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Abstract 
 

Industrial requires hard real-time systems for safety and critical applications like automotive, Aeronautics, manufacturing control and 

train industries. Hard Real-Time Systems’ embedded controllers are with expectation of complete the tasks within a certain time bounds 

reliably including task scheduling. The estimation of upper bound limits corresponding to the execution times is often termed as the 

Worst-Case Execution Times (WCETs). It is an essential step in developing and validating the hard real-time systems. Particularly, the 

upper bounds need to satisfy these constraints related to the execution times. However, it is often not feasible many times to set upper 

bounds on execution times for programs. In present work, the problem of choosing reconfigurable Custom Instructions (CIs) is accom-

plished by optimizing the WCET corresponding to an application. This issue is designed using Particle Swarm Optimization (PSO) based 

program for a path analysis. The work emphasizes on the effectiveness of optimizing the WCET when applied to a reconfigurable pro-

cessor. It evaluates a compound application of multimedia with a host of reconfigurable CIs corresponding to a number of hardware pa-

rameters. 
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1. Introduction 

In today’s complex applications including multimedia application 

involving multiple hot spots require different form of hardware 

accelerators in order to accomplish the intended performance. In 

this regard the Application Specific Instruction, set Processors 

(ASIPs) facilitate a developer to design specific pre-fabrication 

customizations so as to improve the desired degree of specializa-

tion to meet the actual application environments such as the com-

putational hot spots. Nevertheless, the ASIP can be kept within its 

reasonable size by only a few subsets of hot spots. 

It is essential to know the WCET of a program for the design and 

verify the real-time systems. An efficient WCET method of analy-

sis need to consider the feasible program flow that involves the 

loop iterations, the function calls and the timing effects of the 

caches and pipelines. One of the essential parameter of WCET 

analysis is the calculation as the combination of the flow as well 

as the timing information ofhardwareto computes a corresponding 

program in WCET analysis. The precision of WCET estimate 

largely depends on the type of flow information. In conventional 

methods, a trade-off is made between the global calculations pre-

cision and the computational complexity. However, such tradi-

tional methods are although fast but unable to account for all such 

flow information. 

The flow information are essentially acts as a set of flow facts, 

each of which gives the constraints with respect to the program 

flow that include the infeasible paths, loop bounds, execution 

dependencies, etc. The local nature of the flow facts often express 

information confined to smaller regions such as an if-statement or 

a single loop of the intended program. In some cases, sometimes 

these smaller regions may occupy the structures of the basic pro-

gram. 

The task of estimating a suitable upper bound for WCET remains 

complex in nature due to the performance enhancing features like 

Pipelining, Caches and Branch predictions made available in the 

modern day processor. The presence of micro architectural state 

creates latency in instruction execution based on the dependency 

level in the past. When micro-architectural component, are in a 

worst-case scenario like a cache miss wherein the micro-

architectural state is unable to determinethe result statically in a 

safe WCET bound for the complete task. 

We would like to present an efficient approach to select the recon-

figurable CIs statically in view of optimize the WCET bound of a 

task. Further, the time analysis of the high-performance architec-

tures has been made to advance the research. A major issue is to 

resolve the worst-case path volatility that selects the WCET and 

optimize the CIs. To accomplish this task the worst-case path 

latency is by inserting a CI and to generate an entirely new differ-

ent path. 
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Fig. 1: Tool Flow Performing WCET-Optimizing Instruction Set Selection 

Integrated with Timing Analysis. 

 

As shown in Figure 1, an integral component of WCET-

optimizing CI selection is the WCET bound estimation. In this, 

the CI or the instruction set selection is another major step used 

inthe extension problem of the instruction set [1]. 

The paper is sectioned as explained. In section [1-2] the concerned 

literature is presented. Section 1.3 explains the optimization tech-

nique using PSO. The experiment result discussion is presented on 

section 1.4. The conclusion part is described on section 1.5. 

2. Related literature 

The flow, low-level analysis and the calculation are the essential 

components for the generation of the WCET estimate. The flow 

analysis (FA) phase aims to represent a program’s dynamic behav-

ior. The process involves the function to be called, number of loop 

iterations how many times loops iterate in case air-statements 

dependencies exist. All possible program executions need to be 

safe approximated as the FA is unaware of the execution path 

which with respect to the longest execution time. These infor-

mation are extracted using either the integrated in the program-

ming language (manual annotations) [2] or provided separately [3-

5]), or by automatic flow analysis techniques [6-10]. Convention-

ally, the FA is referred as high-level analysis as it is mostly ac-

complished using the source code although it may be possible to 

use the machine code or intermediate level. 

Analysis of instruction caches, data caches, and branch predictors 

corresponding to global low-level analysis has been a major 

source of inspiration in this direction [5-16]. 

WCET calculation: 

To improve a program’s average-case execution time, advanced 

processors use the cache hierarchies as well as out of order execu-

tion although these features incorporated difficulties for determi-

nation of tight WCET. On the other hand, complex architectures 

require more states in the model checker to be prone to state ex-

plosion problems. For such cases, the timing anomalies with re-

spect to the shared resources or memory accesses are desired. As 

an example, let us consider a separate worst-case path ABD where 

A, B and D are the basic building blocks. However, availability of 

shared L2 cache may result in other paths such as ACD as the 

worst-case path in case more instructions are evicted by L2 cache 

from C than B. It is essential to take into account the tasks of dif-

ferent cores together for multicore analyzing of WCET that in 

increases the computation time. 

The modeling of a similar problem with Execution Flow Graphs 

and Trees has been proposed in [17-18]. The authors used the 

function level calls in modeling the execution flow in their work. 

Similarly, in [19], the authors proposed the optimization of WCET 

instruction set selection applied to extensible processors with cus-

tom functional units. These units are configurable for implementa-

tion of instruction patterns used frequently. It also speeds up the 

process by exploiting instruction level parallelism and operator 

chaining. While optimizing the WCET instruction set for a partic-

ular task that is executed, the instruction set remains fixed. Thus, 

selected pattern configuration cost is not considered when this 

approach is executed. In this piece of work, a dynamic reconfigu-

ration based custom instructions has been targeted in which the 

area demands varies. 

 

 
Fig. 2: Execution Time Estimates 

3. Optimization using particle swarm optimi-

zation (PSO) 

In order to allow solutions in the reconfigurable fabric this work 

introduces an area constraint as the reconfigurable fabricsum 

ak,jwhich need to be implemented the corresponding CIs where, 

jdenotes the selected implementation in which case the term yk, j = 

1. It needs to be either low or equal to the total fabric area a [20]. 

Consider a program having N basic blocks. The objective function 

can be represented as 

 

𝑚𝑎𝑥 ∑ 𝑐i𝑥i
𝑁
𝑖=1                                                                                 (1) 

 

Selecting an instruction set to optimize the WCET bound essen-

tially means. we aim to minimize the WCET over all possible 

selections, that is, we aim to minimize the maximum execution 

time. 

Steps for Optimization 

The population based adaptive stochastic optimization method is 

PSO. The technique is based on collective swarm intelligence (SI). 

The steps of PSO algorithm are as follows: 

Step 1: Start and define solution space  

Step 2: Represent potential solution to particle 

Step 3: Initialize the population with respect to the random posi-

tion x as well as the velocityv vectors 

Step 4: Evaluate the fitness for each agent. 

Step 5: If fitness (x) > fitness (gbest) then gbest=x 

Step 6: If fitness (x) > fitness (pbest) then pbest=x 

Step 7: Update position and velocity  

Step 8: gbest is best solution of parameters 

In this work, the use of PSO is based on [24], initialize the particle 

with position vector (x) and velocity vector (v) respectively. The 

updated position vector and velocity vector for particle (i) are 

given by: 

 

𝑥𝑖
𝑘+1  =  𝑥𝑖

𝑘  +  𝑣𝑖
𝑘+1∆𝑡  

 

vi
k+1  =  wkvi

k  +  c1
∗rand1,i

k (pi
k − xi

k) + c2
∗rand2,i

k (gi
k − xi

k)  

 

Where, k represents present iteration, i is particle index with 𝑥𝑖
𝑘 

and 𝑣𝑖
𝑘 are present positions and velocities respectively. The up-

dated velocity corresponds to the previous velocity weighted by 

inertia 𝑤𝑘 corresponding with the parameters𝑐1
∗𝑎𝑛𝑑𝑐2

∗, which are 

cognitive and social rates respectively. The cognitive and social 



254 International Journal of Engineering & Technology 

 
rates represent whether the individual agent has capabletowards 

the pbest position and towards the gbest position. pi
kRepresents 

personal best position and gi
krepresents global optimum position 

of each individual particle. The experience of each individual 

particle is (𝑐1
∗) w.r.t its pbest position, where as the gbest position 

is found by neighborhood of each individual particle or by whole 

swarm related to social parameter(𝑐2
∗). 𝑟𝑎𝑛𝑑1,𝑖

𝑘 In addition,𝑟𝑎𝑛𝑑2,𝑖
𝑘  

are two random numbers in the range [0, 1], which are uniformly 

distributed. ∆𝑡Is time difference, which is unity? 

4. Result and discussion 

The number of possible hardware configurations mk per CI 

kchanges drastically. As an example, in this work, we encountered 

a minimum CIs value of [1] with a corresponding maximum value 

of 80= M implementations. It includes the entire software imple-

mentation with respect to a single kernel. When the CI value has 

been 80 different implementations, different degrees of parallelism 

have been observed with latencies. The area and the reconfigura-

tion delay have been same during synthesization of the reconfigu-

rable fabric. In case of minimum-latency implementation of the 

fabric the proposed algorithm canprovide a number of relevant 

implementations. 

 

 
Fig.3: Optimal Results for H.264 Encoder and Different Values off 
CPU/Ffabric, As Well as Reconfiguration Bandwidth. 

 

The work evaluates the results of the heuristic with respect to an 

optimal search. To practically demonstrate our approach the 

runtimes have been studied. 

5. Conclusion 

This paper attempts a new method to compute the WCET of a 

program. The technique is a hybridization of the fast computation 

techniques like the tree and path-based algorithms, are less pre-

cise, and potentially slow global IPET. It aims to find the smallest 

possible program components that can be handled for precision. 

The method of calculation for every individual component is not 

fixed and is dependent on the flow information characteristics and 

the program structure. Due to smaller parts as compared to the 

overall program, the technique provides the desired precision and 

is fast while arbitrary boundaries are introduced similar to the tree 

and path-based approaches. 
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