

Copyright © 2018 Mood Venkanna et. al. This is an open access article distributed under the Creative Commons Attribution License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.33) (2018) 252-254

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

PSO based optimization of worst-case execution time for ASIP

application

Mood Venkanna 1 *, Rameshwar Rao 2, P. Chandra Sekhar 3

1 Dept of ECE UCE, Osmania University Hyderabad, India

2 Former VC, JNTUH Dept of ECE UCE, Osmania University Hyderabad, India
3 Professor, Dept of ECE, UCE, Osmania University Hyderabad, India

*Corresponding author E-mail: venkatmood03@gmail.com

Abstract

Industrial requires hard real-time systems for safety and critical applications like automotive, Aeronautics, manufacturing control and

train industries. Hard Real-Time Systems’ embedded controllers are with expectation of complete the tasks within a certain time bounds

reliably including task scheduling. The estimation of upper bound limits corresponding to the execution times is often termed as the

Worst-Case Execution Times (WCETs). It is an essential step in developing and validating the hard real-time systems. Particularly, the

upper bounds need to satisfy these constraints related to the execution times. However, it is often not feasible many times to set upper

bounds on execution times for programs. In present work, the problem of choosing reconfigurable Custom Instructions (CIs) is accom-

plished by optimizing the WCET corresponding to an application. This issue is designed using Particle Swarm Optimization (PSO) based

program for a path analysis. The work emphasizes on the effectiveness of optimizing the WCET when applied to a reconfigurable pro-

cessor. It evaluates a compound application of multimedia with a host of reconfigurable CIs corresponding to a number of hardware pa-

rameters.

Keywords: Hard Real-Time System; Embedded Controller; ASIP; Optimization; PSO; Space Exploration.

1. Introduction

In today’s complex applications including multimedia application

involving multiple hot spots require different form of hardware

accelerators in order to accomplish the intended performance. In

this regard the Application Specific Instruction, set Processors

(ASIPs) facilitate a developer to design specific pre-fabrication

customizations so as to improve the desired degree of specializa-

tion to meet the actual application environments such as the com-

putational hot spots. Nevertheless, the ASIP can be kept within its

reasonable size by only a few subsets of hot spots.

It is essential to know the WCET of a program for the design and

verify the real-time systems. An efficient WCET method of analy-

sis need to consider the feasible program flow that involves the

loop iterations, the function calls and the timing effects of the

caches and pipelines. One of the essential parameter of WCET

analysis is the calculation as the combination of the flow as well

as the timing information ofhardwareto computes a corresponding

program in WCET analysis. The precision of WCET estimate

largely depends on the type of flow information. In conventional

methods, a trade-off is made between the global calculations pre-

cision and the computational complexity. However, such tradi-

tional methods are although fast but unable to account for all such

flow information.

The flow information are essentially acts as a set of flow facts,

each of which gives the constraints with respect to the program

flow that include the infeasible paths, loop bounds, execution

dependencies, etc. The local nature of the flow facts often express

information confined to smaller regions such as an if-statement or

a single loop of the intended program. In some cases, sometimes

these smaller regions may occupy the structures of the basic pro-

gram.

The task of estimating a suitable upper bound for WCET remains

complex in nature due to the performance enhancing features like

Pipelining, Caches and Branch predictions made available in the

modern day processor. The presence of micro architectural state

creates latency in instruction execution based on the dependency

level in the past. When micro-architectural component, are in a

worst-case scenario like a cache miss wherein the micro-

architectural state is unable to determinethe result statically in a

safe WCET bound for the complete task.

We would like to present an efficient approach to select the recon-

figurable CIs statically in view of optimize the WCET bound of a

task. Further, the time analysis of the high-performance architec-

tures has been made to advance the research. A major issue is to

resolve the worst-case path volatility that selects the WCET and

optimize the CIs. To accomplish this task the worst-case path

latency is by inserting a CI and to generate an entirely new differ-

ent path.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 253

Fig. 1: Tool Flow Performing WCET-Optimizing Instruction Set Selection

Integrated with Timing Analysis.

As shown in Figure 1, an integral component of WCET-

optimizing CI selection is the WCET bound estimation. In this,

the CI or the instruction set selection is another major step used

inthe extension problem of the instruction set [1].

The paper is sectioned as explained. In section [1-2] the concerned

literature is presented. Section 1.3 explains the optimization tech-

nique using PSO. The experiment result discussion is presented on

section 1.4. The conclusion part is described on section 1.5.

2. Related literature

The flow, low-level analysis and the calculation are the essential

components for the generation of the WCET estimate. The flow

analysis (FA) phase aims to represent a program’s dynamic behav-

ior. The process involves the function to be called, number of loop

iterations how many times loops iterate in case air-statements

dependencies exist. All possible program executions need to be

safe approximated as the FA is unaware of the execution path

which with respect to the longest execution time. These infor-

mation are extracted using either the integrated in the program-

ming language (manual annotations) [2] or provided separately [3-

5]), or by automatic flow analysis techniques [6-10]. Convention-

ally, the FA is referred as high-level analysis as it is mostly ac-

complished using the source code although it may be possible to

use the machine code or intermediate level.

Analysis of instruction caches, data caches, and branch predictors

corresponding to global low-level analysis has been a major

source of inspiration in this direction [5-16].

WCET calculation:

To improve a program’s average-case execution time, advanced

processors use the cache hierarchies as well as out of order execu-

tion although these features incorporated difficulties for determi-

nation of tight WCET. On the other hand, complex architectures

require more states in the model checker to be prone to state ex-

plosion problems. For such cases, the timing anomalies with re-

spect to the shared resources or memory accesses are desired. As

an example, let us consider a separate worst-case path ABD where

A, B and D are the basic building blocks. However, availability of

shared L2 cache may result in other paths such as ACD as the

worst-case path in case more instructions are evicted by L2 cache

from C than B. It is essential to take into account the tasks of dif-

ferent cores together for multicore analyzing of WCET that in

increases the computation time.

The modeling of a similar problem with Execution Flow Graphs

and Trees has been proposed in [17-18]. The authors used the

function level calls in modeling the execution flow in their work.

Similarly, in [19], the authors proposed the optimization of WCET

instruction set selection applied to extensible processors with cus-

tom functional units. These units are configurable for implementa-

tion of instruction patterns used frequently. It also speeds up the

process by exploiting instruction level parallelism and operator

chaining. While optimizing the WCET instruction set for a partic-

ular task that is executed, the instruction set remains fixed. Thus,

selected pattern configuration cost is not considered when this

approach is executed. In this piece of work, a dynamic reconfigu-

ration based custom instructions has been targeted in which the

area demands varies.

Fig. 2: Execution Time Estimates

3. Optimization using particle swarm optimi-

zation (PSO)

In order to allow solutions in the reconfigurable fabric this work

introduces an area constraint as the reconfigurable fabricsum

ak,jwhich need to be implemented the corresponding CIs where,

jdenotes the selected implementation in which case the term yk, j =

1. It needs to be either low or equal to the total fabric area a [20].

Consider a program having N basic blocks. The objective function

can be represented as

𝑚𝑎𝑥 ∑ 𝑐i𝑥i
𝑁
𝑖=1 (1)

Selecting an instruction set to optimize the WCET bound essen-

tially means. we aim to minimize the WCET over all possible

selections, that is, we aim to minimize the maximum execution

time.

Steps for Optimization

The population based adaptive stochastic optimization method is

PSO. The technique is based on collective swarm intelligence (SI).

The steps of PSO algorithm are as follows:

Step 1: Start and define solution space

Step 2: Represent potential solution to particle

Step 3: Initialize the population with respect to the random posi-

tion x as well as the velocityv vectors

Step 4: Evaluate the fitness for each agent.

Step 5: If fitness (x) > fitness (gbest) then gbest=x

Step 6: If fitness (x) > fitness (pbest) then pbest=x

Step 7: Update position and velocity

Step 8: gbest is best solution of parameters

In this work, the use of PSO is based on [24], initialize the particle

with position vector (x) and velocity vector (v) respectively. The

updated position vector and velocity vector for particle (i) are

given by:

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1∆𝑡

vi
k+1 = wkvi

k + c1
∗rand1,i

k (pi
k − xi

k) + c2
∗rand2,i

k (gi
k − xi

k)

Where, k represents present iteration, i is particle index with 𝑥𝑖
𝑘

and 𝑣𝑖
𝑘 are present positions and velocities respectively. The up-

dated velocity corresponds to the previous velocity weighted by

inertia 𝑤𝑘 corresponding with the parameters𝑐1
∗𝑎𝑛𝑑𝑐2

∗, which are

cognitive and social rates respectively. The cognitive and social

254 International Journal of Engineering & Technology

rates represent whether the individual agent has capabletowards

the pbest position and towards the gbest position. pi
kRepresents

personal best position and gi
krepresents global optimum position

of each individual particle. The experience of each individual

particle is (𝑐1
∗) w.r.t its pbest position, where as the gbest position

is found by neighborhood of each individual particle or by whole

swarm related to social parameter(𝑐2
∗). 𝑟𝑎𝑛𝑑1,𝑖

𝑘 In addition,𝑟𝑎𝑛𝑑2,𝑖
𝑘

are two random numbers in the range [0, 1], which are uniformly

distributed. ∆𝑡Is time difference, which is unity?

4. Result and discussion

The number of possible hardware configurations mk per CI

kchanges drastically. As an example, in this work, we encountered

a minimum CIs value of [1] with a corresponding maximum value

of 80= M implementations. It includes the entire software imple-

mentation with respect to a single kernel. When the CI value has

been 80 different implementations, different degrees of parallelism

have been observed with latencies. The area and the reconfigura-

tion delay have been same during synthesization of the reconfigu-

rable fabric. In case of minimum-latency implementation of the

fabric the proposed algorithm canprovide a number of relevant

implementations.

Fig.3: Optimal Results for H.264 Encoder and Different Values off
CPU/Ffabric, As Well as Reconfiguration Bandwidth.

The work evaluates the results of the heuristic with respect to an

optimal search. To practically demonstrate our approach the

runtimes have been studied.

5. Conclusion

This paper attempts a new method to compute the WCET of a

program. The technique is a hybridization of the fast computation

techniques like the tree and path-based algorithms, are less pre-

cise, and potentially slow global IPET. It aims to find the smallest

possible program components that can be handled for precision.

The method of calculation for every individual component is not

fixed and is dependent on the flow information characteristics and

the program structure. Due to smaller parts as compared to the

overall program, the technique provides the desired precision and

is fast while arbitrary boundaries are introduced similar to the tree

and path-based approaches.

References

[1] C. Galuzzi, K.L.M. Bertels, The Instruction-Set Extension Problem:
A Survey (December 2010), ACM Transactions on Reconfigurable

Technology and Systems (TRETS), volume 4, issue 2, 2010.
[2] R. Kirner and P. Puschner, “Transformation of Path Information for

WCET Analysis during Compilation,” in Proc. 13thEuromicro Con-

ference of Real-Time Systems, (ECRTS’01). IEEE Computer Soci-
ety Press, Jun 2001.

[3] J. Engblom and A. Ermedahl, “Modeling Complex Flows for

Worst-Case Execution Time Analysis,” in Proc. 21th IEEE Real-
Time Systems Symposium (RTSS’00), Nov 2000.

[4] C. Ferdinand, F. Martin, and R. Wilhelm, “Applying Compiler

Techniques to Cache Behavior Prediction,” in Proc. ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for Real-

Time Systems (LCT-RTS’97), 1997.

[5] Y.-T. S. Li and S. Malik, “Performance Analysis of Embedded
Software Using Implicit Path Enumeration,” in Proc. Of the 32: nd

Design Automation Conference, 1995, pp. 456–461.
[6] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo, “A Tool

for Automatic Flow Analysis of C-programs for WCET Calcula-

tion,” in 8th IEEE International Workshop on Object-oriented Real-
time Dependable Systems (WORDS’03), Jan 2003.

[7] C. Healy, R. Arnold, F. M¨uller, D. Whalley, and M. Harmon,

“Bounding Pipeline and Instruction Cache Performance,” IEEE
Transactions on Computers, vol. 48, no. 1, Jan 1999.

[8] N. Holsti, T. L°angbacka, and S. Saarinen, “Worst-Case Execution-

Time Analysis for Digital Signal Processors,” in Proceedings of the
EUSIPCO 2000 Conference (X European Signal Processing Con-

ference), Sep 2000.

[9] T. Lundqvist and P. Stenstr¨om, “An Integrated Path and Timing

Analysis Method based on Cycle-Level Symbolic Execution,”

Journal of Real-Time Systems, May 2000.

[10] F. Stappert and P. Altenbernd, “Complete Worst-Case Execution
Time Analysis of Straight-line Hard Real-Time Programs,” Journal

of Systems Architecture, vol. 46, no. 4, pp. 339–355, 2000.

[11] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
Influence of Processor Architecture on the Design and the Results

of WCET Tools,” IEEE Proceedings on Real-Time Systems, 2003.

[12] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, K. Park, and C. S. Ki, “An Accurate Worst-Case

Timing Analysis for RISC Processors,” IEEE Transactions on

Software Engineering, vol. 21, no. 7, pp. 593–604, Jul 1995.
[13] S.-K. Kim, S. L. Min, and R. Ha, “Efficient Worst Case Timing

Analysis of Data Caching,” in Proc. 2nd IEEE Real-Time Technol-

ogy and Applications Symposium (RTAS’96). IEEE, 1996, pp.
230–240.

[14] R. White, F. M¨uller, C. Healy, D. Whalley, and M. Harmon, “Tim-

ing Analysis for Data Caches and Set-Associative Caches,” in Proc.
3rd IEEE Real-Time Technology and Applications Symposium

(RTAS’97), Jun 1997, pp. 192–202.

[15] A. Colin and I. Puaut, “Worst Case Execution Time Analysis for a
Processor with Branch Prediction,” Journal of Real-Time Systems,

vol. 18, no. 2/3, pp. 249–274, May 2000.

[16] T. Mitra and A. Roychoudhury, “Effects of Branch Prediction on
Worst Case Execution Time of Programs,” National University of

Singapore (NUS), Tech. Rep. 11-01, Nov 2001.

[17] Falk, H., Plazar, S., &Theiling, H. (2007, September). Compile-
time decided instruction cache locking using worst-case execution

paths. In Proceedings of the fifth IEEE/ACM international confer-

ence on Hardware/software codesign and system synthesis (pp.
143-148), 2007. ACM.

[18] Liu, T., Li, M., &Xue, C. J. (2009, April). Minimizing WCET for

real-time embedded systems via static instruction cache locking.
In Real-Time and Embedded Technology and Applications Sympo-

sium, 2009. RTAS 2009. 15th IEEE (pp. 35-44), 2009. IEEE.

[19] Mitra, T., & Yu, P. (2005, September). Satisfying real-time con-
straints with custom instructions. In Hardware/Software Codesign

and System Synthesis, 2005. CODES+ ISSS'05. Third

IEEE/ACM/IFIP International Conference on (pp. 166-171). IEEE.

[20] Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia

of machine learning (pp. 760-766). Springer US, 2011.

https://ce-publications.et.tudelft.nl/author/view/id/70
https://ce-publications.et.tudelft.nl/author/view/id/7
https://ce-publications.et.tudelft.nl/publication/view/id/238
https://ce-publications.et.tudelft.nl/publication/view/id/238

