|y2|− |x2|)
Ċ(t) = −ξ4(y4

1y4− x4
1x4)

Ḋ(t) = −ξ4(y2
2− x2

2)

(24)

Proof. We establish this result via adaptive backstepping contorl
method and Lyapunov stability theory [34].
We define the Lyapunov function

V1(ξ1) =
1
2

ξ
2
1 (25)

where

ξ1 = e1 (26)

Differentiating V1 along the error dynamics (19), we get

V̇1 = ξ1ξ̇1 = e1e2 =−ξ
2
1 +ξ1(e1 + e2) (27)

We set

ξ2 = e1 + e2 (28)

Using (28), we can simplify Eq. (27) as

V̇1 =−ξ
2
1 +ξ1ξ2 (29)

Next, we define the Lyapunov function

V2(ξ1,ξ2) =V1(ξ1)+
1
2

ξ
2
2 =

1
2
(ξ 2

1 +ξ
2
2 ) (30)

Differentiating V2 along the error dynamics (19), we get

V̇2 =−ξ
2
1 −ξ

2
2 +ξ2(2e1 +2e2 + e3) (31)

We set

ξ3 = 2e1 +2e2 + e3 (32)

Using (32), we can simplify Eq. (31) as

V̇2 =−ξ
2
1 −ξ

2
2 +ξ2ξ3 (33)

Next, we define the Lyapunov function

V3(ξ1,ξ2,ξ3) =V2(ξ1,ξ2)+
1
2

ξ
2
3 =

1
2
(ξ 2

1 +ξ
2
2 +ξ

2
3 ) (34)

Differentiating V3 along the error dynamics (19), we get

V̇3 =−ξ
2
1 −ξ

2
2 −ξ

2
3 +ξ3(3e1 +5e2 +3e3 + e4) (35)

We set

ξ4 = 3e1 +5e2 +3e3 + e4 (36)

Using (36), we can simplify Eq. (35) as

V̇3 =−ξ
2
1 −ξ

2
2 −ξ

2
3 +ξ3ξ4 (37)

To simplify the notation, we set ξ = (ξ1,ξ2,ξ3,ξ4).
Finally, we define the quadratic Lyapunov function V (ξ ,ea,eb,ec,ed) = V3(ξ1,ξ2,ξ3)+

1
2 ξ 2

4

+ 1
2 (e

2
a + e2

b + e2
c + e2

d)
(38)

Clearly, V is a quadratic and positive definite function on R8.
Differentiating V along the error dynamics (19) and (24), we get

V̇ =−
4

∑
i=1

ξ
2
i +ξ4(ξ4 +ξ3 + ξ̇4)− eaȦ− ebḂ− ecĊ− edḊ (39)

Eq. (39) can be written compactly as

V̇ =−
4

∑
i=1

ξ
2
i +ξ4S− eaȦ− ebḂ− ecĊ− edḊ (40)

where

S = ξ4 +ξ3 + ξ̇4 = ξ4 +ξ3 +(3ė1 +5ė2 +3ė3 + ė4) (41)

A simple computation gives the result{
S = 4e1 +9e2 +(9−a)e3 +4e4−b(|y2|− |x2|)

−c(y4
1y4− x4

1x4)−d(y2
2− x2

2)+u
(42)

Substituting the value of u from (22) into Eq. (42), we get
S = −[a−A(t)]e3− [b−B(t)](|y2|− |x2|)

−[c−C(t)](y4
1y4− x4

1x4)

−[d−D(t)](y2
2− x2

2)− kξ4

(43)

Using the definition of parameter estimation errors given in Eq. (20),
we can simplify Eq. (43) as follows:

S =−eae3− eb(|y2|− |x2|)− ec(y4
1y4− x4

1x4)− ed(y
2
2− x2

2)− kξ4

(44)
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Substituting the value of S from Eq. (44) into Eq. (40), we get

V̇ = −ξ 2
1 −ξ 2

2 −ξ 2
3 − (1+ k)ξ 2

4 + ea[−ξ4e3− Ȧ]

+eb[−ξ4(|y2|− |x2|)− Ḃ]

+ec[−ξ4(y4
1y4− x4

1x4)−Ċ]

+ed [−ξ4(y2
2− x2

2)− Ḋ]

(45)

Substituting the parameter update law from Eq. (24) into Eq. (45),
we get

V̇ =−ξ
2
1 −ξ

2
2 −ξ

2
3 − (1+ k)ξ 2

4 (46)

which is a negative semi-definite function on R8.
Thus, by Barbalat’s lemma in Lyapunov stability theory [34], we
conclude that e(t) is globally exponentially stable. Hence, it is
consequent that the master and slave hyperchaotic systems repre-
sented by the new hyperjerk systems (16) and (17) are globally and
exponentially synchronized for all initial conditions x(0),y(0) ∈ R4.
Hence, the proof is complete.

For numerical simulations, we take the parameter values of the new
hyperjerk systems (16) and (17) as in the hyperchaotic case, i.e.
(a,b,c,d) = (3.8,0.01,1.3,0.05). We take the positive gain constant
k as k = 10.
We take the initial state of the master hyperjerk system (16) as
X(0)= (0.9,−0.7,1.4,0.3) and the initial state of the slave hyperjerk
system (17) as Y (0) = (−1.5,0.1,2.7,−1.2). The initial conditions
of the parameter estimates are taken as A(0) = 6.5, B(0) = 4.3,
C(0) = 9.7 and D(0) = 8.2.
Figures 6-9 show the complete synchronization of the hyperjerk
systems (16) and (17). Figure 10 shows the time-history of the
hyperchaos synchronization error e = (e1,e2,e3,e4).

Figure 6: Synchronization of the states x1 and y1 for the hyperjerk systems
(16) and (17)

4. Circuit design for the new hyperjerk system

In this section,we design and build an electronic circuit of the new
hyperjerk system (9) as shown in Fig. 11. The circuit in Fig. 11 is
designed by using operational amplifiers where the state variables
x1,x2,x3, and x4 of new hyperjerk system (9) are associated with
the voltages across the capacitors C1,C2,C3, and C4, respectively. It
consists of simple electronic elements, such as resistors, capacitors,
operational amplifiers, diode, and analog devices AD633 multipli-
ers. By applying Kirchhoff’s laws to this circuit, its dynamics are

Figure 7: Synchronization of the states x2 and y2 for the hyperjerk systems
(16) and (17)

Figure 8: Synchronization of the states x3 and y3 for the hyperjerk systems
(16) and (17)

Figure 9: Synchronization of the states x4 and y4 for the hyperjerk systems
(16) and (17)

described by the following circuital equations:

dV c1
dt = 1

C1R1
V c2

dV c2
dt = 1

C2R2
V c3

dV c3
dt = 1

C3R3
V c4

dV c4
dt = − 1

C4R4
V c1− 1

C4R5
V c2− 1

C4R6
V c3− 1

C4R7
|V c2|

− 1
100C4R8

V c4
1V c4− 1

C4R9
V c2

2

(47)
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Figure 10: Time-history of the synchronization error e between the hyperjerk
systems (16) and (17)

where V c1,V c2,V c3 , and V c4 are the voltages across the capacitors
C1,C2,C3, and C4 respectively. The values of electronic components
R6 = 26.315 kΩ, R7 = 10 MΩ, R8 = 769 Ω, R9 = 2 MΩ, R1 =
R2 = R3 = R4 = R5 = R10 = R11 = R12 = R13 = R14 = R15 = R16 =
R17 = R18 = R19 = R20 = 100 kΩ, and C1 = C2 = C3 = C4 = 1
nF. The power supplies of all active devices are ± 15 V and the
operational amplifiers TL082CD are used. Phase portrait outputs
of the electronic circuit simulation are shown in Fig. 12. It can
be concluded that good qualitative agreement with the MATLAB
simulations is obtained, as well.

5. Conclusion

In this paper, based on mathematical models and numerical sim-
ulations we have described the dynamics and chaos control of a
new hyperjerk system (9) with one absolute nonlinearity. Its chaotic
features are fully examined by eigen value structure, Lyapunov ex-
ponents and Lyapunov dimension. In addition, an adaptive backstep-
ping controller is introduced to stabilize such hyperjerk system and
achieve global hyperchaos synchronization. The designed circuit has
been implemented and tested using the MultiSIM software to verify
the simulation results. We have found a good agreement between
numerical simulations and analog circuit.
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Figure 11: Circuit design of the new hyperchaotic hyperjerk system (9) (a)
X1 signal,(b) X2 signal, (c) X3 signal, (d) X4 signal and (e) |X2| signal
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Figure 12: Chaotic attractors of the new hyperchaotic hyperjerk system (9)
using Multisim circuit simulation: (a) x1− x2 plane, (b) x2− x3 plane, (c)
x3− x4 plane and (d) x1− x4 plane
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