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Abstract 
 

The article presents the design of shock-and-vibration machine for the formation of lightweight concrete products. The results of 

theoretical studies of the working process of the shock-and-vibration machine with the definition of motion and stress laws in a layer 

of a concrete mixture compacted in the kinematic excitation of oscillations are given. 

In paper the dependences for determining the reduced mass and the equivalent coefficient of inelastic resistance of a concrete mixture 

with asymmetric kinematic excitation of oscillations during the vibration seal are given. The practical application of the obtained 

results is offered. 
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1. Introduction 

The practice of recent years shows that one of the most promising 

construction methods, which provide high rates of building con-

struction, is frame-block and block construction. During construc-

tion, there is a need for a large number of lightweight concrete 

blocks, which are used as enclosing structures and have high 

thermal insulation and soundproofing indicators.  

The formation of these products is carried out on equipment, 

which in most cases is made by the forces and funds of the enter-

prises themselves or local construction organizations.  

Products that have been molded with existing equipment do not 

always meet the requirements for a number of indicators (strength, 

crack resistance and frost resistance).  

Vibrating machines with a shock-and-vibrational effect are quite 

effective for concrete mix compaction. They are effective in form-

ing a number of lightweight concrete products and have a number 

of advantages, which are, first of all, the possibility of effective 

formation of products from hard concrete mixtures with immedi-

ate removal of formwork, which contributes to production produc-

tivity increase, reduces the metal texture of equipment by reducing 

the circulation of forms and reduces energy consumption with heat 

treatment. 

The solution of the problem can be achieved by creating vibration 

machines with scientifically based technological indicators [1,2]. 

These indicators can be determined by conducting theoretical 

studies of the work process of the shock-and-vibration machine. 

2. Main Body 

The bases of the theory of oscillations, taking into account the 

elastic and dissipative properties of the investigated medium, are 

given in the papers [1, 3-5], are the theoretical foundations for the 

methods of calculating vibration machines [1, 6-8]. In determining 

the calculation scheme of the vibration machine, the influence of 

the medium, as it follows from the analysis, is carried out accord-

ing to the method of determining the influence of the adjoint mass 

[9,10] or the distributed parameters [1]. It is assumed [1] that the 

most correct is the inclusion of the processed medium in the form 

of distributed parameters.  

However, such an approach is possible for harmonic oscillations, 

and for shock and shock-and-vibration oscillations, such an ap-

proach is difficult to apply, due to the fact that under such modes 

there are different from the basic other frequencies, and then the 

principle of superposition is not possible. Therefore, a mixed dis-

crete-continuum model is adopted in the work, which is construct-

ed for the following reasons. It is assumed that the processed me-

dium is modeled by a system with distributed parameters, and in 

the general equation of motion in the system "machine-product" is 

included in the discrete form. This approach allows us to draw up 

a general calculation scheme, and the equations of motion are 

based on consideration of the contact area acceleration.  

The stresses in the layer of light concrete mix will arise as a result 

of compaction on the shock-and-vibration machine. Figure 1 de-

picts a structural scheme of the machine [10-12]. It consists of a 

frame 1 which is a rigid box-shaped design and consists of a weld-

ed frame made of profile metal, sewn with metal sheets. In the 

lower part of the movable frame and the upper part of the base 
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there are elastic pads 2. The movable frame is fixed relating to the 

base with the help of inclined mounted springs 3, and also inter-

acts with elastic elements 4 whose rigidity can be adjusted. The 

device is operated by means of a cam mechanism 5 which rotates 

with the help of an electric motor. 

 
Fig. 1: Construction of shock-and-vibration machine for concrete mixes 

products compaction 

The device works as follows. After loading the concrete mixture 

into the form 6, the electric motor is activated and the lifting of the 

movable frame 1 is carried out by means of the cam mechanism to 

the height, in the further rotation of the cam there is a fall of the 

moving frame on the elastic liners 2, placed on a stationary frame 

6. During the impact, there is a vibration that affects the compact-

ed mixture. Depending on the stiffness of the mixture loaded to 

the form, it is possible to adjust the stiffness of the elastic ele-

ments 4. It is known [1], the medium provides resistance to 

movement of the operating device its inertia and elastic-dissipative 

components that similarly called reactive (elastic-inertial) and 

active (dissipative) components. [13] In accordance with the ac-

cepted method [1], the influence of the medium is considered by 

the classical solution of the equation of motion, taking into ac-

count the boundary conditions (forces acting on the operating 

device in the contact zone or, for example, the amplitudes of the 

oscillations of the operating device and the medium in contact are 

the same, and on the surface - pressure is zero). In this case we 

obtain the general formula for determining the law of the com-

pacted medium in the vertical direction. 

The movement of the compacted medium in the direction of the 

coordinate (Fig. 2) can be described by the wave equation in par-

tial derivatives: 

 
2 2

*

2 2

( , ) ( , )u z t u z t
E

z t


 


 
,                                                    (1) 

 

where  u , z  – Eulerian and Lagrangian coordinates; 

  – density of concrete mix; 
*E  – complex deformation module of a concrete mix, 

 
* (1 )E E i  ;                                                                            (2) 

 

E  – modulus of elastic deformation of concrete mix; 

 – the resistance coefficient, which determines the part of 

the energy of the medium absorbed during one period of oscilla-

tion; 

 i – standard unit indicating shear elastic component of the 

vector to non-elastic (dissipative) . Substituting expression (2) into 

identical equation (1), we obtain the equation of compacted medi-

um motion in the following form: 
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To solve the wave equation of oscillations, we use the following 

boundary conditions: 
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Fig. 2: The calculation scheme of the dynamic system "vibroplate – com-

pacted medium" 

 

The solution of the wave equation of oscillation is represented as 

an imaginary part of the complex function: 
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where  ( , )n z tu  – the solution of the wave equation of oscillation 

(2) for one of the harmonics of the forced oscillations n , 

 

( , ) ( ) in t
n nz t zu U e

 ;                                                                     (7) 

 

( )n zU  – the complex amplitude of oscillations on one of the har-

monics of forced oscillations n . 

Substituting solution (6) into equation (3), we obtain the following 

differential equation for determining complex oscillations in one 

of the harmonics n :  
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Convert the equation (8) to the following form: 
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where  
nk  – complex wave number, 
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The solution of the resulting equation of oscillation (9) will have 

the following form: 

 

21( ) n n
k z k z

n nnz U eU U e
 

,                                                         (11) 

 

where 1nU , 2nU  – continuous integration, complex amplitudes, 

which are determined from the boundary conditions (4) and (6). 

Substituting expression (11) in identical equation (7) we find the 

solution of the equation of oscillation for one of the harmonics in 

the following form: 

 

21( , ) ( )n n
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.                                              (12) 

 

The complex wave number can be represented as follows: 
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( )n n nk a i 

,                                                                          (13) 

 

where na  – energy absorption coefficient characterizing the pro-

cess of damping the oscillations; 

n  –  wave number. 

Substituting expression (13) into identical equation (10) and 

equating an individually imaginary and valid part, we find the 

value of the coefficients in the following form: 
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where 
хвc – the phase velocity of propagation of vibrations in a 

compacted medium,  хв Ec  . 

With consideration of the expression (13), the solution (12) turns 

to the following form: 
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To determine the permanent integration we substitute the expres-

sion (16) into the boundary condition (5), find the relation be-

tween constant integration 1nU  and 2nU : 
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Substituting the formula (17) to expression (16), we find the solu-

tion of the equation of oscillation for one of the frequencies of the 

forced oscillations in the following form: 
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Continuous integration we find as a result of substituting expres-

sion (18) into a modified boundary condition (4) only using one 

forced harmonic oscillations, ie:  
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Designating the following 

 
( )

2
2 3 ( )( )2

n n

n nn n

a i h in t
in

n n a i ha i h

A e e
U U e

ee

 




 

 
 

                                     (20) 

 

and, substituting it in the expression (19), we will find 

 
( )

3 ( )( )

n n

n nn n

a i h

nn a i ha i h

e
U A

ee







 



.                                                   (21) 

 

Using expressions (20) and (21) we find constant integration in the 

following form: 

 
( ) ( )

2
2 ( ) ( )( ) ( )2

n n n n

n n n nn n n n

a i h a i h in t
in

nn a i h a i ha i h a i h

e A e e
U eA

e ee e

  


  

  

    
 

 
.     (22) 

 

Substituting the found constant integration into the expression 

(18), we find the solution of the oscillation wave equation of (3) 

for one single oscillation frequency: 
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After simple transformations, we represent the correspondence 

(23) in the following form: 
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Multiplying the numerators and denominators of the terms of the 

expression (24) to the complex function conjugate to the denomi-

nator, and separating the imaginary part from the first clause, and 

from the second clause the real part, and using expression (6), we 

obtain the desired solution of equation (3), which satisfies the 

boundary conditions (4) and (5): 
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where 1  and 1 – the energy absorption coefficient and the 

wave number are determined from expressions (14) and (15) at the 

basic angular frequency of oscillations  , generated by the cam 

mechanism. The stresses occurring in the layer of a compacted 

concrete mixture are determined from the following expression: 
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1n ,  

2n , 
1  и 

2  – angles of phase shift, 

 
1

( )n
nn

n

arctg th h


 


 
  

 
;                                                         (27) 

 

2
( )n

nn

n

arctg cth h


 


 
  

 
;                                                        (28) 

 

1
11

1

( )arctg th h


 


 
  

 
;                                                            (29) 

 

1
12

1

( )arctg cth h


 


 
  

 
.                                                         (30) 

 

Stresses that occur at the base layer of compacted concrete mix-

ture, can be determined from the following expression: 
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or from the following one 
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in which the harmonic components are represented as an imagi-

nary part of the complex function. 

The stresses that occur at the base of the layer of a compacted 

concrete mixture are substantially affected by the mass of the me-

dium. 

It is known [1], the medium provides resistance to movement of 

the operating device its inertia and elastic-dissipative components 

that similarly called reactive (elastic-inertial) and active (dissipa-

tive) components. From the equality of inertial forces and re-

sistance forces (Fig. 3) in the contact area of the concrete mixture 

with the bottom of the form, and using expression (2), we obtain 

the following relation: 

 
Fig. 3: Scheme to determine the reactive resistance of the medium 

 

 

2

2

( ) (0, )

1
c

d z t ES u t
m

dt i z




 
,                                                     (33) 

 

where cm  – attached mass of medium (concrete mix); 

S  – the base area of the bottom of the form. 

From the expression (33) follows: 
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Substituting formula (32) into expression (34) and accelerating the 

oscillations of the movable frame
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obtain a functional dependence for determining the reduced mass 
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Since the amplitudes of higher harmonics of oscillations are less 

than the amplitude of the primary (first) harmonic of oscillations, 

in the first approximation the given mass of the concrete mixture 

can be determined from the values of the fundamental frequency 

of forced oscillations. At the same time expression (35) turns to 

the following form: 
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.                   (36) 

 

Multiply the numerator and denominator of the first and second 

terms of expression (36) into an imaginary number conjugated to 

the denominator: 
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Separating from the complex function (37) the real part, we find 

the desired value of the reduced mass of the concrete mixture with 

asymmetric kinematic excitation of the oscillations: 
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.                                             (38) 

 

The analysis of the obtained expression (38) shows that the given 

mass of the concrete mixture with an asymmetric kinematic exci-

tation of oscillations is variable, ie, varies over time. 
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When using a discrete model it is expedient to use a constant 

magnitude of the reduced mass in the form of its average value. 

The magnitude of the average value of the reduced mass of the 

concrete mix for the full cycle of a single oscillation, that is, in a 

time 1 2T t t   will be equal to: 
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From this we find 
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where          1 1 11
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To determine the active resistance, we use the following: 

 

( ) (0, )dz t u t
b iES

dt z
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,                                                             (42) 

 

where   b  –  coefficient of inelastic resistance of cement-concrete 

mixture. 

 

From the expression (41) follows: 
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Substituting expression (32) and oscillations acceleration of the 

movable frame 
1

( ) n
in t

n
n

dz t
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


  into formula (43), we obtain 

a functional dependence for determining the coefficient of inelas-

tic resistance of a concrete mixture: 
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We determine in the first approximation the coefficient of inelastic 

resistance of a concrete mixture based on the values of the main 

frequency by forcing oscillations. At the same time expression 

(44) turns to the following form: 
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.                               (45) 

Separating from the complex function (45) the imaginary part, we 

find the desired value of the equivalent coefficient of inelastic 

resistance of the concrete mixture with asymmetric kinematic 

excitation of oscillations: 
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In paper [13] the dependences for determining the reduced mass 

and the equivalent coefficient of inelastic resistance of a concrete 

mixture during the vibration seal are given: 
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which can only be used for approximate calculations. 

3. Conclusions 

As a result of the theoretical studies, the law of motion of the 

compacted medium is established and the stresses in the compact-

ed layer of the concrete mixture are found, which allows, based on 

the well-known method [12], to determine the efficiency of the 

compaction process and the required compacted duration during 

the kinematic excitation of non-harmonic vibration oscillations. 

The experimental test showed that deductions and proposed by us 

correspondences (40), (41) and (44) give a difference /
cm , / /

cm  

and эквb  with experimental data no more than 15%. At the same 

time, the value of the reduced mass and the equivalent coefficient 

of inelastic resistance of the concrete mixture during the vibration 

compaction /
cm ,  / /

cm  и эквb , which are determined by known 

dependencies (47-49) [12], give a difference with the experimental 

data no less 35…40%. 

Thus, the obtained correspondences (38-41) and (46) determine 

the reactive and active supports of the medium by the oscillation 

of the actuating element of the shock machine.  

It becomes possible to use the coefficients эквb  and cm  in the 

equations of the joint motion of the operating device and the me-

dium, which include the concentrated parameters of the operating 

device and the distribution of parameters of the treated medium. 

The practical value of obtained data is the following: 
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- does not need to find the coefficients that characterize the har-

monic conditions in explicit form, which can significantly simpli-

fy the course of solutions; 

- gives an opportunity to estimate the motion of the continuum 

medium in the implementation of complex laws of motion of the 

system with the wave processes saving. 

References  

[1] I.I. Nazarenko, Vibratsiyni mashyny i protsesy budivelʹnoyi indus-
triyi, KNUBA, Kyiv, 2007, 230s. ISBN 978-966-627-134-7. 

[2] Korobko BO, “Investigation of energy consumption in the course of 

plastering machine’s work”, Eastern-European Journal of Enter-
prise Technologies, Vol. 4/8 (82), (2016), ss. 4–11. 

https://doi.org/:10.15587/1729-4061.2016.73336. 

[3] I.I. Blekhman, Vibratsionnaya mekhanika, Fizmatlit, Moskva, 1994, 
400 s. 

[4] P.P. Deryabin, V.F. Zavadskiy, A.F. Kosach, V. A. Popov, 

Tekhnologiya stroitel'nykh izdeliy iz yacheistykh betonov, SibADI, 
Omsk:, 2004, 108 s. 

[5] YU.M. Bazhenov, Tekhnologiya betona, ASV, Moskva, 2003, 

500 s. 
[6] Zhigiliy SM, “Primeneniye kriteriyev podobiya pri matematich-

eskom modelirovnii tekhnologicheskoy vibromashiny”, Voprosy 

vibratsionnoy tekhnologii, Vol. 1, (2006), ss.163-166. 
[7] Nazarenko II, Ruchynsʹkyy MM, Terenchuk SA, “Doslidzhennya 

rezhymnykh ta enerhetychnykh kharakterystyk prohresyvnykh vi-

bromashyn”, Visnyk NTUU «KPI», Vol. 63, (2011), ss.214-218. 
https://doi.org/10.20535/2305-9001.2011.63.58587. 

[8] Nazarenko II, Svidersʹkyy АТ, Dyedov ОР, “Stvorennya 

vysokoefektyvnykh vibroushchilʹnyuyuchykh mashyn novoho 
pokolinnya”, Visnyk NTUU «KPI», Vol. 63, (2011), ss.219-223. 
https://doi.org/10.20535/2305-9001.2011.63.58753. 

[9] AH Maslov, Zhanar Bat·saykhan, “Opredelenye ratsyonalʹnykh 
parametrov vybroudarnoho rabocheho orhana dlya uplotnenyya 

betonnykh smesey”, Visnyk Kremenchutsʹkoho natsionalʹnoho uni-

versytetu imeni Mykhayla Ostrohradsʹkoho, Vol. 4 (93), Chast. 1, 
(2015),  ss. 58-64. 

[10] Orysenko OV, Nesterenko MM, “Konstruktsiya udarno-

vstryakhivayushchey ustanovki dlya formovaniya stenovykh 

blokov iz legkikh betonov na osnove analiza konstruktivnykh oso-

bennostey uplotnyayushchikh mashin”, Materialy Mezhdunarodnoy 
nauchno-prakticheskoy konferentsii 2010g. G. Volgograd, Vol.1, 

(2011), ss. 227-233. 

[11] Orysenko OV, Nesterenko MM, “Rozroblennya konstruktsiyi udar-
no-strushuvalʹnoyi ustanovky dlya formuvannya stinovykh blokiv 

iz lehkykh betoniv na osnovi analizu konstruktyvnykh osoblyvostey 

ushchilʹnyuyuchykh mashyn”, Zbirnyk naukovykh pratsʹ: haluzeve 
mashynobuduvannya, budivnytstvo, Vol. 3(25), (2009), ss. 150-155. 

[12] Orysenko OV, Nesterenko MM, “Udarno-strushuvalʹna ustanovka 

dlya formuvannya stinovykh arbolitovykh blokiv iz lehkykh beto-
niv iz zastosuvannyam mineralʹnykh vʺyazhuchykh”, Zbirnyk nau-

kovykh pratsʹ: haluzeve mashynobuduvannya, budivnytstvo, Vol. 23, 

(2009), ss. 63-68. 
[13] I.I. Nazarenko, Prykladni zadachi teoriyi vibratsiynykh system, 

Vydavnychyy Dim «Slovo», Kyiv, 2010, 440s. 

 


