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Abstract 
 

We consider the problem of finding a geometrical form of a body in a thermal radiation field, for which the thermal balance between the 

body and the surrounding air is minimal. The case of a point source of heat is investigated. To consider an analogous problem for 

buildings, one must know the value of incoming thermal energy to a unit square in relation to its orientation. We develop an application 

package in MATLAB that represents this relation in table form and takes into consideration the direct, diffuse, ground-reflected solar 

radiation and the thermal radiation of atmosphere.  
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1. Introduction 

We study how the form of a building implies on its energy-

conservation attributes. Not by accident that houses of 

aborigines on territories with very hot or very cold climate have 

a semi-spherical form. Interest in energy-conservation buildings 

has increased in the past few years because of depletion of 

traditional sources of energy [16].  

The problem of minimizing the thermal balance between a 

building and the surrounding air is considered in [14,15] for 

buildings having the form of parallelogram, triangular pyramid, 

or circular cylinder. To study this problem one must know the 

value of incoming thermal energy to a unit square in relation of 

its orientation. There are many mathematical models for this 

process. Some of them are primitive; they either drop essential 

physical factors (orientation, feculence of atmosphere, and 

altitude), or are based on particular data [3-6]. Others are very 

complicated and the speed of modern computers is insufficient 

for their solution [7].  

It is important to construct a high-speed computer model of 

heat transmission from the Sun and atmosphere on an 

arbitrarily oriented plane. This problem is important for 

optimization of the geometrical form not only of buildings, but 

also of solar hot-water generators [10] and concentrators of  

solar energy [1]. An analogous problem arises in agriculture: to 

find the best time of planting on slopes [11].   

Problems of geometrical modeling of transmission of direct 

solar radiation are the most extensively studied, mainly for the 

clear sky; investigators consider only the probability of solar 

days [8, 12, 17]. 

The paper is organized as follows. In Section 1 we consider the 

problem of optimizing the form of a geometrical body of a 

fixed volume that is heated by a light source located infinitely 

far away. In Section 2 we consider an analogous problem but 

for a heat source located at some fixed distance. In Sections 3 

and 4 we construct models of receipt of atmosphere, ground-

reflected, and solar thermal radiation. 

2. Main Body 

1. Body from optimization heated by an infinitely far 

located source  
Let us consider a geometrical body Q of a fixed volume V that 

is radiated by a heat source P located infinitely far away. Let p 

be the value of thermal energy transmitted from P to a unit 

square that is perpendicular to its rays. Let q be the value of 

thermal energy radiated by a unit square on the surface of Q. 

 Let the form of this body be determined by the following 

condition: its thermal balance is 0 or a negative number 

maximally close to 0. 

Then the equation of thermal balance has the form: 

 

 = pS  qS,                                                                  (1) 

 

in which Sis the projection of Q to a plane that is 

perpendicular to beams of Р and S is the surface area of Q. It 

can be proved that Q is a body of rotation around an axis 

parallel to thermal beams of Р; the form of Q depends on p and 

q as illustrated in Fig. 1: 

(і) If p = 0 then  <0 and Q is the sphere of radius 
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(іі) if 0 <p <2q then  <0 and Q is the body formed by two 
mutually symmetric spherical segments, each of height h and 
the common base of radius r, where 
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(ііі) if р = 2q then  = 0 and Q degenerates to the circle of 

infinite radius that is perpendicular to beams of the source Р; 

(іv) if 2q <p <4q then  = 0 and Q has the same form as in 
case (іі) with 
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(v) If р = 4q then  = 0 and Q is a sphere as in case (і); 

(vi) If p > 4q then  = 0 and Q is the circular cylinder of 
radius r and height h with two semicircles of the same radius 
on its ends, where segments on tops. 
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Fig.1.  Body form change of a unit volume that has minimal thermal 
balance with the surrounding air, depending on the intensity of an 
external infinitely located heat source. 

 
2. Body form optimization heated by a source located at 

a fixed distance. 
Now let a source Р be located at some finite distance H from 

the weight center O of a body Q and volume V. Let the source 

radiate heat stream p.  

It is proved that Q is a rotational body inscribed in a cone  

with axis of rotation PO and the top point P. Then the thermal 

balance equation is 

 

qS
p

 )cos1(
2

,                                                  (6) 

 

in which  is the angle between РО and a generating line of . 

The body Q is the minimum area body inscribed in the cone . 

It consists of the truncated cone with spherical segments on 

tops. We call it maximally compact. There are 3 values of  at 

which Q changes its structure [13]:  

 1 that is defined from the equation 
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 2  defined by 
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 3 that is defined from the equation 
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Fig. 2 illustrates the transformation of the form of maximally 

compact body depending on the angle . 
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Fig.2.  Maximum compact body form for different values of the angle 

.  

 

It is impossible to find analytically the optimal value of angle  

from the equation (6) because of complicated transcendental 

dependence on  of the surface area of Q and the itself from V 

and H. To find a computing solution, we have developed a 

package of M-files “Optima” in system MATLAB. 

It realizes the following algorithm: 

(i) find as a function of  for a maximum compact 

body Q with the weight center О, inscribed in the cone 

 (in which  varies from 1 to 90  with step 1); 

(ii) find the corners 1, 2, … for which   is 0 or is 

maximally close to 0 (for negative values of ); 

(iii) find the areas S1, S2, … of Q for  equaling 1, 2, ; 

(iv) find  = opt for which S = min (S1, S2, …); 

(v) find geometrical parameters that define the form of 

Q and the value of .  

An example of the graphic information obtained with the 

package “Optima” is given in Fig. 3. 

 

3. Modeling of atmosphere receipt and ground-reflected 

thermal radiations  
Studying thermal radiation for the clear sky, we accept the 

following assumptions: 

1. The Earth is the sphere of radius 6371.21 km. 

2. The height of atmosphere is 25 km. The atmosphere is 

isotropic and translucent body for thermal radiation. 

3. The absorbing and radiating substances in atmosphere 

are water steam, carbonic acid, and ozone. Practically all water 

steam and more than 95% of carbonic acid are contained in the 

atmosphere layer at the height of 25 km. The distribution of 

water steam depending on height is given by the formula (see 

[7]): 

4.  
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in which e and e0 are the pressure of water steam at height of h 

km and on the ground level. The volume content of carbonic 

acid in atmosphere is 0.033% and does not depend on height. 

The relation of its density to the density of dry air is 1.529. 

Ozone is concentrated in the layer of thickness 3.4 mm and at 

height of 20 km from the ground. This assumption for 

optimizing the buildings form is correct since the height of 

buildings is  much lesser than of the ozone layer. 

 
Fig.3. The “Optima” output for H=16 m, V=660 m3, q = 10 watt/m2, and р = 
210000 watt. 
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4.   The temperature t of atmosphere depends on the height h as 

follows: 

-     from the ground to 1 m (the layer of thermal 

roughness) by the formula             

 

2

0 2)( hhtttt ll  ,                                              (11)  

 
in which tl is the temperature of the ground surface and t0 is 

the temperature of air at height of 2 m; 

- from 1 m to 50 m (to the upper border of 

surface layer) the temperature is stable and is 

equal to t0; 

- from 50 m to 11 km (to the upper border of 

troposphere) the temperature changes linearly; 

the temperature at 11 km is 56.5  and the 

average gradient of temperature in troposphere 

is 6.5 ; 

5. The absorption coefficients of radiating gases are determined 

by the formulas 
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where k0 is the value of absorption coefficient at some fixed 

height in which the temperature is T0, and pressure is p0; h is 

the height on which kis calculated; and  is the wave length. 

6. The atmosphere consists of 100 layers of different 

thickness. Within each layer physical properties of atmosphere 

are constant. The thickness of the layers changes from 2 cm near 

the ground to 700 m at height of 25 km. 

7. The ground surface is a grey isotropic body of 

temperature tz. This means that radiance of a surface is the 

same in all directions. 

8. We take into consideration the radiation of gases of 

waveband 4-99 microns; by Planck's law, more than 99% of 

radiation of absolutely black body (in atmosphere conditions) 

are in this waveband. 

9. This waveband is divided into 37 segments. Within 

each segment, the absorption coefficient is considered as 

constant. 

Under these assumptions, the equation of heat transfer in 

atmosphere at clear sky takes the form 
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in which h is the height of the design point over ground;  is 

the inclination of a beam; G and U are the intensity of 

integrated radiation from the upper and the bottom hemispheres 

of the space; G and U are the intensity of monochrome 

radiation within a segment ; ki is the mass coefficient of 

absorption of the i-th gas; kis a coefficient that reflects the 

curvature of atmosphere and  refraction; i is the density of i-th 

gas; E is Planck's function on segment  for the temperature at 

height h; is the absorption coefficient of the ground.  

For the cloudy sky we assume that each cloud is an absolutely 

black body. For the height of clouds in several hundreds of 

meters this assumption is correct since the thickness of the 

bottom part of clouds, where thermal radiation is absorbed only 

partially, is only several tens of meters. 

In the case of overcast, equations similar to (13) were obtained 

under additional boundary conditions: 

 

G(Hcl,) = E(Hcl);    0  h  Hcl,                               (14) 

 
in which Hcl is the height of the bottom surface of clouds. 

For incomplete nebulosity, the value of intensity of an 

irradiation of a point B in a direction  is calculated by the 

formula 

 

B = B0(1n) + B10n,                                             (15) 

 
in which B0 and B10are the intensity of irradiation of the 

design point for the clear and for the completely cloudy sky; 

nis the number of clouds in the direction  which admits to 

take into account the projective increase of the number of 

clouds near horizon because of their height. 

On the base of the obtained formulas, we develop the package 

of M-files “Long-wavelength radiation”, which calculates a 

two-dimensional file of values B(H,) of the stream of thermal 

radiation at height H in the direction . The input parameters 

are the following: t, f, and p are temperature, relative humidity, 

and pressure of atmosphere in two meters over the ground;  tl is 

the ground temperature;  Hmax is the maximal height of the 

design point over the ground;  Hcl is the height of the bottom 

surface of clouds;  n is the number of clouds. An example of 

the use of this package is given on Fig. 4. 

 
Fig. 4. Calculations results of by the package “Long-wavelength 

radiation” for t = 10,         tl = 5,  f  = 70%,  p = 1000 gPa,  = 

0.95, Hmax= 50 m, Нcl = 2000 m.  

 

4. Modeling of solar radiation receipt  
  Under the clear sky the direct solar radiation I0 arriving to any 

plane is calculated by the well-known formula 

 

  I0 = Ip
m
 ,                                                                     (16)  

 

where I = f (,N,D,Hr,,) is the intensity of direct solar 

radiation on any plane on the top border of atmosphere; is the 

geographic latitude, N is the month of year, D is the day of 

month; Hr is the time of day;  and  are the angle of slope and 

the azimuth of normal to the design plane; p is the atmosphere 

transparency; m is the optical weight of atmosphere in the 

normal direction. 

Geometrical bases for calculation of I are given in [9]. Finding 

the optical weight m of atmosphere, we take into account its 

curvature and refraction. The atmosphere transparency p is 

calculated by the formula, which was obtained by 

P.M.Tverskiy method [4]: 
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in which 0.906 is the transparency of ideal atmosphere for an 

integrated stream at m=1; m1 is the weight of atmosphere for 

which the feculence atmosphere factor Tm1 is determined; 0.018 

and am are the values, for the ideal and the real atmosphere, of 

some parameter defined in [4]. 

For a cloudy sky the value of direct solar radiation is 

determined by a formula similar to (15) and I10 = 0. 

Radiance distribution modeling of diffused radiation is based 

on the assumption that the light and the energy streams of 
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diffused radiation are proportional. This assumption is valid 

because the maximum of energy of diffused solar radiation is 

located in visible light being the electromagnetic waves of 

0.425-0.450 microns, [4,7]. Then the radiance of clear sky is 

defined by R.Kitler's formula: 
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and the radiance for overcast by the formula 

 

  sin)1( 1110 aaLL z ,                                       (19) 

 

[2]. Here Lz is the brightness of the sky in zenith; z0 and z are 

the zenith distances in the sky of the Sun and of the flow point; 

 is the flow point angular distance of the to the Sun; a, b, d  

are factors that depend on the atmosphere transparency; a1 is a 

factor depending on ground albedo.  

We propose to determine the radiance of the cloudless sky as 

follows. 

It is known that for the clear sky the ratio k1 between the stream 

of diffused radiation falling on a horizontal plane ih, and the 

intensity of direct solar radiation I depends only on the 

atmosphere transparency. If the optical weight of atmosphere is 

m = 1.5, then basing on experimental data the authors of [4,7] 

obtain  

 

   (20) 

 

Using (20), we can determine the function k1 (Tm1,m1,m), in 

which Tm1, m1, m are as in (17). Then 
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Determining Lz in the case of overcast, we use the following 

additional assumptions: 

1. Clouds are located in a single layer. 

2. The solar radiation to the top border of clouds 

arrives through the clear sky. 

3. The feculence factor Tm1 depends on the elevation 

over sea level as illustrated on Fig. 5. This dependence is 

implied from the experimental data [4]. 

4. The function P of solar radiation transmission 

through clouds depends on the height of the Sun and is given in 

Fig. 6. To determine it, we used [7] containing data on streams 

of diffused radiation for clouds of different types and for 

different heights of the Sun. 

5. All radiation that has passed through clouds is 

diffused and reaches the design point. 

 
Fig.5. Feculence factor change in dependence to height 

 
Fig.6. The function P of solar radiation transmission trough clouds 
 

Under these assumptions,  
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in which Icl and icl are the streams of direct and diffused 

radiation on the top border of clouds. 

Distribution of radiance of diffused radiation for any cloudiness 

is defined under the formula which is similar to (15). Total 

solar radiation is reflected isotropically from the ground in the 

form of diffused radiation.  

The considered dependences of solar radiation receipt are 

realized in the form of a package of M-files.  

3. Conclusion 

The considered examples of optimizing the geometrical body 

form heated by a point source (possibly, positioned infinitely 

far away) illustrate the importance of a body form in energy 

saving problems. To solve optimizing problems, we developed 

a MATLAB package that in table form finds the value of 

incoming thermal energy to a unit square relating to its 

orientation and takes into consideration the direct, diffuse, 

ground-reflected solar radiation, and the atmosphere thermal 

radiation. The results obtained with this package coincide very 

closely with the experimental data.  
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