

Copyright © 2018 Ramesh Balasubramaniam, K. Nandhini. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4) (2018) 5673-5678

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i4.14224

Research paper

Extensive analysis of techniques in data streams

Ramesh Balasubramaniam 1 *, K. Nandhini 1

1 PG & Research Dept. of Computer Science, Chikkanna Govt. Arts College (Bharathiyar University), Tirupur, India

*Corresponding author E-mail: rameshbala50@gmail.com

Abstract

Applications are generating huge capacities (volume) of data at high speeds (velocity) from various sources such as images, text, audio,

and video (variety). Big data streams are generated by many applications in today’s world like IoT devices, online purchases, internet

traffic, social media, stock exchanges and more. The data source decides whether the processing should be by batch or stream. It is impos-

sible and unnecessary to record all incoming data, hence the need for data reduction techniques in data streaming. These techniques (sam-

pling, sketching, hashing, dimension reduction, and more) enable us to narrow down the big data to relevant data. This data sampled,

filtered, hashed, or processed through other techniques is used as input for data analysts to derive meaningful information. A well-designed

Data Stream Management System will strike a balance between the right data processing and the cost of processing. This paper highlights

the different techniques used in streaming data, related work in that area and the uses in today’s world.

Keywords: Hashing; Sampling; Sketching; Stream Data Model; Streaming Techniques.

1. Introduction

In the advent of big data and the 3V’s - Volume, Velocity, and Va-

riety (which keeps growing and now includes 6V’s - Value, Verac-

ity, and Variability) data is being generated continuously (infinite)

by many data sources. Data streams date from satellite information

processing systems to today’s social networks Internet of Things

(IoT). In today’s smart environment, data is also classified as peri-

odic or event triggered. The periodic devices generate big data

streams because they produce a constant amount of data at regular

intervals. Event triggered devices on the other hand are activated

only when a certain event is encountered. An event triggered device

might in turn trigger other devices which leads to a bigger network

of data streaming too. Applications that generate big data streams

are online purchases, Social networks, Stock market trading, click-

streams, sensors, GPS systems and more. As Fig 1 indicates stream

computing delivers real-time analytic processing constantly on in-

motion variable data. It enables descriptive and predictive analytics

to support real time decisions.

Fig. 1: Data Stream Management System.

This paper’s focus is on techniques used in streaming data that pro-

vide meaningful data to analysts. First, is the introduction to the

stream data model which includes Data Stream Management

Systems (DSMS), stream sources, queries, and stream processing.

Secondly, is the presentation of several techniques used in stream-

ing algorithms like sketching, clustering, hashing, and more. Fi-

nally, in the conclusion are the findings and next steps.

2. Stream data model

There are two problems [15] that a Relational database management

system (RDBMS) cannot handle when it comes to streaming data:

● Managing changes in data arrival rate during a specific query

lifetime

● The continuous flow of the data stream into the system that

cannot be stored in a traditional way; therefore, only the most

recent data can be used for answering the queries at a given

time point.

To address these issues DSMS was developed by the database com-

munity having different semantics associated to the queries [9].

In a Database Management System (DBMS) data is stored on disks

and queries are used to define or modify structures and to insert,

modify or retrieve the stored data. Data Stream Management Sys-

tem (DSMS) on the other hand has no data stored on any disk stor-

age. The source to the DSMS is a continuous stream of variable

(speed unknown) data. If the DSMS is not able to read all data in

the source, the unread data is lost. [9] As Table 1 points out, in

DBMS data is stored permanently and queries are transient.

Whereas, in a DSMS queries are stored permanently in sensors and

data is a continuously produced stream [15].

Despite these differences, DSMSs resemble DBMSs, in their pro-

cessing. All incoming data go through a transformation using com-

mon SQL operators like selections, aggregates, joins, and operators

defined by relational algebra [6].

Table 1: Comparison between DBMS & DSMS Functional Feature

Feature DBMS DSMS

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

5674 International Journal of Engineering & Technology

Model Persistent data Transient data

Table Set or bag of tuples
Infinite sequence of
tuples

Updates All Append only

Queries Transient Persistent
Query answers Exact Often approximate

Query evaluation Multi-pass One pass

Operators
Blocking and non-
blocking

Non-blocking

Query Plan Fixed Adaptive

Data processing Synchronous Asynchronous
Concurrency over-

head
High Low

Stream queries: The most popular DBMS query language is the

SQL query language. In a DSMS the query language needs to ex-

tend to streams. The logic of a query needs to be redefined when

applying to data streams hence the introduction of continuous query

[15]. The output from a query on a data stream can be another

stream or the updation of a permanent table with the contents of the

stream. This data is processed as it arrives by queries that are stored

permanently. According to Cugola & Margara [6], DSMS can be

modelled as a set of standing queries Q, one or more input streams,

and four possible outputs:

● The Stream is composed of all the elements of the answer that

are produced once and never changed.

● The Store contains the parts of the answer that may be

changed or removed at a certain future time point. The stream

and the store together define the current answer to Q.

● The Scratch represents the working memory of the system,

where it is possible to store data useful to compute the answer

but that is not part of the answer.

● The Throw is a sort of recycle bin that is used to throw away

unneeded tuples.

Stream processing - batch vs stream: One of the fundamental dif-

ferences in big data processing is the distinction between batch pro-

cessing and stream processing. The data source decides whether the

processing should be by batch or stream.

An unofficial definition of these two terms [20]:

● Under the batch processing model, data is collected over

time, then fed into analytical systems. In other words, you

collect a batch of information, then send it in for processing.

● Under the streaming model, data of undefined length is fed

into analytics tools piece-by-piece. The processing is usually

done in real time. This data will be processed using Stream

Processing techniques without having access to all the data.

Batch processing: Batch processing works mostly with big and

complex stored data. It works well when you don’t need real-time

analytical results. The focus is more on processing large volume of

information rather than passing data on to analysis. Few scenarios

that use batch processing are financial data analysis, last year sales

analysis and others.

Stream processing: Stream processing works mostly with latest data

that is up to date. It has very fast processing time and is used when

you need real-time analytical results. As soon as you feed the data

into analytics tools the results are generated instantly. A real-life

usage is in fraud detection. If anomalies are detected in transactions

a trigger might go off in fraudulent cases that could stop fraud in

real time.

3. Techniques used in streaming algorithms

Due to the important role of the Vs of big data there is a need for

data reduction - reducing data to a manageable size to uncover max-

imum knowledge patterns. Reduced data is inferred as much more

useful by analysts. It is impossible and irrelevant to analyse raw,

redundant, and noisy data that flows from the input stream. A well-

designed Data Stream Management System will strike a balance be-

tween the right data processing and the cost of processing. To make

it beneficial for data analysis, several pre-processing techniques for

summarization, sketching, anomaly detection, dimension reduction,

noise removal, and outliers detection are applied to reduce, refine,

clean, and store a smaller representation of the streaming data espe-

cially of unknown length [21]. Different methods for data reduction

include sampling, filtering, dimension reduction etc.

3.1. Sampling

Sampling is considered one of the most basic of streaming tech-

niques. A sample collected using random sampling techniques can

form as a good basis for statistical inference about the contents of

the stream [8]. Simple random sampling (SRS) is one form where a

size k is obtained from a population of size n. First a sample element

is selected randomly and uniformly from among the n population

elements, removed and added to the sample. This sampling step is

repeated until k sample elements are obtained. Random sampling is

a basic technique used in data streams as many sampling algorithms

compute on the sample rather than the entire stream.

Reservoir sampling: Reservoir sampling is a randomized algorithm

used to choose k items from an unknown or very large list of size

N. For example, products sold on Amazon during the festival sea-

sons. A ‘reservoir’ is used to store the elements hence the name.

According to Vitter [22] the basic idea behind reservoir algorithms

is to select a sample of size ≥ k, from which a random sample of

size k can be generated. So, the reservoir size is k.

Steps to generate a sample:

● The first k records are put into the reservoir [0...k-1]. Remain-

ing records from k+1 are processed sequentially.

● All items from (k+1)th item to nth item are considered. A ran-

dom number j is generated from 0 to i where i is index of

current item in input []. Next, it is checked to see if j already

exists in the reservoir. If j is in 0 to k-1, replace reservoir [j]

with input[i].

In this method items are given a fair chance to be part of the reser-

voir regardless of whether they were part of the reservoir initially

or not. An algorithm is a reservoir algorithm if it maintains the in-

variant that after each record is processed a true random sample of

size k can be extracted from the current state of the reservoir [22].

At the end of the input stream the final random sample must be ex-

tracted from the reservoir.

Bernoulli sampling: This is the simplest of sampling methods. In

Bernoulli sampling all elements in the data stream have equal prob-

ability of selection (like reservoir sampling) but without the re-

placement sampling design (as in reservoir sampling) and the inclu-

sion variables are independent. Since each element is considered

separately the sample size is not fixed. It follows a binomial distri-

bution where the sample size could be anywhere between 0 to N,

where N is the size of the sample. This is a disadvantage especially

when the sample size required is small.

Ramos Rojas, Kery, et.al [17] claim that using not just one, but all

the sampling algorithms generate a richer understanding of the da-

taset. For example, random sampling focuses on general features

and uncertainty sampling focuses on outliers and features that high-

light them. Both sampling methods are complementary to each

other, hence used together will produce better insights.

3.2. Sliding window

Another model used in data streams is the sliding window model.

The sliding window model expires old items as new items arrive.

Two common types of sliding windows [7]:

● Sequence-based windows - which stores the N newest items

● Timestamp-based windows - which store items generated or

arrived in the last T time units

Just like a sample, the sliding window technique uses a query not

on the entire data stream but only over the recent data of the stream.

For example, only sales data from the last week could be considered

for query answers and data pertaining to the previous weeks dis-

carded.

Babcock, Babu, Datar, Motwani and Widom [2] state that “sliding

windows should not be thought as an approximation technique re-

luctantly imposed due to the infeasibility of computing over all his-

torical data, but rather as part of the desired query semantics

International Journal of Engineering & Technology 5675

explicitly expressed as part of the users’ query.” Sliding windows

are well-defined, easily understood, and deterministic, such that us-

ers can be confident that what is being given up and random choices

is not going to produce a bad approximation.

Most of the world’s applications use recent data. It is more relevant

to check latest sensor data, traffic records, sales transactions instead

of old data. Answers to queries on recent data gives more infor-

mation and insights during data analysis.

In the below Fig 2 input data stream 7, 3, 9, 2, 7 flow in during Time

T1, T4, T6 and T8. If the 5-second sliding window starts processing

at Time T1 the output is 7. Since there is no new event/data during

T2 and T3 there will be no output. At T4 the output is 7, 3 which

falls within the 5 second window and so on. Sliding window will

generate output only when a new event/data occurs otherwise no

output will be generated.

Fig. 2: A 5-Second Sliding Window.

Another windowing techniques used in some scenarios is called

“Tumbling Window”. Here the query processing is done in a non-

overlapping window and an event cannot belong to more than one

window. These windowed queries are provided in tools like Ama-

zon Kinesis Data Analytics, Microsoft Azure Stream Analytics.

Sliding window in sampling: Sampling can be obtained from infi-

nite data streams as well using Sliding windows. Unlike Reservoir

sampling or Bernoulli sampling which use stationary windows, the

task of obtaining a sampling from a sliding window is much harder.

The difficulty is because the elements of the sample must be re-

moved as they expire hence a defined size for the sample is not pos-

sible. Recollect the sequence-based window and timestamp-based

window mentioned previously. Between the two, the better sliding

window model used in sampling is the technique which favours re-

cently arrived elements that provide equal- probability sampling

within the window.

Let’s consider windows Wj each of length n and Elements Wj = {ej,

ej+1, ej+2....,. ej+n+1}. The many algorithms proposed for sampling

from sliding windows need to resolve issues with memory bounds

(as stream size is indeterminable) and additional costs which results

in performance decrease [8].

Even if a ‘‘complete resampling’ is performed where the set of ele-

ments in a window are buffered and updated incrementally i.e., Wj+1

is obtained from Wj by deleting ej and inserting ej+n, the disad-

vantages mentioned above still exist. Another sampling method is

the ‘passive’ algorithm here the sample is updated only when the

element in a sample expires. This algorithm is like a reservoir algo-

rithm where sample of size k is taken from the first n elements and

thereafter a new element is entered into the sample when an expired

element is deleted. This way the memory issue is resolved.

Sampling with or without replacement from sequence-based or

timestamp-based windows need to provide optimal memory guar-

antees and reduce complexity-randomized or deterministic [4].

3.3. Filtering

Filtering techniques are used in data streams to reduce the volume

of input data during analysis. During filtering errors are detected

and corrected so that the impact of errors during the analysis phase

is minimized. Filtering in a data stream is to accept the data that

meets a criterion and drop the other data.

Implicit filtering: This is when the system itself for the stability of

the stream processing performs filtering to avoid overload implic-

itly by the system. Filtering also known as load-shedding is per-

formed by Data Stream Management Systems. Due to the high vol-

ume and velocity of data streams the DSMS needs to employ vari-

ous methods to reduce the load. The filtering is done in such a way

as to minimize negative impact on the accuracy of queries, but this

problem of inaccuracy still exists [18].

Explicit filtering: This is when filtering is performed by an evaluat-

ing procedure [18]. To avoid the negative impact of implicit filter-

ing it is best to include the filtering condition in the query procedure

itself. Depending on the filtering condition the filtering procedures

analyse various characteristics of a stream. Bloom Filter algorithm

is one such procedure which uses filtering and hashing techniques

to eliminate ‘undesirable’ items.

Filtering is used to identify malicious activity. For example, a fi-

nancial analyst monitoring commodity might be interested in a sud-

den rise in stock price or an increase in trading volume. A spike in

credit card activity would be of concern to a consumer. A security

camera capturing movements of objects, when finds a sudden

movement in an object starts capturing subsequent frames for anal-

ysis. In places where human lives are at risk - mines, oil and gas

drills, and such extreme conditions, machines record data and fil-

tering could be used to provide anomalous movements.

3.4. Hashing

For streaming data, hashing is used as the principle technique in

many algorithms. It is used to speed up sorting, searching, inserting,

or deleting data. It maps data of arbitrary size to data of fixed size.

A hash function reduces search runtime to O (1) when compared to

a linear search runtime of O(n) and binary search runtime of O (Log

n). Hash functions have the following properties [14]:

● it always returns a number for an object

● two equal objects will always have the same number

● two unequal objects not always have different numbers

A hash table is a collection of items stored in such a way that it

makes searching and finding easier. Each slot (position of the hash

table) holds an item and is denoted by an integer value starting at 0.

A hash function is used to map items to its slots in the hash table.

Below Fig 3 shows a hash table of size m=10.

Fig. 3: Hash Table with M Slots Named 0 to 9.

Few simple hash functions are:

● Division-remainder method: An estimate of the number of

items in the table is used as a divisor into the item value. This

produces a quotient and a remainder. The remainder is con-

sidered the hashed value which is used as index to store the

item value. This method is liable to produce collisions (ad-

dressed in our below example)

● Digit rearrangement method: As the name suggests this

method takes digits in the original item and changes the or-

der. For example, in an item the digits in positions 2 and 5

are reversed and the resulting sequence of digits is used as

the hashed value or key.

● Folding method: This method works when the values are dig-

its. In this method the value is divided into multiple parts,

then added together, and any 4 digits used as the hashed value

or key.

As an example, Fig 4 assume a set of integers 20, 34, 56, 88 and 95.

The ‘Division-Remainder method’ is used to calculate the item’s

hash value as reminder of (h(item)=item/11). The items are input

into the hash table at the assigned positions as below.

5676 International Journal of Engineering & Technology

Fig. 4: The Process to Store an Object Using A Hash Function.

There is a possibility of a hash function mapping an object to an

already occupied slot. This is called collision. For example, if the

item ‘66’ had been the next item in our input values, it would have

a hash value of 6 (66%10==6). Since 56 already has hash value of

6 there is a collision.

Collision must be resolved using a collision handling technique

like:

● Chaining: This is a simple technique which uses a linked list

of records. Each cell in the hash table points to a linked list

that has the same hash function value. This way the hash table

never fills up and continues to add more elements to the

chain. But it does require additional memory outside of the

hash table thus if the chain becomes too long search time in-

creases.

● Open Addressing: As mentioned, in open addressing all ele-

ments are stored in the hash table itself. When collision oc-

curs, the next open slot is used to store the element. With this

technique clustering or load factors need to be avoided. This

addresses the low cache performance of linked lists (chaining

technique) as ‘open addressing’ uses the same table.

Cryptography hash functions are used in digital signatures and other

authentication applications. Hash functions MD2, MD4, and MD5,

reduce digital signatures into a shorter value called a message-di-

gest. The Secure Hash Algorithm (SHA) makes a larger (60-bit)

message digest [10].

A good hash function should minimize the number of collisions be

easy to compute, and evenly distribute the items in the hash table

[14].

3.5. Sketching

The term sketch, as in an artist’s sketch, is used to describe algo-

rithms that can extract information from a stream of data or batch

data in a single pass (sometimes called “one-touch” processing) us-

ing various randomization techniques. A sketch is different from a

sample; the latter considers only a portion of the entire data, while

the former is computed over all the data. Sketching is mainly used

in large-scale computing environments which handle big data such

as internet traffic analysis, observing contents of massive databases

and such. Sketching query results are an approximation within a

user-defined error boundary. The trade-off though is sketch size

versus accuracy.

Consider the below example, to find the missing number in a con-

secutive order of numbers, that has random input. Input Numbers

3,1,6,9,10,2,4,8,7

Using the regular method all numbers are input into an array (n), in

sequence and the answer is determined (below)

1 2 3 4 6 7 8 9 10

Answer: 5

Using sketching technique, first the total sum of the dataset (50) is

calculated in one-pass and stored in a single cell. Next, using the

formula n(n+1)/2 the sum of consecutive numbers is calculated

(55). Subtracting the two the missing number is obtained. This way

storage is minimized, and performance is faster.

50 Answer: 55 – 50 = 5

To further improve the time performance of a sketch, a sketch com-

putation on a sample of the stream can be performed thus combin-

ing sampling and sketching techniques. Rusu & Dobra [19] com-

pare their experimental results of sketching on samples from Ber-

noulli sampling, sampling with replacement and sampling without

replacement with the results of a basic sketch. They show that the

accuracy of a sketch computed from a sample is close to the basic

sketch and the speed factor is 10 times greater.

There are many frequency-based sketches that solve problems re-

lated to estimating functions of frequencies [5].

● Count-Min sketch - counts a group of items and produces an

estimate with the minimum of various counts.

● Count-Sketch - like the Count-Min sketch provides an esti-

mate for the value of any individual frequency. The main dif-

ference is the accuracy guarantee provided for the estimate.

● Heavy-Hitters - most significant items which have high fre-

quencies. Used in computing most searched query in Google,

most sold product on amazon and such.

Open problem in sketching is the usage of different algorithms for

different functions. Each sketch is defined to support a certain

query. To find out frequently purchased items an algorithm is used

and stores the sketch. Again, to find out which pair of items were

purchased together another algorithm is used. This way, a query

specific procedure is performed on the sketch to obtain the answer.

3.6. Clustering

Clustering is a useful tool for unsupervised classification that helps

in grouping similar objects into clusters. Each object in a cluster

shares common properties with other objects in the cluster and dif-

ferent properties in different clusters according to a defined distance

measure. This is useful to organize streaming data. It helps to un-

derstand hidden structures and to represent high-dimensional data

in a low-dimensional space [16].

At a high-level clustering can be classified into 3 types: Partition-

ing, Hierarchical and Density-based.

● Partitioning: Dividing data objects into subsets (clusters)

such that all objects in one cluster have similar properties and

each data object belongs to exactly one cluster

● Hierarchical: A set of nested clusters organized in the form

of a tree

● Density-Based: Grouping of points that are closely packed

together as high-density and marking outliers that lie alone as

those in low-density regions

Of the various clustering techniques, the partitioning methodology

– K-Means is the most popular algorithm. Much has been written

and experimented on this method. There exist various variations of

k-means algorithms such as k-means++, k-median, k-mods, or k-

medoids. Lee, Althoff.et.al. in their paper [12] provide a hardware

friendly, multilevel streaming clustering algorithm that can handle

big, multidimensional datasets. Using a hardware/software design

they achieve high throughput and low resource utilization.

The Traditional K-means algorithm is very simple with the follow-

ing steps, as described by Shiudkar and Takmare [11]:

1) Select the value of K i.e. Initial centroids

2) Repeat step 3 and 4 for all data points in dataset

3) Find the nearest point from that centroids in the Dataset

4) Form K cluster by assigning each point to its closest centroid

5) Calculate the new global centroid for each cluster

The working of the K-Means Algorithm can be explained better

with the help of an example. Fig 5 shows the graphical representa-

tion of the working of a K-means algorithm. There are 500 data

points with 3 clusters for which the centroids (in red) are deter-

mined. The process of determining the centroid repeats until the

https://searchsecurity.techtarget.com/definition/MD2
https://searchsecurity.techtarget.com/definition/MD4
https://searchsecurity.techtarget.com/definition/MD5

International Journal of Engineering & Technology 5677

best clusters (no change in centroid value) are achieved. In this ex-

ample it took 8 iterations to reach the final stage. According to the

centroid the clusters are formed which gives different clusters to the

dataset.

Fig. 5: K-Means Clusters.

Properties of k-means algorithm [11]:

● Efficient while processing large data set

● It works only on numeric values

● The shapes of clusters are convex

This partitioning algorithm is highly sensitive to the initialization

phase, noise and outliers. This is overcome using the hierarchical or

density-based clustering techniques.

Clustering is used in ‘text-analytics’ which involves extraction of

hidden patterns from large data sets. The input data is cleaned, eval-

uated, and provided to users as output for interpretation. Other ap-

plications that use clustering methods are in pattern recognition,

voice mining, image processing, weather report analysis and such.

3.7. Dimension reduction

Dimension Reduction is the process where a high-dimensional data

set is reduced to fewer dimensions to improve conceptualization at

the same time conveying the information clearly. Visualizing more

than 3 dimensions becomes highly improbable to the human eye.

Like other data reduction techniques reducing dimensions also

helps in reducing noise and outliers and helps in data compression

and storage. Analysts working in multi-dimensional fields use this

method to remove highly correlated and unnecessary variables.

Suppose, the input data set has measurements of several objects in

inches and cm. This could be represented in 2D. But the same in-

formation could be converted into 1D removing noise and un-

wanted data. Similarly, n dimensions of a data set can be reduced

to k dimensions (k < n), using various dimension reducing tech-

niques.

Feature selection and Feature extraction are two methodologies

used in dimension reduction.

● Feature selection is the process where the initial data is re-

duced for analysis by finding the most relevant information.

● Feature extraction is where useful information is extracted

from the initial dataset.

There are many supervised and unsupervised learning techniques in

feature extraction like Linear Discriminant Analysis (LDA), Prin-

cipal Components Analysis (PCA), Isomap and more.

Linear Discriminant Analysis is one of the oldest dimensionality

reduction technique that uses a linear combination to categorize

groups. Since LDA is a supervised learning technique it is being

replaced by techniques based on unsupervised methods like Princi-

pal Components Analysis. But LDA is more accurate being a su-

pervised method so it has been implemented in all major packages:

R, Python, and MATLAB. Mao, Xue and Maria [23] propose a slid-

ing window approach for the dimensionality reduction for linear

discriminant analysis (LDA) on streaming data called Streaming

LDA (SLDA). They present a dimension reduction algorithm using

various sliding windows that they claim is an improvement over

traditional LDA methods in terms of better performance on compu-

tational cost and classification accuracy.

One common application of the dimension reduction technique is

image processing. Algorithms are used to detect significant features

of an image and extract relevant information. There are a very high

number of multi-dimensional pixels in an image. Deciding on

which pixels to omit and which ones to include is an important de-

cision that these techniques can help with.

3.8. Similarity mining

Similarity mining is a technique used in finding a match of objects.

For example, a near similar web page could be considered as pla-

giarism. Similarity of sets can be defined looking at the relative size

of their intersection [13] known as “Jaccard similarity”. Data min-

ing or knowledge discovery in databases (KDD) are based on some

notion of similarity search - common patterns, clusters of data (sim-

ilar objects), outliers (opposite of a cluster) and such. This tech-

nique is used in multimedia, medical imaging, Computer aided de-

signs (CAD), etc.

Suppose there are two sets P and Q that have four elements in their

intersection and a total of eleven elements that appear in P or Q or

both. Hence, Jaccard similarity SIM (P, Q) = ⅜

Textual similarity (used to find out plagiarism) is an important fea-

ture of similarity mining as mentioned previously. This technique

uses words at a character-level to figure out similarity in docu-

ments. Search engines use this technique to avoid showing similar

pages (almost identical) within the first page of results thus improv-

ing their search result credibility.

Collaborative filtering is another process where similarity of sets is

very important. This is what online shopping websites use to rec-

ommend to shoppers’ items that were liked by other shoppers with

similar tastes. Two customers could be considered similar if their

sets of purchased items have a high Jaccard similarity. But there is

no significance in using just a high Jaccard similarity to denote sim-

ilar tastes, a grouping (clustering) with similarity function would

yield better results. Online movie rental company Netflix uses this

technique in its customer movie ratings [13]

Shingling of documents is where a set of short strings is constructed

from a document to identify lexically similar documents. This way,

documents that share common elements in the set can be identified

as similar. The most simple and common approach is k-shingle, A

substring of length k is found within a document. Then the set of k-

shingles is compared with each document to identify if the set ap-

pears one or more times within that document.

Fingerprint Matching is performed not using images but using a set

of locations in which minutiae are located. A minutia is defined as

a place point where a change happens like two ridges merging or a

ridge ending. Grid squares are used to locate minutiae and can be

compared just like any sets using Jaccard similarity or distance [13].

So, two similar fingerprints would have minutiae lying in exactly

the same grid squares. Fingerprint comparison could be:

● Many to one - where a fingerprint is compared to many fin-

gerprints in a database for a match. Used in forensic science

- fingerprint found during a robbery.

● Many to many - where the entire database is compared to see

if any pair matches an individual. Used for an individual’s

identification purpose.

Christian Böhm [3] states that the difference in traditional similarity

search applications is that these applications do not only raise few,

single similarity queries but rather a high number of such queries.

So, even though many problems of similarity search have been

solved and productive algorithms have been proposed the focus on

efficiency is critical. He proposes to change such algorithms using

feature transformation approach. The transformation extracts sev-

eral characterizing properties from the objects and translates them

into vectors of a multidimensional space using similarity mining

(corresponding to a small distance) of the feature vectors. This

5678 International Journal of Engineering & Technology

approach relies on distance-based queries (similarity queries) on the

feature vectors.

4. Results and discussion

In data mining, streaming data algorithms have always been a chal-

lenge due to the large volume of data. Many existing data mining

methods cannot be applied directly on data streams because the data

needs to be mined in one pass. [1] This puts a strain on space and

time and the trade-off is accuracy. All streaming algorithms need to

consider the speed at which the data is arriving. In today’s world

when deciding on the ideal streaming technique for an application

distributed data sources, computational resources and communica-

tion links need to be taken into consideration. A data stream pro-

cessor which inculcates a combination of techniques performs

stream processing at a rate in pace with the incoming data streams

from multiple sources.

Ramos Rojas, Kery, et.al conducted a survey [17] in which 65% of

the participants believed that using multiple sampling techniques

could improve the quality of their insights and 71% thought it

would decrease the time spent on data exploration. Overall, by us-

ing not just one streaming technique but a combination of different

techniques a richer understanding of the dataset can be generated.

Using hashing and sketching an effective algorithm is the count-

min sketch which is a hash-based sketching of the data stream. The

count-min sketch counts groups of items and takes the minimum to

produce a probabilistic estimate. This solves the problem of fre-

quently accessed web pages, most bought items, heavily traded

stocks, and more. The count distinct items algorithm which is used

to find the distinct number of elements in a data stream has repeti-

tive numbers (not unique) and uses two techniques - a hashing table

with the sliding window technique. Few everyday scenarios where

this question could be raised is unique visitors to a website, IP ad-

dresses that pass through a router, number of classes in a popula-

tion, and such. Rusu & Dobra in their paper [19] improve the time

performance of sketches by computing the sketch over a sample of

the stream. Thus, using sketching and the sampling technique. Their

results show that the accuracy of the sketch computed over a small

sample is close to the accuracy over the entire data even when sam-

ple size is 10% or less of the data size. The basic K-means clustering

algorithm itself maybe optimized using Locality Sensitive Hashing

(LSH) techniques.

5. Conclusion

Today’s data comes from networks, sensors monitoring our envi-

ronment, the world wide web, transaction data from credit card pur-

chases, stock prices and many more. All data is not relevant hence

streaming techniques can be applied to obtain a reduced represen-

tation of the dataset that is much smaller in volume, yet closely

maintains the integrity of the original data. Memory constraint is an

important motivation behind many of the streaming techniques dis-

cussed in this paper. In conclusion after extensive research on

streaming techniques, a combination of techniques provides more

meaningful data for analysis rather than one technique alone, like

sampling filtered data or sketching a cluster. Most of these stream-

ing techniques focus only on the storage size of datasets but not on

the knowledge hidden within them i.e. not knowledge-oriented re-

duction. The challenges with streaming data start from the data ini-

tialization phase (heterogeneous data) through the right cleaning

and extraction techniques (described above) to analysis and inter-

pretation. Future work will be focused on the algorithms used in

streaming data and how to derive the maximum benefits out of the

algorithms.

References

[1] C.C. Aggarwal, "Data Streams and Algorithms", Kluwer Academic

Publishers, Boston, 2007.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani and D. Thomas, "Oper-

ator scheduling in data stream systems." The VLDB Journal the In-
ternational Journal on Very Large Data Bases, Vol. 13, Issue. 4,

pp.333-353, 2004. https://doi.org/10.1007/s00778-004-0132-6.

[3] C. Böhm, "Similarity search and data mining: Database techniques
supporting next decade's applications".

[4] V. Braverman, R. Ostrovsky, and C. Zaniolo, "Optimal sampling

from sliding windows." Journal of Computer and System Sciences,
Vol. 78, Issue. 1, pp. 260-272, 2012.

https://doi.org/10.1016/j.jcss.2011.04.004.
[5] G. Cormode, "Sketch techniques for approximate query processing."

Foundations and Trends in Databases. NOW publishers, 2011.

[6] G. Cugola, and A. Margara, "Processing flows of information: From
data stream to complex event processing." ACM Computing Surveys

(CSUR), Vol. 44, Issue. 3, Article No. 15, June 2012.

https://doi.org/10.1145/2187671.2187677.
[7] L. Golab, "Sliding window query processing, over data streams.",

University of Waterloo, 2006.

[8] P.J. Haas, "Data-stream sampling: basic techniques and results." In
Data Stream Management, pp. 13-44. Springer, Berlin, Heidelberg,

2016. https://doi.org/10.1007/978-3-540-28608-0_2.

[9] G. Hebrail, "Data stream management and mining." Mining massive

data sets for security, pp.89-102, 2008.

[10] A.K. Jain, R. Jones and P. Joshi, "Survey of Cryptographic Hashing

Algorithms for Message Signing." IJCST, Vol. 8, Issue. 2, 2017.
[11] MS. Kavitha and S. Takmare, "Review of Existing Methods in K-

means Clustering Algorithm.", Vol. 4, Issue. 2, 2017.

[12] D. Lee, A. Alric, R. Dustin, and K. Ryan, "A streaming clustering
approach using a heterogeneous system for big data analysis." In

Computer-Aided Design (ICCAD), 2017 IEEE/ACM International

Conference on, pp. 699-706. IEEE, 2017. https://doi.org/10.1109/IC-
CAD.2017.8203845.

[13] J. Leskovec, A. Rajaraman, and J.D. Ullman, “Mining of massive

datasets”, Cambridge university press, chap. 3, 2014.
https://doi.org/10.1017/CBO9781139924801.

[14] B.N. Miller, D.L. Bradley, “Problem Solving with Algorithms and

Data Structures Using Python” SECOND EDITION. Franklin, Bee-
dle & Associates Inc., 2011.

[15] E. Panigati, F.A. Schreiber, and C. Zaniolo. "Data streams and data

stream management systems and languages." In Data Management
in Pervasive Systems, pp. 93-111. Springer, Cham, 2015.

https://doi.org/10.1007/978-3-319-20062-0_5.

[16] B. Ramesh, R. Nandhini, “Clustering Algorithms – A Literature Re-
view”, International Journal of Computer Sciences and Engineering,

vol. 5, Issue 10, 2017. https://doi.org/10.26438/ijcse/v5i10.302306.

[17] J.A.R. Rojas, M.B. Kery, S. Rosenthal, A. Dey, "Sampling tech-
niques to improve big data exploration." In 2017 IEEE 7th Sympo-

sium on Large Data Analysis and Visualization (LDAV), pp. 26-35.

IEEE, 2017. https://doi.org/10.1109/LDAV.2017.8231848.
[18] I. Rozenbaum, “Filtering techniques for data streams”. Rutgers The

State University of New Jersey-New Brunswick, 2007.

[19] F. Rusu, and A. Dobra, "Sketching sampled data streams." In Data
Engineering, 2009. ICDE'09. IEEE 25th International Conference on,

pp. 381-392. IEEE, 2009. https://doi.org/10.1109/ICDE.2009.31.

[20] C. Tozzi, “Big Data 101: Dummy’s Guide to Batch vs. Streaming
Data” syncsort blog, July 25, 2017

[21] M.H. ur Rehman, C.W. Liew, A. Abbas, P.P. Jayaraman, T.Y. Wah,

and S.U. Khan, "Big data reduction methods: a survey." Data Science
and Engineering 1, no. 4, pp.265-284, 2016.

[22] J.S. Vitter, "Random sampling with a reservoir." ACM Transactions

on Mathematical Software (TOMS) 11, no. 1, pp. 37-57, 1985.

https://doi.org/10.1145/3147.3165.

[23] M. Ye, X. Li. and M.E. Orlowska, "Supervised dimensionality re-
duction on streaming data." In Fuzzy Systems and Knowledge Dis-

covery, 2007. FSKD 2007. Fourth International Conference on, vol.

1, pp. 674-678. IEEE, 2007.

https://doi.org/10.1007/s00778-004-0132-6
https://doi.org/10.1016/j.jcss.2011.04.004
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1007/978-3-540-28608-0_2
https://doi.org/10.1109/ICCAD.2017.8203845
https://doi.org/10.1109/ICCAD.2017.8203845
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1007/978-3-319-20062-0_5
https://doi.org/10.26438/ijcse/v5i10.302306
https://doi.org/10.1109/LDAV.2017.8231848
https://doi.org/10.1109/ICDE.2009.31
https://doi.org/10.1145/3147.3165

